Amine boranes have elicited heightened interest in recent years due to their potential use in hydrogen storage systems, as hydrogenation reagents, and as polymer precursors. Methods to access dehydrocoupled amine-borane products are desirable and have been increasingly studied. The dehydrocoupling of primary and secondary amine boranes will be presented using a non-metallocene, early transition-metal catalyst, κ^5 -[(Me₃SiNCH₂CH₂)₂NCH₂CH₂NSiMe₂CH₂]Zr (1). Complex 1 has demonstrated high catalytic reactivity towards primary and secondary amine boranes at ambient temperature cleanly yielding borazines and cyclic dimers, respectively. Of interest is the observation of a highly reactive amino-borane as an intermediate in the formation of [¹BuNBH]₃ that is not observed during dehydrocoupling of Me₂NHBH₃. A variety of amine borane dehydrocoupled products such as borazines, borazanes, and μ -aminodiboranes (NRR'B₂H₅ [R = R' = Me; R = ¹Bu, R' = H]) can be accessed using a Cp*₂SnCl₂ (Cp* = pentamethylcyclopentadienyl) (2) catalyst. Though these reactions are less clean, they serve as an uncommon example of p-block metal dehydrocoupling. The optimized substrate scope and reactivity of 2 and other related tin-based complexes (Ph₂SnCl₂ and SnCl₂) will be presented as well as mechanistic insights.