
Natural Resources Data Analysis – Lecture Notes 
Brian R. Mitchell 

I. Week 1: 

A. Welcome and Introductions 

B. Review Syllabus 

1. Review some specifics:  

2. Written assignments are aimed towards developing a professional manuscript (thesis chapter 
or journal publication) describing your results.   

3. Check the web site weekly for changes (and new readings if any are listed as “TBA”).  I will 
post any changes by the end of the day on Monday for the following week’s class. 

4. Let me know if there are topics you wanted to see that aren’t on the schedule; I will try to add 
topics in if there is interest. 

5. First few weeks will focus on developing model sets, then quickly proceed into nuts and bolts 
of data analysis. 

C. Data sets 

1. Each participant should give a brief summary of their research question and data set, and 
describe the statistical approach they want to use and why.   

D. Approaches to data analysis 

1. I think it is worth taking some time to discuss the various approaches to testing statistical 
hypotheses.  Let’s start at a really basic level and work up. 

2. What is a hypothesis (in the most general sense)?   

3. A hypothesis is a tentative explanation for an observation, phenomenon, or problem. 

4. What is a scientific hypothesis? 

5. A scientific hypothesis is a word model that tries to explain or make a prediction based on 
our current understanding of a problem (a scientific model).   

6. What is a statistical hypothesis? 

7. It is a statement about the attributes of a statistical model whose validity can be assessed by 
seeing how well the model matches data.  Note that a statistical model is explicit, quantitative, 
and includes a description of uncertainty (error). 

8. There should be a one-to-one correspondence between a scientific model and a statistical 
model.    If there is a one-to-one correspondence, then learning about the adequacy of a statistical 
hypothesis can teach us about the adequacy of a scientific model. 

9. Example: scientific model: in a sexually reproducing population with random mating and 
equal parental investment, natural selection should favor equal proportions of male and female 



offspring.  Scientific hypothesis: there are equal proportions of male and female offspring.  
Statistical model: the number of males (or females) in a litter of a given size is binomially 
distributed.  Statistical hypothesis: θ, the probability of a male offspring, = 0.5. 

10. The next step is to collect data using an appropriately designed and thought-out strategy. 

11. Then we need to evaluate whether the data are consistent with our statistical hypothesis. 

12. What are the potential approaches we could use to evaluate a statistical hypothesis? 

13. The general approaches are Frequentist, Bayesian, and Likelihood.  Let’s explore each in 
turn. 

14. Frequentist 

a) There are a couple of related approaches to classical hypothesis testing; they are all 
considered “frequentist” approaches.  Why? (Hint: has a lot to do with the convoluted 
way you were taught to talk about p-values in multivariate stats) 

b) These approaches always consider the frequency with which your data or more 
extreme data would be collected, IF you conducted many replicate experiments. 

c) Fisherian hypothesis testing (1956) 
(1) Construct a statistical null hypothesis (e.g. θ = 0.5). 
(2) Choose an appropriate distribution (e.g. binomial distribution) or test statistic 
(e.g. t statistic). 
(3) Collect the data with random samples. 
(4) Determine the p value (probability of obtaining the value or one more 
extreme), assuming the null hypothesis is true. 
(5) Reject the null hypothesis if p is small (and always report the p value as a 
“strength of evidence” measure). 
(6) Fisher recommended a significance level of 0.05, but later argued that the 
significance level should depend on the circumstances. 

d) Neyman-Pearson hypothesis testing (1933) 
(1) Similar to Fisher’s approach, but: 
(2) Set significance level in advance, and interpret it as the proportion of times the 
null would be improperly rejected given many replicates and a true null 
hypothesis. 
(3) Explicitly incorporate an alternative hypothesis; this must be true if the null is 
false. 
(4) p value is not a strength of evidence; its only use is in deciding to accept or 
reject the null hypothesis. 
(5) Focus on Type I and Type II errors, as well as power of tests. 

e) A hybrid approach is common today 
(1) This is essentially the Neyman-Pearson approach, but with the view that p 
values are a strength of evidence (e.g. significant, very significant (0.01), and 
highly significant (0.001).  

f) Critique of the frequentist approach 
(1) What are the problems with the frequentist approach? 



