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1. Introduction  

1.0  Introduction & Project Objective 
 

This report addresses a knowledge gap in the literature on the organic chemical composition of particulate 

matter (PM) emitted by light-duty diesel engines operating on biodiesel fuel.   Specifically, this work 

summarizes the development of sampling and analytical protocols to quantify a series of target analytes in 

PM collected from laboratory engine dynamometer experiments.  The target analytes include polycyclic 

aromatic hydrocarbons (PAHs), normal alkanes, fatty acid methyl esters (FAMES) and 26 polar organic 

compounds (POCs) that include carbonyl, aldehyde and quinone chemical classes.   The target analytes 

were selected based on the availability of authentic chemical standards and prior research on petroleum 

diesel exhaust composition.  Preliminary results are presented for analyses of a limited number of raw fuel 

and exhaust particulate matter samples collected during steady-state engine operation.  The analytical 

method is evaluated in terms of variability among replicate analyses, blank quantitation and individual 

target analyte recoveries and detection limits. 

1.1 Particulate Matter  

 

Particulate matter (PM), including that from diesel engines, has received attention in recent decades because 

of its association with adverse health effects (Dockery et al., 1993; Pope and Dockery 2006; Bell et al., 

2008).  The main health effects of PM are (i) excess mortality, mainly among the elderly and chronically 

ill; (ii) effects on elderly with preexisting cardiopulmonary diseases; (iii) exacerbation of symptoms among 

people with acute and chronic pulmonary disease; and (d) increased eye and respiratory system irritation, 

especially asthma attacks and respiratory infections (Franchini and Mannuci. 2007; Riedl. 2008; 

Valavanidis et al., 2008). The chemical composition of PM may predict health effects better than other PM 

characteristics such as mass and size (Stanek et al., 2011).  Recent laboratory studies have shown a 

relationship between PM compositional variability and PM-related toxicity, while epidemiologic studies 

have shown a regional heterogeneity in PM-related health effects (Bell et al., 2008; Zanobetti and Schwartz 

2009).  The majority of previous diesel engine exhaust studied focused on petroleum diesel fuel, but since 

the mid-2000s there has been an increase in biodiesel fuel use worldwide.  Biodiesel still represents a minor 

volume of the total diesel fuel used worldwide, but its use is anticipated to increase in the future in response 

to energy security and global climate concerns. Therefore, it is important to quantify the chemical 

composition of diesel and biodiesel exhaust particulate and gas-phase emissions in order to better 

understand the relationships between fuel composition and the health effects of both diesel and biodiesel 

exhaust emissions. 

 

 

1.2 Biodiesel Fuel 

Depleting fossil fuel reserves and rising petroleum prices have led to the widespread introduction of 

alternative biomass-based fuels worldwide. Since 2005, U.S. energy policy has mandated increases in the 

quantity of renewable fuels used for transportation, including “biomass-based diesel” or biodiesel [EISA 

2007; EPA 2010]. Biodiesel, a renewable fuel derived from a variety of animal or vegetable feedstocks, is 

a preferred alternative to petroleum diesel because it: (i) offers air pollution benefits for some pollutants 

[EPA 2002]; (ii) can be blended into existing diesel fuel supplies with no engine modifications; (iii) is an 

important strategy for both domestic energy independence and sustainable agricultural production; (iv) 

reduces net greenhouse gas emissions, and (v) it is biodegradable. A variety of feedstocks can be used to 
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produce biodiesel fuel that meets federal standards for on-road use (e.g., ASTM D6751) and does not 

compete with food resources. 

Biodiesel is a mixture of mono-alkyl methyl esters derived from oilseed crops (soybean, canola, 

sunflower, etc.) and waste grease (used vegetable oil or animal fats) that undergo a transesterification 

process to produce liquid transportation fuels. This process reacts the naturally occurring triacylglycerols 

(TAGs), found in plants and animals, with an alcohol (e.g. methanol), in the presence of a strong alkali 

catalyst (e.g. potassium hydroxide), to produce a mixture of fatty acid methyl esters (FAMEs) and 

glycerol (Figure 1-1). The TAGs found in plants and animals consist of three long-chain fatty acids (-O-

C(O)-R1, -R2, R3; Figure 1-1), bonded to a glycerol backbone. The transesterification reaction produces 

three moles of FAME per mole of TAG and the resultant biodiesel fuel has a similar fatty acid 

composition to the original oil feedstock.  

 
 

Figure 1-1. The transesterification process of triacylglycerols (TAGs or “triglycerides”) to produce 

fatty acid methyl esters (FAMEs), the primary constituents of biodiesel and glycerol byproduct. 

(Clausen, 2008). 

 

 

Biodiesel has advantages over petroleum diesel because it is renewable, biodegradable, can be 

domestically produced, and has a higher flash point, higher inherent lubricity, and no sulfur or aromatic 

compounds (Dunn. 2005, Bakeas et al., 2011). Biodiesel’s chemical composition explains many of this 

renewable fuel’s advantages and disadvantages over petroleum diesel (petrodiesel).  In-engine advantages 

include: higher cetane number, increased lubricity, lower sulfur content, and decreased particulate matter 

(PM) mass emissions (Knothe, 2006; Moser, 2009). There are also inherent disadvantages to biodiesel: 

lower oxidative stability, decreased energy content by volume, an increase in NOx emissions, and a higher 

gel point (Knothe, 2006; EPA, 2002). These characteristics are highly dependent on the specific chemical 

properties and proportions of the different FAMEs present in the biodiesel (Figure 1-2). The degree of 

saturation, for example, refers to the number of C=C double bonds and is an important indicator of melting 

point and other fuel properties.  Notation to describe the FAME saturation state indicates the total number 

of carbons in the molecule as well as the number of double bonds.  For example, “C16:0” for palmitic 

