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IV. Week 4: 

A. Goodness of fit testing 

1. We test model goodness of fit to ensure that the assumptions of the model are 
met closely enough for the model to provide valid inference.  Every statistical 
modeling technique has a set of assumptions that should be checked as well as 
possible.  Goodness of fit is generally evaluated using summary statistics and 
inspection of residual plots.  For certain complex models, goodness of fit can 
only be evaluated using computer simulations. 

2. Note that violating model assumptions is a much bigger problem if you are 
conducting null hypothesis tests, but that not meeting the assumptions will also 
affect model predictions. 

3. Regression 

a) Assumptions 
(1) Y-values and their error terms are normally distributed for 
each level of the predictor variables.  Regression is generally 
robust to violations of this assumption. 
(2) Y-values and their error terms have the same variance at each 
level of the predictor variables (i.e. homogeneity of variance).   
(3) Y-values and their error terms are independent. 
(4) Predictor variables are fixed and known exactly (specifically 
for “Fixed Effects” or “Model 1” situations).  Failing to meet this 
assumption, however, does not affect hypothesis testing or 
prediction. 
(5) Predictor variables should not be highly correlated with each 
other.  Severe collinearity can prevent a model from being fit or 
create highly sensitive results.  Correlated predictors also lead to 
inflated variance of parameter estimates.   
(6) There is a linear relationship between predictors and outcome. 

b) Example 
(1) The example is a simulated data set.  The outcome variable is 
Time To Detection (in seconds, during a bird point count), and the 
predictor variables are time of day (decimal hours since sunrise), 
foliage density, and number of birds actually present (the nice 
thing about simulated data is you don’t have to actually count the 
birds!). 
(2)  Test the fit of the regression model: TTD = b0 + b1*Time + 
b2*Foliage + b3*Number 



(3) In SAS, use the code: “PROC GLM data=dataset; MODEL ttd 
= time foliage number; RUN;” 

c) Goodness of fit 
(1) In SAS, a variety of GOF stats can be saved using the 
OUTPUT command: “OUTPUT out=outdataset keyword=name;”.  
So the command for residuals would be “OUTPUT out=outdataset 
R=resid;”  
(2) In SAS, plots can be made using PROC PLOT: “PROC PLOT 
data=outdataset; PLOT vertical*horizontal; run;” 
(3) Focus on whether a linear model is appropriate and whether 
there are outliers (i.e. large residual) or influence points (i.e. far 
from the mean). 
(4) Useful statistics to calculate: 

(a) The overall R2 is a general measure of fit, it is the 
proportion of the variation in the data set explained by the 
model. 
(b) Correlations among predictors. (PROC CORR in SAS: 
“PROC CORR data=dataset; VAR x1 x2 x3; RUN;”) 
(c) Predicted values are useful for plots. (P in SAS 
OUTPUT line) 
(d) Residuals are also useful for plots. (R in SAS) 
(e) Leverage measures how each x influences the fitted y-
value; values further from the mean of all x’s have greater 
leverage.  Any leverage greater than 2K/n should be 
checked; leverage is typically incorporated into Cook’s D. 
(Leverage is H in SAS) 
(f) Large studentized residuals indicate outliers from the 
fitted model, compared to other observations. (STUDENT 
in SAS) 
(g) Press residuals (usually studentized) are the difference 
between observed and predicted Y-values when the current 
observation is excluded. (RSTUDENT in SAS). 
(h) Cook’s D or Cook’s Distance measures the influence 
each observation has on the fitted regression line and the 
estimates of regression parameters.  A large value indicates 
that removal of the observation would considerably 
influence the regression parameters; distances greater than 
1 are usually particularly influential.  (COOKD in SAS) 

(5) Useful plots to examine 
(a) Scatterplots of each predictor against the other 
predictors can help detect multicollinearity. 
(b) Scatterplots of the outcome against each predictor: 
these plots can help you find unequal variances, 
nonlinearity, and outliers.  But this ignores the influence of 
other predictor variables. 



