
 

Natural Resources Data Analysis – Lecture Notes 
Brian R. Mitchell 

III. Week 3: 

A. Discuss model sets 

B. Discuss results from explorations with model selection spreadsheet 

1. Sample size and AICc or QAICc: With low sample sizes, simpler models 
(lower K) are chosen; as sample size increases the results approach those obtained 
with AIC or QAIC. 

2. Effect of different ĉ values: as ĉ increases, the value of the selection statistic 
decreases.  This means that the relative importance of parameters increases (i.e. 
models that differ in K are proportionally further apart than with AIC).   

3. Effect of incorrect K in all models: If K is off by one for all models, the effect 
is generally small, unless the sample size is small or the number of parameters in 
the models is small.  For QAIC, as ĉ increases models are less likely to change 
rank if K is changed by 1 in all models. 

C. Main points from B&A, Chapter 2 

1. AIC is the expected estimated relative Kullback-Leibler (K-L) distance, 
where the K-L distance is the minimum distance between a model and full reality.   

a) Because we can never know how close a model is to truth, but we can 
determine if one model is closer to truth than another, AIC is relative. 

b) Because we are not certain about parameter values, we are dealing 
with an estimate. 

c) Because the estimated relative K-L distance is still not calculable, AIC 
is the expected estimated relative K-L distance. 

d) AIC will pick the best model in the set, even if it is a lousy model 
(which is why goodness-of-fit testing is important). 

2. AIC 
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b) K = number of estimated parameters 

c) L(model) is the likelihood of the model 

d) This formulation is only valid for large sample sizes! 



e) AIC formulas are usually written with “log” instead of “ln”; make sure 
you use the natural log (most packages will do this for you). 

3. Least Squares AIC 
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d) The AIC formula above differs from the formula in the book; this 
formula includes the constant 2πe that Burnham and Anderson didn’t 
think was worth printing.  Either formula will produce the same AIC 
differences, but this formula will match likelihoods calculated by statistics 
packages (e.g. if you happen to you use a likelihood method such as 
PROC GENMOD in SAS). 

e) The maximum likelihood estimate of σ2 that you need for AIC may 
differ from the estimate of σ2 from a stats package; you should calculate 
this on a spreadsheet to make sure.  The difference is that stats packages 
usually divide by the degrees of freedom instead of n. 

f) Adjust K: If you are using a statistical technique that assumes a normal 
error distribution (e.g., GLM models including regression, ANOVA, and 
ANCOVA), you need to add one (1) to your value for K to accommodate 
the estimation of σ2.  Note that this is not limited to least squares 
estimation; this is a requirement of any model assuming a normal error 
distribution! 

(1) Just to be confusing, the nomenclature for σ is not 
standardized; for example, if you use PROC GENMOD (with 
normal error distribution and identity link function) in SAS to 
estimate a model, SAS will report a scale parameter, φ, also called 
the dispersion parameter.  This parameter equals (σ2)2! 
(2) The nice thing about using GENMOD is it actually prints the 
scale parameter as an estimated parameter; so K is just the number 
of parameters reported in the output. 

g) Do not confuse the dispersion parameter with the overdispersion 
parameter used in QAIC, even though both are often represented as φ (and 
don’t confuse this φ with the φ in mark-recapture, which is survival 
probability). The documentation for SAS has a decent discussion of the 
scale/dispersion parameter. 



h) Be aware that variance and standard error are biased in maximum 
likelihood, especially at low sample sizes (Quinn and Keough 2002, p. 
25).  The relationship between the two quantities is: 
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(2) In other words, the variances differ by n/df. 

4. AICc 
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b) Use AICc whenever n/K < 40 

c) No reason why AICc shouldn’t be used ALL the time 

5. QAIC and QAICc 
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c) Identical to equations for AIC, but with an extra parameter ĉ to adjust 
the log-likelihood for overdispersion 
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e) Overdispersion is any situation where sampling variance exceeds the 
theoretical variance based on the distribution assumed by the model.  
Overdispersion typically comes from two sources: 

(1) Lack of independence.  Correlated data causes the actual 
variance to exceed the theoretical expectation. 
(2) Heterogeneity.  If a model assumes that a parameter is the 
same for all records, but in reality there are multiple values for 
different groups of records (or perhaps even individually-specific 
values), then the true variance will be greater than that calculated 
according to the theoretical value.  A good example of this is 
survival rate, which can be expected to differ for different groups 
of individuals (e.g. males and females). 



f) Overdispersion can occur when the assumed error distribution is 
binomial, multinomial or Poisson.  The problem is most common with 
mark-recapture data. 

g) Because a poorly fitting model can appear overdispersed (note that ĉ is 
estimated using a goodness of fit statistic!), every attempt must be made to 
model your system accurately. 