FAME.  Saturated fatty acids that contain no carbon double bonds (e.g. palmitic and stearic acid) tend to 

have higher melting points and are typically solid or waxy at room temperature (Giakoumis, 2013). Mono-

unsaturated (e.g. oleic acid; C18:1) and polyunsaturated (e.g. linoleic (C18:2), and linolenic acid (C18:3)) 

fatty acids have lower melting points and are liquids at room temperature. Studies have shown that biodiesel 

fuels produced from primarily unsaturated feedstocks (e.g. soy and canola) can also increase the total PM 

and NOx emissions from combustion (Graboski, 2003).  Table 1-1 compares the properties of biodiesel and 

petroleum diesel fuels. 
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Table 1-1. Diesel and Biodiesel Fuel Properties 

 Fuel Type 

  
Petrodiesel 

(No. 2) 
Biodiesel 
(soybean) 

Chemical 
Structure C8-C25 Alkanes 

Methyl esters 
of C14-C20 fatty 

acids 

Density 
(g/cm3)1 0.85 0.88 

Low Heating 
Value 

(Btu/gal)2 ~128,450 ~119,550 

High Heating 
Value 

(Btu/gal)2 ~137,380 ~127,960 

Cetane 
Number1 40-55 48-65 

Flash Point 
(⁰C)1 52-96 100-170 

 
1 McCormick R.L. 2009. Biodiesel handling and use guide: Fourth edition (revised). National Renewable Energy 
Laborator. Bolder, CO. NREL Report No. TP-540-43672; DOE/GO-102008-2658. Publisihed: 12-2009 
2 Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model, version 1.7. 2007. 
Input Fuel Specifications. Argonne National Laboratory. Chicago, IL. 

 

 

 

Biodiesel is less stable than petroleum diesel because it possesses fatty acids with double bonds 

that make biodiesel more susceptible to chemical oxidation, especially when stored over extended periods 

of time (Knothe. 2007). The location and orientation of the C=C double bond is an important determinant 

of the physical properties of the biodiesel fuel. Cis- and trans- isomers have different three-dimensional 

geometric orientations of the double bond(s) in any hydrocarbon chain. The cis isomer geometry has the 

two carbons adjacent to the double bond on the same side of the double bond, creating a “kink” in the 

hydrocarbon chain (i.e., linoleate, Figure 1-2). In the case of trans- isomers, the molecule is held in a 

straighter alignment, allowing it to be packed more densely, but also flow less freely. Melting points 

therefore tend to increase from cis- to trans- isomers. Double bond kinks in the cis- orientation act to 

increase the chance for steric interaction between molecules. This may increase the chemical reactivity of 

cis- isomers, and make them prone to oxidation. Biodiesel oxidation during fuel storage can introduce 

complications when the fuel is used due to the formation of precipitates, thus anti-oxidants are typically 

added to biodiesel to scavenge oxygen and inhibit oxidation during storage (Knothe, 2007). To date, no 

studies have examined effects of anti-oxidant composition on exhaust PM toxicity. 
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Methyl myristate 

Tetradecanoic acid, methyl ester 

C14:0 

 

 
 

Methyl palmitate 

Hexadecanoic acid, methyl ester 

C16:0 

 

 
 

Methyl stearate 

Octadecanoic acid, methyl ester 

C18:0 

 

 
 

Methyl oleate 

Cis-9-Octadecenoic acid, methyl ester 

C18:1n9c 

 

 
 

Methyl elaidate 

Trans-9-Octadecenoic acid, methyl ester 

C18:1n9t 

 

 

 
 

Methyl linoleate 

Cis,cis-9,12-Octadecenoic acid, methyl ester 

C18:2n6c 

 
 

Methyl linolelaidate 

Trans,trans-9,12-Octadecenoic acid, methyl ester 

C18:2n6t 

 
 

Methyl linolenate 

Cis,cis,cis-9,12,15-Octadecenoic acid, methyl ester 

C18:3 

 
 

Methyl arachidate 

Eicosanoic acid, methyl ester 

C20:0 

 
 

Methyl behenate 

Docosanoic acid, methyl ester 

C22:0 

 

 

Figure 1-2.  Fatty Acid Methyl Ester (FAME) structures for most important FAMES found in biodiesel 

fuel. 

 

 

The location of the first C=C double bond in the fatty acid hydrocarbon chain also affects 

how the human body reacts to and metabolizes the compound. Omega-3 fatty acids have a double 

bond on the third carbon away from the ester group and are an essential nutrient for survival. 

Omega-6 fatty acids are also vital, but studies have shown that they can also be precursors for 
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cardiovascular disease, and prostate cancer when consumed in excess (Simopoulos, 2002). 
These studies however, were focused on ingestion of these compounds in foods, and the literature 

is lacking on the health effects of inhalation of these chemicals and their unregulated oxidation 

byproducts (Swanson, 2007). 

 

1.3  Diesel Engine Emissions and Fuel Type  

The EPA released a biodiesel exhaust emissions report in 2002 (EPA420-P-02-001) that showed 

a decrease in many regulated pollutants (e.g. carbon monoxide [CO], hydrocarbons [HC], and 

mass of particulate matter [PM]) with increasing biodiesel blend percentage (EPA, 2002). The 

report also included a list of mobile source air toxics (MSATs) from an on-road heavy-duty diesel 

engine that were statistically correlated to increasing volume percent biodiesel. The MSAT 

compounds (e.g. acetaldehyde, acrolein, benzene, 1,3-butadiene, ethylbenzene, formaldehyde, n-

hexane, naphthalene, styrene, toluene, and xylene) are mostly unregulated under the Clean Air 

Act (CAA), but are comprised of chemicals “known or suspected to cause cancer or other serious 

health and environmental effects” (EPA 2013 – www.epa.gov/otaq/toxics.html, accessed 8/6/13).  

Diesel exhaust particulate matter and polycyclic aromatic hydrocarbons (PAHs) are examples of 

MSATs. 

More recent research has shown that, with the exception of NOx, most regulated emissions 

such as HC, CO, and PM, are significantly reduced with biodiesel (McCormick et al., 2001; EPA. 

2002; Krahl et al., 2005; Knothe et al., 2006; Bakeas et al., 2011).  Furthermore, most studies have 

found that the unregulated carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) 

emissions decrease with biodiesel (Lin et al., 2006; Chien et al., 2009; Karavalakis et al., 2011).  