(2) Dependence on sample size: larger sample sizes are more likely to produce a 
significant result.  This is not such a big deal if you use power analysis to set the 
sample size a priori.   
(3) Unobserved data: p-values represent the probability of the data observed as 
well as more extreme data (i.e. data not observed). So when what we want is the 
probability of the data, what we get is the probability of the data or data that is 
more extreme.  
(4) Probability of the data: What we want to know is P(H0|data), but what we get 
is P(data|H0) or, more accurately, we get P(data or data more extreme|H0). 
(5) Trivial null hypothesis: the null hypothesis is almost always trivial and 
logically false.  BUT, rejecting the null is not important because it was believed; it 
is important because it indicates the presence of an effect worth reporting and 
investigating.  Also, nulls do not have to be stated as "no effect".   
(6) arbitrary significance levels: alpha level is arbitrary.  (Even when it is chosen 
before-hand, and is not necessarily 0.05, it is still arbitrary).   
(7) No way to include prior knowledge into the analysis. 
(8) Suggestions for using the classical approach: Focus on effect sizes and 
confidence intervals.  If you can’t calculate your sample size in advance (with an 
a priori power analysis), then take care to separate statistical significance from 
biological significance. 

15. Bayesian 

a) The Bayesian approach avoids many of the problems with the frequentist approach, 
but the main lure of Bayesian analysis is that it 1) provides a way of dealing with the 
frequentist issue related to probability of the data.  In other words, classical analysis tells 
us P(data|H0), but we are interested in learning P(H0|data); and 2) Bayesian analysis also 
allows the incorporation of prior knowledge. 

b) Bayesians believe that analyses and decisions should be made on the basis of the 
observed data, not on the data that might have been observed in a series of hypothetical 
experiments.  The result of a Bayesian analysis is a changed degree of belief in the 
hypotheses being investigated. 

c) Bayes Theorem 
(1) Who knows Bayes theorem? 
(2) Bayes theorem: P(H1|data) = P(data|H1)P(H1)/P(data) 
(3) OR: posterior probability of H1 = (likelihood of observing the data given 
H1)*(unconditional prior probability of H1, taking into account existing 
knowledge)/(mean of the likelihood function, which serves to standardize the 
area under the posterior probability curve so it equals 1). 
(4) OR: the posterior probability is proportional to the likelihood times the prior 
probability.   
(5) Prior probability distributions can take two forms: 1) prior ignorance (a non-
informative distribution).  This helps overcome the potential subjectivity in a 
bayesian analysis.  Most common is a uniform distribution. 2) substantial prior 
knowledge, represented by an informative prior probability distribution (e.g. a 
normal or beta distribution).   

d) An example of Bayesian parameter estimation 
(1) Estimating sulfates (µmol/L) in streams in NY 
(2) Assume a normal distribution for the prior and the data. 



(3) Prior: mean = PM = 50, variance = PV = 44 
(4) Sample: mean = SM = 61.92, variance = SV = 37.46, n = 39 
(5) Posterior variance = 1/(1/PV + n/SV) = 0.94 
(6) Posterior mean = posterior variance*(PM/PV + SM*n/SV) = 61.67 
(7) The posterior mean and probability is a weighted average of the prior and the 
data. 
(8) What happens if PV is more certain (smaller variance)? 
(9) If the prior is more certain (less variance), it has more of an effect on the 
posterior probability.  For example, PV was 10, posterior mean = 60.88 and 
posterior variance = 0.88. 
(10) What if the PM is lower? 
(11) A prior with a more distant mean will also have a greater effect. 
(12) What if the prior is uninformative? 
(13) If the prior is uniform (uninformative), then the posterior mean and 
variance will simply equal the sample mean and variance. 