h) Calculate ĉ based on your most global model; if ĉ is greater than 4 
there is probably a structural problem with your data.  If ĉ is between 1 
and 4, use QAICc for model selection and add 1 to your estimate of K.  If 
ĉ is less than one, use AICc (i.e. use ĉ = 1).  The cut-point at 4 is, of 
course, essentially arbitrary. 

i) Important: If you use an overdispersion parameter in model selection, 
you MUST multiply all your variances and covariances by ĉ. 

j) There is not complete agreement on whether estimating ĉ requires an 
increase in K; Gary White (developer of MARK) disagrees with this 
practice.  However, I have not seen anything published that contradicts the 
conservative approach of increasing K when you use an overdispersion 
parameter (and be aware that MARK will not correctly increment K for 
this analysis; the option to do so has a bug as of January 28, 2005). 

6. AIC differences 

a) ∆i = AICi - AICmin 

b) For each model, subtract that model’s AIC from the minimum AIC 
value across the model set. 

c) The arbitrary cutoff values for levels of empirical support (e.g. 0 – 2 = 
substantial support, 4 – 7 = some support) are not important if you will be 
using model averaging. 

7. AIC weights 
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b) The weight is the weight of evidence in favor of the model being the 
best model in the model set; the weights are normalized to sum to 1. 

D. Some important points 



1. Data set consistency 

a) The data set must be the same for all models. 
(1) If some records are missing data for some variables, the 
records should be excluded from the analysis. 
(2) Grouping data: On page 81 of Burnham and Anderson (2002), 
they write: “AIC cannot be used to compare models where the data 
are ungrouped in one case (Model U) and grouped (e.g. grouped 
into histogram classes) in another.”  They do not provide any more 
detail on this issue. 

(a) This statement led me to assume that a given predictor 
variable could not appear in a model set as both a 
continuous variable and a classified variable.  For example, 
if wind speed is a predictor for our outcome variable, it can 
not be in km/hr in some models and the Beaufort scale in 
others. 
(b) However, it appears that this statement refers to 
grouping a response variable.  In other words, it is not valid 
to collapse data records into a smaller number of groups in 
some models and not in others. For example, if you 
measure energy consumption every month for two years, 
you can’t make monthly comparisons in some models and 
yearly comparisons in others. 
(c) A simple thought experiment should illustrate why the 
example in (a) is OK.  Assume you went out and measured 
wind speeds on 8 different days (along with some other 
data that you suspect affects the amount of bird song you 
hear).  On 4 of those days, wind speed happened to be 2.1 
km/hr.  On the other 4, it happened to be 4.6 km/hr.  
Regardless of whether you analyze this wind data as a 
continuous variable or a nominal variable (i.e. “Low” and 
“High”), you get exactly the same results.  If there were 
more groups or some variability in the wind speeds, the 
results would not be exactly the same, but I see no reason 
why comparing AIC for these models should not be 
allowed. 

2. Response variable must be the same in all models.  In other words, you can’t 
use Y as your outcome in some models, and log(Y) in others. 

a) However, it is possible to compare models with different error 
distributions (e.g. normal versus lognormal).  See section 6.7 in B&A 
2002 for a discussion; using models with different error distributions 
requires careful calculation of model likelihoods… and there is no 
guarantee that different statistical software packages use the full 
calculation. 



b) Because transforming Y is typically done to normalize the error 
distribution, modeling different error distributions is functionally 
equivalent to comparing models with different transformations of Y. 

3. Non-nested models: one of the powerful features of AIC is that it can be used 
to compare non-nested models.  However, you will not be able to model average 
parameters that take different forms in different models.  If your model set is not 
nested, it is likely that you will not be able to average some or all of your 
parameters (but you can always average your model outcome). 

4. Models within 2 AIC units: If models differ by one parameter and are within 
2 AIC units, check the log likelihoods.  If the likelihoods are similar, the more 
parameterized model does not add any new information (the new parameter is not 
important) (B&A p. 131). 

a) This is really only an issue if you are basing inference on the single 
best model. 

b) If you have models within 2 AIC units, you should be using model 
averaging, and it will be clear from the parameter estimates that the 
parameter is not important. 

5. Large increments in K: Ideally, you should avoid large increments in K 
between different models (i.e. several models with few parameters, and several 
with many) (B&A p. 136). 

E. AIC versus BIC (Burnham and Anderson 2004) 

1. Models, by definition, are only approximations to reality; there are no true 
models that perfectly reflect full reality. George Box made the famous statement, 
“All models are wrong but some are useful.”  