Various studies, however, have also shown that emissions of polar oxygenated compounds (POCs) 

such as carbonyls (also unregulated) increase with increasing biodiesel proportion in the fuel 

(Turrio-Baldassarri et al., 2004; Bikas and Zervas, 2007; Correa and Arbilla, 2008).   Carbonyls 

have been previously linked to adverse health effects such as oxidative stress (Mauderly 1997), and 

they also play an important role in atmospheric chemistry because of their potential to form 

secondary organic aerosol via atmospheric reactions (Blando et al., 2000; Lim et al., 2005; Loeffler 

et al., 2006).   

The PAHs and carbonyls can be emitted from the diesel engine in both the gas and particle 

phases. Some studies have measured the gas and particle emissions of PAHs, carbonlys, soot, and 

hydrocarbons from diesel and different biodiesel feedstocks (e.g Correa and Arbillia 2008; Payri et 

al., 2009; Bakeas et al., 2011; Karavalakis et al., 2011).  Most of these studies, however, have 

concentrated on a single class of compounds (PAHs, hydrocarbons, or carbonyls).  In other words, 

very limited studies have been conducted to comprehensively measure and compare emissions of 

a variety of organic compound classes using the same biodiesel feedstock, engine, and engine 

operating conditions.  Measurement of various organic compound classes using the same engine 

and engine operating conditions can lead to a better comparison of PM emissions from diesel and 

biodiesel, which can ultimately lead to a better understanding of the causes of the differences in the 

health effects of diesel and biodiesel exhaust PM. 

1.4  Project Objectives and Approach 

No previous studies have compared the particle-phase carbonyl emissions in biodiesel 

exhaust PM to conventional diesel PM.  However, studies like Schauer et al., 1999, Jakober et al., 

2006 and Jakober et al., 2008 measured particle-phase concentrations of carbonyls in conventional 

diesel exhaust.  There is a need to measure and quantify the particle-phase carbonyl emissions from 

biodiesel as well.  Because many previous studies found gas-phase emissions of carbonyls in 

biodiesel exhaust significantly higher than those for conventional diesel exhaust, one objective of 

http://www.epa.gov/otaq/toxics.html
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the current study is to test the hypothesis that particle-phase concentrations of carbonyls in 

biodiesel exhaust are also greater than those for conventional diesel.    

Here, the organic chemical composition of the total (both gas- and particle-phase) 

emissions from a light-duty diesel engine fueled with 20% soybean biodiesel (B20) was studied in 

comparison to petroleum diesel (B0).  The emission rates for PAHs, carbonyls, alkanes, and fatty 

acid methyl esters (FAMEs) in exhaust filter samples were quantified by thermal desorption (TD)-

gas chromatography/mass spectrometry (GC/MS) to gain quantitative understanding of the 

relationship between fuel biodiesel composition and exhaust emissions.  In one test, the gas-phase 

emissions were separated from the particle-phase emissions during exhaust sampling by use of a 

denuder.  Focus was put on quantifying 16 EPA PAHs, 26 POCs (carbonyls and quinones), 16 

alkanes, and 10 FAMEs commonly found in soybean biodiesel; compounds associated with health 

effects, photochemistry and environmental degradation, and that had authentic standards available 

commercially.  FAMEs were chosen mainly because of their abundance in soybean biodiesel, in 

spite of the fact that their health effects are not well documented.  The mass concentrations of the 

chosen organic compound classes from diesel and biodiesel exhaust PM were obtained after PM 

extraction, sample concentration and GC/MS analysis.  Carbonyls were quantified after sample 

derivatization to enable analysis by GC.   

The sample preparation and TD-GCMS analytical procedures are described in detail in 

Section 2 and preliminary results for duplicate analyses of engine blank, B0 and B20 filter samples 

are described in Section 3.  Quantitative evaluation of the analytical method is also described in 

Section 3.  Recommendations for future work are summarized in Section 4. 
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2. Research Methodology 

2.1. Gas Chromatography/Mass Spectrometry (GC/MS) Method 

Development 
Chemicals and Standards. High purity organic solvents such as dichloromethane (DCM, 

OmniSolv. HR-GC Grade), acetone (OmniSolv. HR-GC Grade), n-hexanes (OmniSolv. HR-GC 

Grade), methanol (MeOH, B&J Brand for Purge and Trap GC Analysis), acetonitrile (ACN, 

Carbonyl-free B&J Brand) were all purchased from VWR International (West Chester, PA).  The 

individual carbonyls, 14 n-alkane mix (C12 – C34), and 10-FAME standard compounds were 

purchased from Sigma-Aldrich (Allentown, PA), while the 16 EPA PAH and deuterated PAHs 

were purchased from Ultra Scientific (North Kingstown, RI).  Details on chemical standard 

composition (manufacturer, catalog #, compound list and concentration) are found in Appendix I. 

 

Extraction of Target Analytes from Filters. Generally, the nonpolar analytes in the PM were 

extracted from the PM filters (Pall Gelman borosilicate quartz fiber filters (QFFs) – Part #: 7194 

or FiberFilm (FF) – Part #: 7212) using a solvent mixture of dichloromethane (DCM)/Hexanes 

(1:1, v/v), while the polar compounds were extracted using methanol and subsequently 

derivatized with O-(2,3,4,5,6- pentafluorobenzyl) hydroxylamine to enable gas chromatography 

analysis. All extractions were performed three times in series and replicate extracts were 

combined for subsequent processing and analysis by thermal desorption GC/MS (TD-GCMS). 

The quartz fiber filters analyzed in this study include; filters #72 and 73 (engine blanks), 

filters #112 and 114 (B00 filters), and filters #126 and 128 (B20 filters).  Table 2-1 summarizes 

the sampling conditions, PM mass, and PM mass concentration for each filter.  The gravimetric 

PM mass reported in Table 2-1 is based on pre- and post-run triplicate weighings of the filter 

using a Cahn microbalance with 1 µg sensitivity after filter conditioning for 24 hours at 30-40% 

relative humidity (conditions maintained in a Coy Chamber that houses the Cahn balance). 