(c) Partial regression or partial residual plots show the 
relationship between the outcome and a predictor, adjusting 
for the effects of the other predictors.  Values on the Y axis 
are the residuals from the regression of Y against all 
predictors except the predictor of interest; values on the X 
axis are the residuals of the predictor of interest against the 
other predictors. (These plots can be produced by PROC 
REG, with the PARTIAL option in the MODEL statement: 
“MODEL y = x1 x2 x3 / partial”) 
(d) Residuals against predicted Y-values (these include 
Cook’s D and studentized residuals). 
(e) Residuals against predictors can detect outliers specific 
to that predictor, nonlinearity between Y and that predictor, 
and temporal autocorrelation if the predictor is time (and 
this type of plot can be adapted for detecting other sorts of 
autocorrelation). 
(f) Residuals against predictors or interactions not 
included in the model; this can help assess the importance 
of factors not included in the original model. 
(g) Locating outliers can be aided by plotting residuals 
against the observation number, or by sorting the data set 
(note that if you want to sort a table in SAS, right-click the 
table and click “Edit Mode” before clicking a column and 
sorting). 

4. ANOVA 

a) Assumptions 
(1) Y-values and their error terms are normally distributed for 
each level of the predictor variables.  ANOVA is generally robust 
to violations of this assumption if sample sizes and variances are 
similar across levels. 
(2) Y-values and their error terms have the same variance at each 
level of the predictor variables (i.e. homogeneity of variance).  
Unequal variances can be a big problem, but can be addressed 
using robust ANOVA techniques. 
(3) Y-values and their error terms are independent. 

b) Goodness of fit 
(1) ANOVA is essentially linear regression using categorical 
variables.  However, the categorical nature of the data means that 
some regression diagnostics are not useful. 
(2) Residuals and studentized residuals are still useful.  Plot these 
against the predicted values (i.e. group means).  Residuals should 
show equal spread for each group, indicating variance 
homogeneity.  These plots will also show outliers.   



5. Discriminant analysis 

a) Assumptions 
(1) There are several requirements for the data set: 

(a) Groups mutually exclusive. 
(b) Number of samples per group should not be radically 
different. 
(c) No discriminating variable can be a linear combination 
of other discriminating variables. 
(d) No highly correlated discriminating variables; 
maximum correlation suggestions vary, but be concerned if 
correlations exceed 0.7 (although most published analyses I 
have seen use thresholds between 0.8 and 0.95). 
(e) At least 2 samples per group. 
(f) At least 2 more samples than the number of variables, 
and preferably there should be at least 3 times as many 
samples as variables. 
(g) The prior probability of group membership is known.  
Most packages assume equal probability of membership in 
each group, but this can be adjusted (e.g. by using the 
proportion of samples as the prior probability). 

(2) Equal group dispersions (i.e. equal variance-covariance 
matrices): Violating this assumption is problematic if you are 
hoping to use inferential statistics to determine if groups are 
significantly different.  If this assumption does not hold, the 
discriminant analysis can still have useful for description and 
prediction. 
(3) Multivariate normality: This analysis assumes that the data for 
each group follows the multivariate normal distribution.  
Discriminant analysis is robust to violations of this assumption. 
(4) Independence: Discriminant analysis is sensitive to lack of 
independence. 
(5) Linearity: Discriminant analysis assumes that a linear 
combination of variables best predicts group membership. 

b) Example 
(1) The example is a data set that is often used to illustrate 
discriminant analysis.  The goal is to classify 3 species of irises 
based on sepal and petal width and length. 

c) Goodness of fit 
(1) Use a scatterplot or correlation matrix to explore correlations 
among predictor variables.  If there are any high correlations, you 
can conduct an ANOVA for both variables against your grouping 
factor.  Keep the variable with the largest among-group 
differences. (“PROC CORR data=discrim; var sepallen sepalwid 