e) Bayesian hypothesis testing 
(1) There is no formal accept/reject decision framework; simply attach greater or 
lesser favor to the alternatives based on the shape of the posterior distributions.   
(2) Can formalize hypothesis testing by calculating P(H|data) for each hypothesis, 
then calculating a posterior odds ratio: P(HA|data)/P(HB|data) 
(3) The posterior odds ratio also = “Bayes factor” * the prior odds ratio.  If the 
two hypotheses were considered equally likely a priori, then the Bayes factor = 
the posterior odds ratio 
(4) The Bayes factor and the posterior odds ratio are measures of the weight of 
evidence in favor of HA and against HB.  The magnitude of the Bayes factor is 
used as evidence in favor of a hypothesis.   
(5) A simpler alternative to the Bayes factor is the Schwarz Criterion (or Bayes 
Information Criterion, or BIC); this approximates the log of the Bayes factor and 
is easy to calculate.   

f) Problems with Bayesian analysis 
(1) What are the problems with Bayesian analysis? 
(2) Using prior information amounts to “personal opinion” and is inherently 
biased. 
(3) Determining the appropriate statistical form for prior information is 
complicated.   
(4) Practical application of a Bayesian analysis is complicated.  Although 
computer programs are getting better (e.g. WinBUGS for MCMC analyses), 
complex models simply cannot be evaluated or estimated with a Bayesian 
approach due to the difficult calculus involved. 

16. Likelihood 

a) Background 
(1) Likelihood inference takes the evidence that the observed data provide about 
the hypothesis and represents it as a likelihood function (likelihood of the data, 
given the hypothesis).   
(2) Likelihood inference is about relative measures of evidence of support 
between competing hypotheses, and the focus is on the likelihood ratio (which is 
the relative strength of evidence provided by the data supporting H1 compared to 
H2.   



(3) The likelihood function of a parameter or variable (e.g. the proportion of 
heads in a coin toss) can be thought of as a graph of the relative chance of 
observing a given value (on the y axis) against all possible values of the parameter 
(on the x axis).   
(4) The Law of Likelihood say that if hypothesis A implies that the probability of 
a random variable X taking value x = ρa(x), while hypothesis B implies that the 
probability of a random variable X taking value x = ρb(x), then the observation 
that X = x is evidence supporting A over B if ρa(x) > ρb(x), and the likelihood 
ratio ρa(x)/ρb(x) measures the strength of that evidence. 
(5) As a rule of thumb, likelihood ratios below 8 are considered weak evidence, 
between 8 and 32 is moderate evidence, and above 32 is strong evidence (Royall 
2004). 

b) Example 
(1) We are given a coin that we suspect is biased towards excess heads. 
(2) We toss the coin n = 20 times, and get x = 12 heads. 
(3) Hypothesis A is that the coin is unbiased (π = 0.5), and Hypothesis B is that 
heads will occur 60% (π = 0.6) of the time. We choose this value for hypothesis B 
knowing it will yield the maximum likelihood ratio based on the data collected. 

(4) We use the binomial distribution: xnx
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(5) ρa(x) = 0.1201, and ρb(x) = 0.1797, so the likelihood ratio is 1.50 
(6) How strong is the evidence that this coin is biased? 
(7) What if n = 150? 
(8) ρa(x) = 0.00324, and ρb(x) = 0.06637, so the likelihood ratio is 20.50 
(9) How strong is the evidence that this coin is biased now? 

c) Misleading evidence 
(1) Note that regardless of how strong the evidence is, it can still be misleading.  
In other words, there is still a chance that the coin in the example was not really 
biased, even though there is strong evidence that it is.  The interpretation (that the 
coin was biased) is still correct; it was the evidence that was misleading.   
(2) The maximum probability of misleading evidence cannot exceed 0.021 when 
the likelihood ratio exceeds 8, and cannot exceed 0.004 when the likelihood ratio 
exceeds 32 (Royall 2004, citing Royall 1997).   

d) Likelihood-based hypothesis testing 
(1) Experimental design should consider the minimum sample size at which the 
probability of generating weak evidence for distinguishing between the 
hypotheses is low.  Note that if the probability of generating weak evidence is 
low, the probability of misleading evidence will be even lower.   
(2) Observed data is assumed to fit some underlying probability model (as in 
frequentist methods) 
(3) The likelihood ratio provides an explicit and objective measure of the strength 
of the statistical evidence. 
(4) There is no dependence on a particular stopping rule; there is no reason not to 
collect additional data if the likelihood ratio indicates weak data; researchers are 
encouraged to examine the likelihood functions of their data and adjust the sample 
size accordingly.  This is of course absolutely forbidden in the frequentist 
approach. 



e) Problems with likelihood analysis 
(1) Arbitrary levels of importance. 
(2) Does not incorporate prior information. 
(3) Any other thoughts? 