 

Table 2-1.   Filter Sample Information for Filters Analyzed in this Study 
Filter 

# 

Test Date 

MM/DD/YY 

Fuel Filter 

Type 

Sample 

Location 

PM Mass 

(mg) 

Flow rate 

(L/min) 

Sample 

Time 

(min) 

Total 

Flow (L) 

PM Conc 

(µg/m3) 

DR 

72 8/23/11 Blank QFF DS -1.302 N/A N/A N/A N/A N/A 

73 8/31/11 Blank QFF DS 0.057 N/A N/A N/A N/A N/A 

112 9/21/11 B00 QFF DL-E 0.274 20 88 1760 155.68 21 

114 9/22/11 B00 QFF DL-E 0.233 20 84 1680 138.89 27 

126 10/11/11 B20 FF DL-C 0.148 10.4 75 780 189.74 30 

128 10/12/11 B20 FF DL-C 0.126 9.47 88 833.36 151.20 24 

DR = exhaust volumetric dilution ratio during emissions testing. 

 

Filter Extraction. Particle composition was determined by extracting ¼-inch diameter punches of 

the filters three times in series using hexane/dichloromethane (1:1, by volume) followed by 

concentration under N2 gas to 50 microliter final volume.  After addition of a deuterated PAH 

internal standard, 1 microliter of the concentrated extract was injected into a thermal desorption 

(TD) borosilicate glass vial and subsequently analyzed by GCMS.  The GC-MS instrument 

conditions are in the Table 2-2.   
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Different extraction times and filter punch configurations were evaluated.  The optimized extraction 

procedure is described here and results for extraction method development are described in Section 

3 (Results). A pair of 1/4-inch punches was cut from one side of each QFF using a punch bore. 

Using tweezers, both filter punches were placed in a 180 µL glass thermal desorption vial (glass 

TD-vial) to which 2 µL of a 4.4 ppm standard of tetracosane-d50 (recovery standard for nonpolar 

compounds) and 1 µL of a 6.6 ppm standard of 2-fluoro-9-fluorenone (recovery standard for polar 

compounds) were added.  Next, 140 µL of a DCM/Hexane (1:1, v/v) solvent mixture was added to 

the vial in order to extract the nonpolar compounds by ultrasonication for 5 minutes.  The punch 

pair was extracted two more times, and all the three extracts combined in a separate 180 µL glass 

TD-vial.  After combining the three DCM/Hexane extracts, 2 µL of a 5 µg/mL standard of 

anthracene-d10 was added in order to estimate evaporative losses during sample concentration via 

nitrogen blowdown.   

 

Table 2-2. Thermal Desorption-GC/MS Method Conditions for PM Extract Analysis 

Conditions 

 GC/MS  HP 5890/Agilent 5972 

Column: Restek RXI-XLB Fused Silica Capillary Column 

Dimensions: 30m x 0.25mm x 0.25µm 

Oven 
Program: 

65 ⁰C (12 min); 10 ⁰C/min to 186 ⁰C (3min) ; 2.5 
⁰C/min to 300 ⁰C (15 min) 

TD Injector: 295 ⁰C 

Detector: 290 ⁰C 

Carrier Gas: 99.999% He @ 1mL/min 

Injection: Splitless 
 

For polar compound analysis, the punch pair was also extracted three times with 140 µL 

of methanol by ultrasonication for 5 minutes each time.  The three methanol extracts were 

combined in a separate 180 µL glass TD-vial.  Both the polar and nonpolar extracts were then 

gently concentrated with N2 gas to about 60 µL each.  The two extracts (polar and nonpolar) were 

then combined in a 180 µL glass TD-vial because it was determined that some of the target 

analytes were extracted in both the methanol and DCM/Hexane subfractions.  The combined 

extract was blown down to 100 µL, after which it was divided into two 50 µL fractions.  One 

fraction was derivatized for the analysis of POCs (carbonyls and quinones in this study), while 

the other fraction was directly analyzed for nonpolar target analytes (PAHs, alkanes, and 

FAMEs).  The nonpolar fraction was further concentrated to about 20 µL with N2 gas and the 

solvent volatilized by gentle heating at 60 oC.  Other methods of solvent evaporation that were 

evaluated included letting the sample sit in the fume hood at room temperature until all the 

solvent volatilized, and blowing down with N2 gas until all the solvent volatilized.  After all the 

solvent volatilized, the TD-vial containing the sample was spiked with 1 µL of a 2 ppm solution 

of phenanthrene-d10 and perylene-d12 then inserted into the TD-GCMS for analysis 

The polar extract fraction was concentrated to 7 µL then 1 µL of a 2.42 ppm solution of 

6-fluoro-4-chromanone (6F4C) quantitation standard was added to the extract, followed by 1.5 

µL of a 25 mg/mL pentafluorobenzylhydroxylamine (PFBHA derivatizing agent in methanol) 

solution. Acetonitrile(ACN)/DCM solvent mixture (9:1, v/v) was then added to the vial to target a 

final volume of 30 µL and a PFBHA concentration of 5 mM. The sample derivatization reaction 

proceeded at room temperature for 24 hours, then excess PFBHA was quenched by adding 11 μL 

of acetone, waiting for at least 1 hour at room temperature for the oxime to form. The sample was 

then blown down to dryness in the fume hood at room temperature to evaporate remaining 
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PFBHA-acetone oxime. The sample was analyzed on the TD-GCMS using 1 μL of a 2 ppm 

solution of phenanthrene- d10 and perylene-d12 internal standards. 

 

Recovery of Target Compounds. During method development, standards of some compounds 

of interest (PAHs and POCs) were spiked on clean QFFs and extracted.  This was done in order 

to assess the validity and reliability of the extraction and analysis procedure.  The same procedure 

employed during the extraction and analysis of the real-world diesel/biodiesel exhaust PM 

samples was used to extract the PAHs and POCs from clean (baked at 550 oC overnight) filters 

spiked with 13.26 ng of the 16 PAHs standard and 12 ng of a POCs standard containing 26 POCs. 

