References

  1. Antonarakis SE, et. al. Mendelian disorders and multifactorial traits: the big divide or one for all? Nat Rev Genet 11: 380-384, 2010.
  2. Ayata C, et al. Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. J Cereb Blood Flow Metab 24: 744-755, 2004.
  3. Chabriat H, Joutel A, Dichgans M, et al. Cadasil. Lancet Neurol 8: 643-653, 2009.
  4. Dabertrand F, Nelson MT, and Brayden JE. Acidosis Dilates Brain Parenchymal Arterioles by Conversion of Calcium Waves to Sparks to Activate BK Channels. Circ Res 110: 285-294, 2012.
  5. Dichgans M. Genetics of ischaemic stroke. Lancet Neurol 6: 149-161, 2007.
  6. Dichgans M, et al. (Chabriat HS). Donepezil in patients with subcortical vascular cognitive impairment: a randomised double-blind trial in CADASIL. Lancet Neurol 7: 310-318, 2008.
  7. Domenga V, et al. (Joutel). Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18: 2730-2735, 2004.
  8. Eikermann-Haerter K, et al. (Joutel, Ayata). Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy syndrome mutations increase susceptibility to spreading depression. Ann Neurol 69: 413-418, 2011.
  9. Faraci FM. Protecting against vascular disease in brain. The Robert M. Berne distinguished lecture. Am J Physiol Heart Circ Physiol 300: H1566-1582, 2011.
  10. Filosa JA, et al. (Nelson). Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 9: 1397-1403, 2006.
  11. Fornage M, et al. (Tzourio). Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Ann Neurol 69: 928-939, 2011.
  12. Girouard H, et al. (Nelson). Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction. Proc Natl Acad Sci U S A 107: 3811-3816, 2010.
  13. Godin O, et al. (Tzourio). Antihypertensive treatment and change in blood pressure are associated with the progression of white matter lesion volumes: the Three-City (3C)-Dijon Magnetic Resonance Imaging Study. Circulation 123: 266-273, 2011.
  14. Halabi CM, et al. (Faraci). Interference with PPAR gamma function in smooth muscle causes vascular dysfunction and hypertension. Cell Metab 7: 215-226, 2008.
  15. Hara K, et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med 360: 1729-1739, 2009.
  16. Iadecola C, and Davisson RL. Hypertension and cerebrovascular dysfunction. Cell Metab 7: 476-484, 2008.
  17. Iadecola C, and Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci 10: 1369-1376, 2007.
  18. Joutel A. Pathogenesis of CADASIL: transgenic and knock-out mice to probe function and dysfunction of the mutated gene, Notch3, in the cerebrovasculature. Bioessays 33: 73- 80, 2011.
  19. Joutel A, et al. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest 105: 597-605, 2000.
  20. Joutel A, et al. (Chabriat). Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383: 707-710, 1996.
  21. Joutel A, et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Invest 120: 433-445, 2010.
  22. Opherk C, et al. (Dichgans). CADASIL mutations enhance spontaneous multimerization of NOTCH3. Hum Mol Genet 18: 2761-2767, 2009.
  23. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9: 689-701, 2010.
  24. Schmidt H, et al. Genetic variants of the NOTCH3 gene in the elderly and magnetic resonance imaging correlates of age-related cerebral small vessel disease. Brain 134: 3384- 3397, 2011.
  25. Schweisguth F. Regulation of notch signaling activity. Curr Biol 14: R129-138, 2004.
  26. Shiga A, et al. Cerebral small-vessel disease protein HTRA1 controls the amount of TGF- beta1 via cleavage of proTGF-beta1. Hum Mol Genet 20: 1800-1810, 2011.
  27. Yuzawa I, et al. (Ayata). Cortical spreading depression impairs oxygen delivery and metabolism in mice. J Cereb Blood Flow Metab 32: 376-386, 2012.
  28. Roy, C. S., and C. S. Sherrington. On the Regulation of the Blood-supply of the Brain. J Physiol 11: 85-158, 1890.
  29. Anderson, C. M., and M. Nedergaard. Astrocyte-mediated control of cerebral microcirculation. Trends Neurosci 26: 340-4, 2003.
  30. Chaigneau, E., M. Oheim, E. Audinat, and S. Charpak. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc Natl Acad Sci U S A 100: 13081-6, 2003.
  31. Iadecola, C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci 16: 206-14, 1993.
  32. Laughlin, S. B., and T. J. Sejnowski. Communication in neuronal networks. Science 301: 1870-4, 2003.
  33. Anderson, C. M., and M. Nedergaard. Astrocyte-mediated control of cerebral microcirculation. Trends Neurosci 26:340-4, 2003.
  34. Bhardwaj, A., et al. P-450 epoxygenase and NO synthase inhibitors reduce cerebral blood flow response to N-methyl-D-aspartate. Am J Physiol Heart Circ Physiol 279: H1616-24, 2000.
  35. Cornell-Bell, A. H., et al. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science v247: p470, 1990.
  36. Duffy, S., and B. A. MacVicar. Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J Neurosci 15: 5535-50, 1995.
  37. Fellin, T., and G. Carmignoto. Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit. J Physiol 559: 3-15, 2004.
  38. Filosa, J. A., A. D. Bonev, and M. T. Nelson. Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circ Res 95: e73-81, 2004.
  39. Harder, D. R., et al. Functional hyperemia in the brain: hypothesis for astrocyte-derived vasodilator metabolites. Stroke 29: 229-34, 1998.
  40. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 5: 347-360, 2004.
  41. Li, A., et al. Astrocyte-derived CO is a diffusible messenger that mediates glutamate-induced cerebral arteriolar dilation by activating smooth muscle Cell KCa channels. Circ Res 102: 234-41, 2008.
  42. Metea, M. R., and E. A. Newman. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 26: 2862-70, 2006.
  43. Mulligan, S. J., and B. A. MacVicar. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431: 195-9, 2004.
  44. Parri, H. R., and V. Crunelli. The role of Ca2+ in the generation of spontaneous astrocytic Ca2+ oscillations. Neuroscience 120: 979-92, 2003.
  45. Porter, J. T., and K. D. McCarthy. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16: 5073-81, 1996.
  46. Simard, M., G. Arcuino, T. Takano, Q. S. Liu, and M. Nedergaard. Signaling at the gliovascular interface. J Neurosci 23: 9254-62, 2003.
  47. Straub, S. V., A. D. Bonev, M. K. Wilkerson, and M. T. Nelson. Dynamic inositol trisphosphate- mediated calcium signals within astrocytic endfeet underlie vasodilation of cerebral arterioles. J Gen Physiol 128: 659-69, 2006.
  48. Straub, S. V., and M. T. Nelson. Astrocytic calcium signaling: the information currency coupling neuronal activity to the cerebral microcirculation. Trends Cardiovasc Med 17: 183-90, 2007.
  49. Takano, T., G. F. Tian, W. Peng, N. Lou, W. Libionka, X. Han, and M. Nedergaard. Astrocyte- mediated control of cerebral blood flow. Nat Neurosci 9: 260-7, 2006.
  50. Wang, X., et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9:816-23, 2006.
  51. Zonta, M., M. C. Angulo, S. Gobbo, B. Rosengarten, K. A. Hossmann, T. Pozzan, and G. Carmignoto. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6: 43-50, 2003.