17. Relationships between approaches 

a) Likelihood has some aspects of the frequentist approach, because likelihood ratios 
follow a χ2 distribution (actually 2*ln(LR) is the correct statistic) and can be tested using 
frequentist methods 

b) Likelihood also has aspects of the Bayesian approach.  With a uniform prior, the 
Bayesian posterior probability distribution has an identical shape to the likelihood 
function. 

18. What approach should be used, and when? 

a) When should the classical approach be used? 
(1) Strict experiments with control and treatment 

b) When should a Bayesian approach be used? 
(1) Any situation where you want to incorporate prior knowledge 
(2) These situations can include model selection and determination of effect sizes 
(3) Particularly well suited to learning algorithms (e.g. neural networks) 

c) When should a likelihood approach be used? 
(1) Natural experiments 
(2) Observational experiments 
(3) Determination of effect sizes 
(4) Model selection 

E. Approaches to model selection and averaging 

1. In this class we are concerned with model selection.  The model sets can range from 
alternative hypotheses about historical events, to hypotheses about processes that generated a 
data set, to hypotheses about which parameters are most important in a data set.   

2. We might be interested in predicting future data, understanding the existing data, or 
estimating effect sizes. 

3. Frequentist methods 

a) How would a frequentist go about selecting the best model? 

b) In general, the frequentist approach is not a good strategy for model selection, 
primarily because: 1) hypothesis tests between models are not independent, and 2) there 
are serious problems with the probability of Type I error due to multiple testing of the 
same data. 

c) Stepwise 
(1) Model set would be a nested set ranging from an intercept-only model to the 
most general model (i.e. including all parameters plus important interactions). 



(2) Stepwise parameter selection is used to compare two models at a time.  Can 
be forwards stepwise (begin with no parameters) or backwards stepwise (begin 
with full model).  At each step, evaluate whether adding the most important 
excluded parameter increases model fit, and evaluate whether removing the least 
important included parameter decreases model fit.  Continue until you get to the 
point where adding any one of the remaining excluded parameters does not 
improve the fit, and removing any one of the included parameters decreases the 
fit. 
(3) Selection is generally based on the likelihood ratio F-test. 

d) All subsets 
(1) Same model set as above 
(2) Calculate some statistic (e.g. adjusted R2, AIC, BIC) for every model, and 
pick the model with the best value. 
(3) NOTE: using AIC and BIC in this situation is essentially a likelihood 
approach to model selection; it is valid but considered weak (exploratory).  
Adjusted R2 functions poorly as a model selection criteria. 

4. Bayesian approach 

a) How would a Bayesian go about selecting the best model? 

b) Develop a model set; would probably not include all possible models. 

c) Explicitly consider the prior information about which model(s) are most likely. 

d) Calculate the Bayes factor for each model (or its approximations, BIC or AIC, 
depending on your model priors), and select the best model or use model averaging. 

5. Likelihood approach 

a) How would you go about model selection using a likelihood approach? 

b) Develop a model set; would probably not include all possible models. 

c) For each model, calculate the likelihood of the data, given the model. 

d) Calculate AIC or some other information criterion, and select the best model (if 
evidence overwhelmingly supports it) or use model averaging (if multiple models are 
supported by the evidence). 

e) This is the Information-Theoretic approach to model selection and averaging, and is 
based on the concept of Kullback-Leibler distance 

F. Discuss specifics from the readings 

1. Let’s take the rest of the class period to discuss the readings for this week, which provided 
background information for the information-theoretic approach.  We’ll start with Johnson and 
Omland before going into B&A, which is more technical. 