2.1.1 GC/MS Instrument Conditions, Data Analysis and Target 

Analyte Quantitation 
 

TD-GC/MS Instrument Conditions. Extracts from the filters were analyzed using a Hewlett-

Packard gas chromatograph/mass spectrometer (5890GC/5972MSD, Agilent Technologies, 

Wilmington, DE) equipped with a thermal desorption (TD) syringeless injector (Lavigne 

Laboratories, Storrs Mansfield, CT).  The system used 99.999% helium carrier gas flowing at 1 

mL/min, and the nonpolar column used was an Rxi-XLB, 30 m length, 0.25 mm ID, and 0.25 µm 

film thickness.  The TD injector temperature was 295 oC, while the detector temperature was 290 
oC.  The oven program used for analysis of all extracts was: 65 oC initial temperature held for 12 

min to allow analyte thermal desorption (10 min at 295 oC), 10 oC/min ramp to 186 oC and held for 

3 min, 2.5 oC/min ramp to 300 oC and held for 15 min. The analytes were ionized using electron 

impact ionization, and the mass spectra were obtained using scan mode for ions with m/z ranging 

from 50 to 650 amu. 

Quantification of individual compound mass was based on target ion peak areas normalized 

to the phenanthrene-d10 internal standard, assuming unit response factors. PAHs were quantified 

based on extraction ion peak areas. Compound identifications were based on the NIST 2008 Library 

and authentic standards for n-alkanes, 16 PAHs, 26 carbonyls and 10 FAMES. 

 

Data Analysis and Quantitation of Analytes. During TD-GCMS data analysis of the nonpolar 

compounds (16 PAHs and 13 even numbered alkanes (dodecane to hexatriacontane)), the 

phenanthrene-d10 internal standard peak area was used to quantify all the nonpolar compounds of 

interest and the 10 FAMEs, while 6-fluoro-4-chromanone was used to quantify the 26 POCs.  

Phenanthrene-d10 was the only internal standard used to quantify the unknown nonpolar 

compounds because its peak areas were more reproducible than those for perylene-d12 

irrespective of sample type (standard, derivatized, or underivatized sample).   

Three separate quantitation databases for quantifying (i) PAHs, (ii) Alkanes and FAMEs, and (iii) 

POCs were set up in ChemStation (Agilent Technologies, G1701BA Version B.01.00.  These 

quantitation databases were set up by analyzing 5 standards of different concentrations (0.5, 1, 

2.5, 5, and 10 ppm) for the PAHs, alkanes, and FAMEs, and the calibration curves for each 

individual compound obtained in ChemStation.  Note that ChemStation calibration curves were 

not used for the POCs because most of the POC-oximes elute as multiple peaks (isomers from 

derivatization).  Because ChemStation cannot sum up the isomers of each individual compound, 

the calibration curves of the POCs were made manually by exporting the calibration standard 

peak area data from ChemStation to MS Excel, where the peak areas of each compound’s isomers 

were summed up and the corresponding calibration curves plotted.  See Appendix II for the 

concentrations of the calibration standards and Appendix III for sample calibration curves. 

To quantify the compounds of interest in the filter sample extracts, the chromatogram for that 

sample was loaded into Chemstation’s Data Analysis program along with the data analysis file 

containing the Calibration Standards quantitation data.  The file was then quantitated, and 
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ChemStation produced a report containing all the information (compound name, peak area, 

mass/concentration, qualifier ions, and retention time) for all the compounds in the quantitation 

database together with the information regarding the quantitated file (file name, sample name, 

operator name, date of quantitation, etc).  If nonpolar compounds were quantified, ChemStation 

would give the mass/concentration of each compound in the database, but if POCs were 

quantified, peak areas for the compounds were produced by ChemStation.  Therefore, for the 

POCs, the peak areas data was exported to MS Excel where further processing was performed to 

calculate the mass/concentration of each POC.   Table 2-3 shows the list of all target compounds 

used in this study. 

 

Table 2-3.  Target compounds quantified by TD-GC/MS analysis of PM Filter Punch 

Extracts 
Compounds Compound ID CAS Number 

PAHs 
Naphthalene NAP 91-20-3 

Acenaphthylene ACY 208-96-8 

Acenaphthene ACE 83-32-9 

Fluorene FLU 86-73-7 

Phenanthrene PHEN 85-01-8 

Anthracene ANTH 120-12-7 

Fluoranthene FLUOR 206-44-0 

Pyrene PYR 129-00-0 

Benzo[a]anthracene BAA 56-55-3 

Chrysene CHRY 218-01-9 

Benzo[b]fluoranthene BBF 205-99-2 

Benzo[k]fluoranthene BBK 207-08-9 

Benzo[a]pyrene BAP 50-32-8 

Indeno[1,2,3-cd]pyrene IDP 193-39-5 

Benzo[ghi]perylene BGP 191-24-2 

Dibenz[a,h]anthracene DAA 53-70-3 

POCs 

2-Pentanone 2PNN 107-87-9 

3-Pentanone 3PNN 96-22-0  

n-Hexanal HXNL 66-25-1  

n-Heptanal HPTL 111-71-7  

n-Octanal OCTL 124-13-0 

2-Nonanone 2NNE 821-55-6 

n-Nonanal NNNL 124-19-6  

n-Decanal DECL 112-31-2  

Undecanal UDCL 112-44-7  

2-Hexanone 2HXN 591-78-6  

2-Heptanone 2HPN 110-43-0  

2-Octanone 2OCT 111-13-7  

Dodecanal DDCL 112-54-9  

Benzaldehyde BZDE 100-52-7  

m-Tolualdehyde mTOL 620-23-5  

o-Tolualdehyde oTOL 529-20-4  

p-Tolualdehyde pTOL 104-87-0  

Acetophenone ACNE 98-86-2  

1-Indanone 1IND 83-33-0  

9-Fluorenone 9FLN 486-25-9  

Perinaphthenone PNNN 548-39-0  

Benzophenone BZP 119-61-9  



UVM TRC Report # 14-009 

  