petallen petalwid; run;”) (“PROC GLM data=discrim; class 
species; model species = var; run;”) 
(2) Calculate a univariate ANOVA on each discriminating variable 
with the grouping variable as the main effect, and assess the 
distribution of the residuals (which should be normally 
distributed).  This doesn’t really address multivariate normality, 
but if univariate normality is not present, then multivariate 
normality is also not present. (“PROC GLM data=discrim; class 
species; model species = var; output out=discrimout r=resid; run;” 
“PROC PLOT data=discrimout; plot resid*species; run;”) 
(3) Plot each variable on the Y axis against group membership on 
the X axis; variance should be similar across groups.  If variances 
are unequal you can transform the variable.  It may help to see if 
the transformed variable improves discrimination; if it does not, it 
should not be used. (“PROC PLOT data=discrim; PLOT 
var*species; run;”) 
(4) Calculate a test of equal group dispersions (there are a variety 
of these).  If the dispersions differ, discriminant analysis can be 
conducted using the within-group matrices instead of the pooled 
matrix.  This requires quadratic discriminant analysis rather than 
linear discriminant analysis.  Alternatively, if the dispersions do 
not differ greatly, the differences are unlikely to have a large effect 
and they can be ignored. (“PROC DISCRIM data=discrim 
pool=test; class species; var vars; run;”) (note: pool=no is 
quadratic discriminant analysis, pool=yes is linear) 
(5) Plot discriminant functions against each other (with different 
coding for each group).  This will help identify outliers, as well as 
nonlinearity. (“PROC DISCRIM data=discrim out=discrimout 
canonical pool=yes; class species; var vars; run; proc plot 
data=discrimout; plot can2*can1=species; run;”) 
(6) Classification accuracy: How well does discriminant analysis 
classify the data?  Is the classification better than expected by 
chance?  Kappa (when probability of group membership = sample 
size) or tau are useful statistics that explain the improvement in 
classification accuracy over what was expected by chance.  These 
statistics are only unbiased with jack-knifed or split-sample data. 
(“PROC DISCRIM data=discrim canonical crossvalidate 
crosslisterr pool=yes; class species; var var; run;”) (Use Kappa 
spreadsheet to calculate Kappa) 

6. Logistic Regression 

a) Assumptions 
(1) The data set must meet some basic requirements: 

(a) No highly correlated predictor variables 
(b) No complete separation (i.e. perfect prediction).  
Nearly complete separation can also be a problem. 



(c) No zero cells (i.e. no zero cells in the contingency table 
for categorical predictors). 

(2) The probability distribution for the response variable (and the 
error terms) is binomial (multinomial for multiple logistic 
regression).   
(3) The logistic link function is appropriate (i.e. predictor 
variables have a linear relationship to the logged odds of the 
outcome). 

b) Example 
(1) Coyote vocal responses to playback 

c) Goodness of fit 
(1) Plot each predictor against the outcome to look for complete 
separation and zero cells (Use JMP, Analyze… Fit Y by X to 
generate mosaic plots and contingency tables). 
(2) Use a scatterplot or correlation matrix to check for 
collinearity.  Contingency table analysis can be used to check 
correlations among categorical predictors. (“PROC CATMOD 
data=logistic; model outcome = predictors / corrb; run;”) 
(3) Examine the logistic regression output.  Extremely large 
estimates and standard errors indicate complete separation or zero 
cells. (“PROC LOGISTIC data=logistic; class classvars; model 
vocresp = vars; run;”) 
(4) Area under the ROC (Receiver Operating Characteristic) 
curve; see Hosmer and Lemeshow (2000). 

(a) The ROC curve is a measure of classification accuracy; 
it is a plot of sensitivity versus (1-specificity) over all 
possible classification cut-points. 
(b) Sensitivity is the proportion of cases where the outcome 
= 1 that were correctly classified. 
(c) Specificity is the proportion of cases where the outcome 
= 0 that were correctly classified. 
(d) A cut-point is the probability at which the decision is 
made to classify into one group instead of the other. 
(e) An ROC area of 0.5 suggests no discrimination; 0.7 to 
0.8 is considered acceptable, and greater than 0.8 is 
excellent. 
(f) Note that a poorly-fitting model may still have good 
discrimination! 
(g) In SAS, the area under the ROC curve is estimated by 
the statistic “c” in the table titled “Association of predicted 
Probabilities and Observed Responses”. 