2. Johnson and Omland: 

a) In my view, the main points are: 



b) Benefits of model selection: 1) Competing models are compared to one another by 
evaluating the relative support for each. 2) Models can be ranked and weighted, thereby 
providing a quantitative measure of relative support for each competing hypothesis. 3) 
Model averaging can be used to make robust parameter estimates and predictions. 

c) Steps to model selection: 1) Articulate a reasonable set of competing hypotheses as 
models. 2) Fit the models to the observed data.  3) Examine the goodness-of-fit of the 
most heavily parameterized (i.e. global) model in the candidate set. 4) Select the best 
model or use model averaging. 

d) Model averaging eliminates model selection bias and accounts for model selection 
uncertainty.  

e) When should model selection be used? Model selection is well suited for making 
inferences from observational data, especially when data are collected from complex 
systems or when inferring historical scenarios where several different competing 
hypotheses can be put forward.   

f) Caveats: 1) Inferences derived from model selection ultimately depend on the models 
included in the candidate set.  A bad candidate set is a big problem! 2) Models should be 
plausible.  If a model is to carry biological meaning, rather than mere statistical 
significance, then its predictions and parameter estimates must be biologically plausible.  
3) When is it appropriate to use model selection, and when is it appropriate to use 
designed experiments and inferences based on significance tests? 

3. B&A, Chapter 1: 

a) In my view, the main points are: 

b) 1.2.1:  Given an appropriate model, the maximum likelihood method objectively 
estimates parameters and the sampling covariance matrix.  This is why model fit is 
important; if the model doesn’t fit, the estimates are biased! 

c) 1.2.2:  Results obtained using Ordinary Least Squares (OLS) methods can be 
converted to Maximum Likelihood (ML) estimates. 

d) 1.2.4:  Candidate model sets: Building candidate models is a subjective art.  Need 
deep thought and early exploratory data analysis.  All models must be biologically 
plausible.  Need many more cases than variables!  Aim for a model set with 4-20 models. 

e) 1.2.5:  No true model; only good approximations.   

f) 1.3.6:  Global model should have all factors and variables thought to be important.  If 
the global model fits data, a selected model that is more parsimonious will also fit the 
data.   

g) 1.4.2:  Parsimony: use the fewest parameters that represent the data.  There is a 
tradeoff variance and bias that results from fitting a model.  Underfitting misses 
important structure and biases parameter estimates; you will miss important treatment 
effects.  Overfitting produces models with very little bias, but have large estimates of 
sampling variance because of lack of precision in parameter estimates.  These models 
also have spurious treatment effects. 



h) Example of parsimony:  
(1) Given data: x = {-4,-3,-2,-1,0,1,2,3,4} and y = {0,3,5,6,6.5,6,5,3,0} 

(2) 
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(3)   Linear  Quadratic 3rd Order 
(4) Int ± SE: 3.83 ± 0.89 6.52 ± 0.058 6.52 ± 0.063 
(5) x ± SE: 0.00 ± 0.34 0.00 ± 0.015 0.00 ± 0.042 
(6) x2 ± SE:   -0.40 ± 0.006 -0.40 ± 0.007 
(7) x3 ± SE:     0.00 ± 0.003 
(8) The linear model is clearly biased; the intercept is estimated at 3.83 instead of 
6.5.  The quadratic is the best fit; moving to the 3rd order model does not change 
the parameter estimates (doesn’t lead to bias), but it adds an unimportant 
parameter and increases the SE for all parameters. 

i) 1.5: Data dredging:  Dredging leads to overfitted models that perform much more 
poorly than summary statistics suggest.   

j) 1.5.1: What constitutes dredging? Dredging includes exploratory data analyses, also 
includes fitting all possible models.  Dredging invalidates statistical tests and estimates of 
precision.  Can dredge AFTER the initial a priori phase, but need to explain that this was 
done.   

k) 1.6: Model selection bias:  Data-based model selection will bias estimates of model 
parameters.  The bias is often severe. 

l) 1.7: Model selection uncertainty:  Caused when the same data is used for model 
selection and parameter estimation.  There can be substantial uncertainty in model 
selection, especially when there are tapering effects. 
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