 8 

1,4-Benzoquinone BQN 106-51-4  

1,4-Naphthoquinone NQN 130-15-4 

Acenaphthoquinone ACNQ 82-86-0  

Anthraquinone ATQ 84-65-1  

Alkanes 

Dodecane DDCN 112-40-3 

Tetradecane TDCN 629-59-4 

Hexadecane HDCN 544-76-3 

Octadecane ODCN 593-45-3 

Eicosane ECSN 112-95-8 

Docosane DCSN 629-97-0 

Tetracosane TCSN 646-31-1 

Hexacosane HCSN 630-01-3 

Octacosane OCSN 630-02-4 

Triacontane TCTN 638-68-6 

Dotriacontane DCTN 544-85-4 

Tetratriacontane TECTN 14167-59-0 

Hexatriacontane HCTN 630-06-8 

FAMEs 

Myristic Acid Methyl Ester MAME 124-10-7 

Palmitic Acid Methyl Ester PAME 112-39-0 

Stearic Acid Methyl Ester SAME 112-61-8  

Oleic Acid Methyl Ester OAME 112-62-9 

Elaidic Acid Methyl Ester EAME 1937-62-8  

Linoleic Acid Methyl Ester LIEC 112-63-0  

Linolelaidic Acid Methyl 

Ester LDIC 2566-97-4  

Linolenic Acid Methyl Ester LNIC 301-00-8  

Arachidic Acid Methyl Ester AAME 1120-28-1  

Behenic Acid Methyl Ester BAME 929-77-1  

 

Estimation of Concentrations.  Because the mass of PM collected on each filter varied by run 

due to slight changes in dilution ratio and sample flows, the measured mass of each target analyte 

was normalized to the total gravimetric mass of PM using Equation 2. 

 



A  B 
C

D
       (2) 

where,  

A = Total Mass of Analyte on Filter (ng) 

B = Measured mass of Analyte in extract (ng) 

C = Number of Punches in Filter (C = 44) 

D = Number of Punches per Extract (D = 2) 

Note that it was assumed that the available diameter for the deposition of PM on a filter was 42 

mm because the o-ring in the filter holder covered about 5 mm at the edge of the filter (each filter 

has a diameter of 47 mm).  It was further assumed that the PM was uniformly deposited on the 

filter.  Therefore, from those assumptions, the total number of 1/4 inch punches that could be cut 

out from the 42 mm diameter of the filter available for PM deposition was 44. 

The concentrations (Mass of Analyte per Volume of Air Sampled, ng/m3) of the analytes were 

obtained by dividing the mass of analyte (ng) on filter (A in Equation 2 above) by the volume of 

air (m3) sampled during that particular run, and then multiplying by the dilution ratio of that run.   

The concentrations for a given fuel type (Engine Blank, B00, or B20) were determined by 

obtaining the average concentrations for the filters used during sampling of a particular fuel type.  
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For example, the concentrations for the engine blank were determined by averaging the 

concentrations for Filters #72 and #73, the B00 concentrations were obtained by averaging the 

concentrations for Filters #112 and #114, while the B20 concentrations were determined by 

averaging the concentrations for Filters #126 and #128. 

The total concentration of a group of analytes of the same family (alkanes, PAHS, POCs, or 

FAMEs) was obtained by summing the concentrations of the individual compounds/analytes in 

that family. 

 

2.1.2 Filter Punch Sequential Extractions and Analyte Percent 

Recoveries 
Determination of the number of times a punch needed to be extracted for the complete removal of 

the compounds of interest was performed using a 16 PAHs standard.  The extraction procedure 

differed slightly from the final procedure described above in that one 1/4- inch QFF punch was 

spiked with 1 µL of a 5 ppm standard containing the 16 EPA PAHs and then inserted in a 180 µL 

glass TD-vial.  The punch was sequentially extracted by sonicating 3 times with 70 µL of extraction 

solvent (DCM:Hex, 1:1, v/v) for 3 minutes each time.  The 3 extracts were put in separate TD-vials 

and each extract blown down to about 10 µL.  The 3 TD-vial containing the sequential extracts 

were then each placed in a closed 30 mL vial and the solvent was allowed to volatilize at room 

temperature until the final solution volume in the TD-vial was about 1 to 2 µL.  The sequential 

extracts from the punch were analyzed separately on the TD-GCMS using 1 µL of a 2 ppm internal 

standard solution of phenanthrene-d10 and perylene-d12 for quantitation.  This experiment was 

performed in triplicate (QFF Punch #1, QFF punch #2, and QFF punch #3). 

In addition to analyzing the extracts, the PAHs residual left on the filter punches was 

analyzed by inserting the extracted filter punches inside the TD-injector vial.  The amount of PAHs 

left in the punch after extraction was then determined.   This also made it possible to perform a 

mass balance on each of the PAHs in the standard.  

2.1.3 Number of Filter Punches for Quantitative Filter Sample 

Analysis 
Before the extraction of the real-world diesel/biodiesel filters could begin, the number of ¼-inch 

punches that needed to be extracted in order to obtain detectable concentrations of the compounds 

of interest (alkanes, PAHs, FAMEs, and POCs) was determined. This test was performed by 

extracting both a single punch and two punches (“punch pair”) for filters (Filters #228 and 229) 

that were used to sample diluted exhaust from petrodiesel (B00).  These two filters sampled exhaust 

at different ports of the sampling train during the same engine test.  Also, Filter #228 was behind a 

4-channel glass annular denuder (URG Corp., Chapel Hill, NC) coated with XAD adsorbent 

(Gundel et al., 1995, Gundel and Lane, 1999), while Filter #229 did not have a denuder upstream.  

The punch extracts for these two filters were analyzed for PAHs and POCs. 