(5) Overall goodness of fit can be assessed using the G2 statistic 
(the deviance) or the Pearson χ2 statistic if the predictors are all 
categorical.  These statistics approximate a χ2 distribution with n – 



p (sample size – number of parameters) degrees of freedom. (In 
SAS, add “/ aggregate scale=none” to the model statement) 
(6) If there are continuous predictors in the model, the best overall 
fit statistic is the Hosmer-Lemeshow test. (in SAS, add “/ lackfit” 
to the model statement)  
(7) Examine the residuals, which should be examined for large 
values or plotted against the predicted logistic probability.  Some 
useful residuals: 

(a) Pearson χ2 or deviance residuals. 
(b) ∆χ2 or ∆G2 residuals; these are the change in the χ2 or 
G2 statistics when the current observation is excluded (this 
is the logistic version of press residuals). 
(c) Dfbeta is an influence statistic that parallels Cook’s D 
from regression. 
(d) These residuals (and the predicted probabilities to plot 
them against) can all be calculated by adding the following 
line of SAS code after the MODEL statement: “OUTPUT 
out=logout predicted=pred reschi=reschi resdev=resdev 
difchisq=difchi difdev=difdev dfbetas=_ALL_;” 

7. What if your model does not fit? 

a) Examine outliers and determine if the data is accurate 

b) Consider revising your model set or error structure; this includes 
considering transformations of predictor variables and the outcome 
variable (i.e. the error distribution). 

c) It is possible to use QAIC or QAICc to select among poorly fitting 
models (B&A p. 309).  But you must report the lack of fit and be aware 
that this severely hampers inference (also p. 309).   

B. Multimodel inference 

1. The main goals of multimodel inference are to derive parameter estimates 
using all models in a model set, and to incorporate model selection uncertainty 
into precision estimates. 

2. Model-averaged parameters 

a) The model-averaged parameter estimate is simply the weighted 
average of the estimates from each model. 
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d) WARNING: do not average a parameter that has different meanings in 
different models (i.e. different functional forms in a non-nested model 
set).  Instead, calculate the estimated outcome for each model, and model 
average the outcomes.  Note that this value will correspond to specific 
values of the predictor variables (see below). 

3. Unconditional parameter variance (i.e. accounting for model selection 
uncertainty) 

a) The unconditional variance for a model-averaged parameter is also a 
weighted average. 
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c) The above formula is from Burnham and Anderson (2004), and differs 
from the formula in Burnham and Anderson (2002). 

d) The unconditional variance = the sum of (Akaike weights times (the 
variance calculated for the current model plus the squared difference 
between the parameter estimate for the current model minus the model 
averaged parameter estimate)). 

e) If the parameter you are calculating variance for is not in the 
current model, use a variance of zero and a parameter estimate of zero.  
This will contribute to the unconditional variance an amount equal to the 
model weight times the square of the model averaged parameter estimate. 

f) Burnham and Anderson spend some time talking about θθ
~

versusˆ , 
and the variance estimators that go along with these parameters.  The 
debate is essentially over what to do when a parameter is not in the model; 

Burnham and Anderson initially assert thatθ̂ and its variance is calculated 

by only using models where the parameter occurs, while θ
~

 is calculated 
according to the procedures I have outlined above and its variance cannot 
be calculated.  However, their 2004 monograph on multimodel inference 

describes θ
~

 while calling it θ̂ .  I believe that using the procedure I have 
outlined here is the best match to their apparent intent. 

4. Unconditional confidence interval 

a) Once you have the unconditional parameter estimate and its variance, 
just calculate confidence intervals as you normally would.  One typical 
approach is based on the z distribution: 
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5. Relative importance of variables 

a) Burnham and Anderson suggest summing the Akaike weights for the 
models where each variable occurs; the larger the summed weight, the 
more important the variable. 

b) This approach requires that each variable occur in the same number of 
candidate models.   

c) I do not agree with this approach, since it ignores the possibility that 
two parameters could be selected with similar frequency, but that one may 
be more important than the other (larger effect size, smaller confidence 
interval).  I have not seen a convincing simulation study supporting this 
approach. 

d) I recommend looking at the model averaged estimate divided by the 
model averaged variance as an estimate of effect size.  This approach also 
does not require equal representation for the parameter across the model 
set. 

6. Confidence Sets for the K-L Best Model 

a) Burnham and Anderson suggests that a n% confidence set can be 
produced by ranking the models by decreasing Akaike weights, and 
adding in models until the cumulative weight exceeds n% (so a 90% 
model set would include all models until the cumulative Akaike weights 
exceeded 0.90). 

b) They no longer seem to recommend this approach, and I agree that it 
should not be used.  It is simple enough to conduct model averaging that 
the entire set should be used. 

C. For the remainder of the class, work on a spreadsheet to calculate model averaged 
parameters and unconditional variances. 