2. The “best model”, for analysis of data, depends on sample size; smaller effects 
can often only be revealed as sample size increases. The idea is not to model the 
data; instead, it is to model the information in the data. 

3. What is BIC? 
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b) Approximates the natural log of the Bayes factor. 

c) The model weight (calculated the same as the Akaike weight, but 
using BIC) is the inferred probability that the model is the quasi-true 
model in the model set. 



d) For small or moderate sample sizes obtained in practice, the model 
selected by BIC may be much simpler than the most parsimonious model 
(i.e. BIC may underfit, leading to biased parameter estimates). 

4. Comparison 

a) Effects in the data: BIC performs well when there are a few large 
effects and no small effects, while AIC performs well when there are 
tapering effects. 

b) Target model: BIC is “dimension consistent” or “order consistent”; 
this means that regardless of sample size, BIC aims to find the most 
parsimonious model with the lowest K-L distance.  AIC is a “minimum 
total discrepancy” criteria (Taper 2004); this means that the target model 
may change with sample size, and the goal is to minimize predictive 
errors.  AIC will select models with more parameters as sample size 
increases. 

c) Performance: BIC performs better with nested models and large 
sample sizes; at small sample sizes the BIC-selected model can be quite 
biased (underfit), especially if there are tapering effects. 

d) Fit of selected model: Based on simulations, the model selected by 
AIC always fits if the global model fits; the model selected by BIC does 
not always fit. 

5. AIC as a Bayesian result: BIC model selection arises in the context of a 
large-sample approximation to the Bayes factor, conjoined with assuming equal 
priors on models. In reality, it makes more sense to use a savvy prior based on the 
sample size and the number of parameters in a given model (this acknowledges 
that a small data set has less ability to resolve parameters).  

a) The “savvy prior” that is presented is the prior that mathematically 
converts BIC to AIC. 

b) There is no justification given for why this particular prior was 
chosen, other than that the math happens to work out and it includes 
sample size and the number of parameters. 

c) I am personally wary of claiming that AIC is a Bayesian result without 
seeing a realistic derivation of the savvy prior from basic principles (as 
opposed to mathematical sleight of hand)! 

6. Based on simulations, model averaging is always better than prediction based 
on the best model only (for AIC and BIC).   

F. B&A Chapter 3 



1. Important reminders: 1) Use model averaging, even though this chapter 
focuses on model selection. 2) Assess goodness of fit of the global model early in 
the analysis.  Examine outliers, leveraged points, symmetry, trends, and 
autocorrelations in the residuals.  Numerous standard diagnostic procedures 
should help with this.  

2. Example 1: Cement Hardening Data:  A simple example of multiple 
regression analysis.  13 cases and the 4 predictor variables, analysis looks at all 
possible non-interactive models.  Note that there is significant model selection 
uncertainty. 

a) Note that the number of candidate models exceeds the sample size. 
This is OK for an exploratory analysis (when you could easily have 
MANY more models than samples), but should be avoided for 
confirmatory analyses since it increases the chance that the chosen model 
will fit the data best simply by chance. 

b) The key is not so much the number of models, but ensuring you have a 
much larger sample size than your number of parameters (n > K).  If n/K < 
40, make sure to use AICc. 

3. Example 2: Time Distribution of an Insecticide:  What are the important 
chemical, physical, biological phenomena governing pesticide distribution in a 
simulated ecosystem?  Take 3 measurements at 12 different time periods; measure 
percent of radioactivity in fish, soil/plants, and water.  Modeling technique is 
complicated, but basically used a good set of 7 candidate models.  AICc led to the 
same results obtained by the original authors.   

a) What is the sample size?  36 is used in the example, but I suspect that 
the true sample size is 12 (each set of measurements is a single sample). 

b) The results change with a reduction in sample size; using the smaller 
sample size results in selection of model 3a instead of 4a; 3a has a weight 
of 0.684.  The results are highly dependent on the sample size! 

4. Example 3: Nestling Starlings: Generated Monte Carlo data with 34 
parameters and many tapering treatment effects.  Global model has 4 fewer 
parameters than the generating model.  What approximating model can be used to 
analyze the data that leads to valid inferences about system structure, parameters, 
and treatment effects?   

a) Effective sample size = number of initial captures + all resightings.  I 
think that the correct sample size is the number of initial captures.   

b) Part of the success was an approach that allowed for modeling the 
treatment effects (as a sine wave) rather than estimating re-sight and 
survival probabilities for every week.       



5. Example 4: Sage Grouse Survival: Another mark-recapture example.  
Resightings are mortalities (hunter band returns) in this case.  

a) Effective sample size = number of banded birds.  In this case, I agree. 

b) Note that parameters that are not included in the best model may still 
have an effect... it is just that the effect is probably small.   
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