2.1.4 Target Analyte Quality Assurance and Detection Limits 
After quantifying the compounds of interest, the integrated peak area for each compound was 

checked in ChemStation to make sure that (a) the correct peak was integrated (by examining the 

mass spectrum of each compound), and (b) the peak was correctly integrated by ChemStation 

software (i.e. the choice of baseline is correct).  Usually, there are slight shifts in GC retention 

times, and sometimes, ChemStation misidentifies peaks for compounds with similar qualifier ions 

(after the retention times shifted).  These errors lead to incorrect molecular assignments especially 
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for compounds that elute very close to each other.  In such cases, the retention times for the 

misidentified peaks were adjusted such that ChemStation integrated the correct peak/peaks.  

Furthermore, the peak area for phenanthrene-d10 internal standard for each run was recorded and 

compared with the peak areas for phenanthrene-d10 in the runs immediately before and after the 

sample being analyzed.  If the peak area for phenanthrene-d10 for a particular run was 2 times less 

than those for either the before or after runs, then that run was said to have had a bad injection, and 

the results for that run were not used in the subsequent analyses.  Once the injection was flagged 

as bad, that sample was reanalyzed (if the sample was a standard, a fresh sample of the standard 

was re-injected in the TD-GCMS, but if it was a filter extract, a new pair of filter punches was 

extracted and the entire extraction and analysis process repeated). 

Solvent blanks and filter blanks were also analyzed on the TD-GCMS to ensure that there was no 

interference of the target analytes from the solvents and filters.  The solvent and filter blanks were 

treated the same way as the diesel and biodiesel PM filters (i.e. they were exposed to the same 

glassware, extracted and analyzed the same way as the diesel and biodiesel QFFs).  

A check standard containing phenantherene-d10 and perylene-d12 (9 ppm in DCM) was analyzed 

every day before any samples (standards and filter extracts) were analyzed on the TD-GCMS.  This 

was done in order to ascertain that the instrument performance was good before any samples could 

be analyzed.  If peak areas for phenanthrene-d10 and perylene-d12 were less than 50% of those 

from the previous day (or the last time the check standard was analyzed), the check standard was 

reanalyzed.  If the peak areas were again less than 50% of those from the previous day, then the 

TD-GCMS was checked for maintenance needs such as autotune and front end maintenance.   

2.2 SAMPLING AND ANALYSIS OF DIESEL AND BIODIESEL FUELS  
 

2.2.1  Fuel Sample Collection and Dilution for GC-MS analysis 

The raw petro- and biodiesel fuel samples were taken from the top, middle and bottom of the fuel 

tank before and after each engine run. The density of each fuel sample was measured by the 

IROX-Diesel instrument (Grabner Instruments, Oklahoma) and the IROX-D average biodiesel 

blend percentage value was used to prepare diluted fuel samples. The measured fuel densities for 

each biofuel blend were 0.88, 0.849, 0.83, and 0.817 g/mL for B100, B50, B20 and B0, 

respectively. All fuel samples were stored in the freezer in 10mL amber glass vials until they 

were ready to be diluted for GC/MS analysis. The fuel samples were brought to room temperature 

and diluted to 25ppm (ug/g) in n-hexane using a two-step procedure. The first step pre-diluted the 

samples by injecting exactly 3uL of fuel using a Hamilton 10uL syringe into 1.5 mL of n-hexane. 

This brought the concentration to approximately 2500ppm (depending on fuel density). The 

volume of pre-diluted solution needed to further dilute the sample down to 25ppm in 1.5mL of 

hexane was then calculated using Equation 3 and the calculated volume of fuel (approximately 

9uL) was added using a Hamilton 25uL syringe. Three internal standards (i.e. phenanthrene-d10, 

tetracosane-d50, and methyl heneicosanoate) were also added to each sample at a concentration 

of 2ppm. These internal standards were chosen to represent a subset of the three primary 

functional group categories found in diesel and biodiesel fuel: PAHs, Alkanes, and FAMEs.  

 

solutionConc

ppm

mL

uL
mLinjVol

,

25
10005.1, 

      (3)
 

where, 

Vol,inj = Calculated volume of solution needed to dilute the sample to 25ppm  

Conc,solution = Concentration of pre-diluted solution (ppm) 
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2.2.2  Fuel Sample GC-MS Instrument Conditions 

The raw fuel samples were analyzed on an Agilent 6890 gas chromatograph equipped with an 

Agilent 5973N mass spectrometer detector, and an Agilent 7683 automated liquid sampler (ALS) 

injection. The software packages used were Chemstation revision E.02 and NIST08 mass spectral 

library. In order to resolve key analytes, the fuel samples were analyzed on both a Restek Rxi-

XLB non-polar column and a Supelco SLB-IL100 polar column. The Rxi-XLB column was 

chosen to resolve the non-polar analytes such as alkanes and PAHs, while the SLB-IL100 column 

was used only to resolve the FAMEs and their isomers. The conditions and temperature programs 

for the GC methods used are detailed in Table 2-4.  Before sampling on the GC/MS, diluted 

samples were removed from the freezer and allowed to equilibrate at room temperate for a period 

of time (>1 hour). The samples were then placed on the autosampler tray while a run sequence 

was programmed into Chemstation. A run sequence usually consisted of a total of seven runs, 

including four sample runs of varying biodiesel blend percentages, a check standard run 

containing three internal standards at 2ppm, and a hexane blank run at the beginning and end of 

the sequence. 

 

Table 2-4. GC/MS Method Conditions for Fuel Analysis 

Conditions 

Column: Supelco SLB-IL100 Fused Silica Capillary Column 

Dimensions: 30m x 0.25mm x 0.25 um 

Oven: 50⁰ C, 3⁰ C/min to 200⁰ C (60min) 

Injector: 240⁰ C 

Detector: 240⁰ C 

Carrier Gas: 99.999% He @ 1mL/min 

Injection: 1uL splitless 
    

Column: Restek Rxi-XLB Fused Silica Capillary Column 

Dimensions: 30m x 0.25mm x 0.25um 

Oven: 60⁰ C, 3⁰ C/min to 288⁰ C (86min)  

Injector: 250⁰ C 

Detector: 250⁰ C 

Carrier Gas: 99.999% He @ 1mL/min 

Injection: 1uL splitless 

   

2.2.3  Biodiesel Fuel FAMES Quantitation with Polar GC Column  

A quantitation database of compound retention times, qualifier ions, and calibrations curves was 

programmed into Chemstation for each set of analytes and for each column. The Restek Rxi-XLB 

column [30m x 0.25 mm i.d. x 0.25 µm film thickness] data analysis method consisted of 16 

regulated EPA PAHs and 13 even-number n-alkanes from Dodecane (C12H26) to 

Hexatriacontane (C36H74). A five-point calibration for the 16 PAHs was performed using a 100 

µm/mL (conc) chemical standard mixture purchased from Sigma-Aldrich (catalogue # PM-611) 

at individual concentration of 0.5, 1, 2.5, 5, and 10ppm in dichloromethane ([DCM] Omni-Solv 

HR-GC grade). Alkanes were calibrated using a chemical standard mixture of C10-C40 n-alkanes 

(50mg/L each) purchased from Sigma-Aldrich (catalogue # 68281-2ML-F) using six data points 

at individual concentrations of 0.5, 1, 2, 2.3 5, and 10ppm in HR-GC grade dichloromethane 

(DCM). The SUPELCO SLB-IL100 (30m x 0.25mm i.d. x 0.25 µm film thickness) polar column 

was used for the quantitation of FAMEs and a separate database was developed. The FAMEs 
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analysis database was programmed and calibrated using the 37-component FAME mix purchased 

from Supelco (catalogue # 47885-U) prepared from a 10mg/mL (concentration in DCM) ampule. 

A six-point calibration for these compounds was performed at a total concentration of 0.5, 1, 2.5, 

5, 20, and 30ppm in DCM. Individual concentrations of FAMEs in the Supelco 37-component 

FAME mix varied from 2% to 6% (by weight), which made it necessary to adjust calibrations for 

the varying compound concentrations.  Individual compound concentrations varied from 0.01 to 

1.8ppm. For more detailed information on calibration curves and data, refer to Appendices I and 

III. 

2.3 ENGINE SAMPLING AND TEST CONDITIONS  
A 1.9 Liter, 4-cylinder, naturally aspirated Volkswagen light-duty diesel engine (nominal 44 kW 

@3600 rpm) with 60 kW, 145 N-m Klam K40 retarder (Armfield Ltd, model CM-12) that enables 

reproducible operating cycles was programmed to operate an 85-minute “aggressive” cycle 

comprised of different throttle and load settings (Figure 2.1). Particles from the engine’s exhaust 

were collected simultaneously by multiple techniques to permit a variety of analyses:  real-time 

monitoring of total particle number distribution (TSI, Inc. Engine Exhaust Particle Sizer, EEPS); 

Teflon-coated glass fiber (“FIberFilm”, Pall Gelman T60A20) and/or quartz fiber filters (“QFF”, 

Pall Tissuquartz 2500QAO-UP) for PM gravimetric mass and chemical analysis. This study 

examines the composition of PM collected on filter samples after single-stage exhaust dilution with 

dry (silica gel), hydrocarbon-free (activated charcoal) and HEPA-filtered room air.  The engine was 

run in a laboratory at ambient temperature and humidity.  The dilution ratio was monitored using 

orifice meters to measure the 1Hz flowrates at the dilution air inlet and the diluted exhaust outlet 

of a Dekati Diluter. Average dilution ratios over the entire test period are reported for each engine 

run (Table 2.1 above). After post-weighing, all filter samples were stored at -80oC until chemical 

analysis by thermal desorption-GCMS (TD-GCMS). QA/QC procedures included blank, duplicate 

and calibration standard measurements as well as pre- and post-sampling verification of the real-

time analyzers using laboratory calibration standard particles and gases.  An “engine blank” run 

was performed identically without starting the diesel engine.  

Engine emissions sampling was performed using two fuel compositions, ultralow sulfur 

diesel (Trono Fuels, Burlington, Vermont; petrodiesel or B0) and certified soybean-based biodiesel 

(Burke Oil, Chelsea, MA) blended at 20 % by volume (B20) with the Trono petrodiesel.  The 

selection of B20 was based on current real-world use and soybean as the most commonly available 

feedstock in the U.S. today for commercially available American Society for Testing and Materials 

(ASTM) grade biodiesel fuel.  The B20 was blended in the laboratory 24-hours prior to experiments 

and the blend volume percent and presence of any impurities were verified via the FTIR spectral 

analysis (Grabner Instruments IROX-D).  Additional raw fuel samples at blend ratios of B50 and 

B100 were analyzed to evaluate trends in biodiesel fuel FAMES composition. Neat petrodiesel 

(B0) and neat biodiesel (B100) were used directly without modification. 
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Figure 2.1.   Engine drive cycle used for diesel and biodiesel PM generation. 
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3. Results  

3.1 GC/MS Extraction and Method Development Results 
The results for filter sample extraction method development show a high percent recovery 

(~75%) of the PAH standards in the first extraction. In order to achieve at least a 95% recovery of 

the standards, three sequential 3-minute sonication extractions were necessary. For the extraction 

of real-world diesel and biodiesel filters, sonication for 5 minutes was necessary to dislodge 

analytes from the PM. Low recoveries were observed for the more volatile PAHs (e.g. 

naphthalene, acenaphthylene), as well for the low molecular weight POCs (e.g. 2-hexanone, 2-

heptanone, undecanal), which suggests loss during blowdown. Overall, the reproducibility of the 

extraction procedure indicated good precision with RSD values less than 20% for the majority 

(>90%) of the target analytes.  The number of ¼-inch punches needed in order to obtain adequate 

resolution on the GC/MS was determined by analysis of both single and punch-pair extractions. 

The mass detected by the GC/MS in punch-pair extracts was greater, ranging from a factor of two 

to a factor of four, than the mass detected in single-punch extracts, which indicates a better signal 

to noise ratio for quantitation in punch-pair extracts.  

The method development for analysis of diesel/biodiesel samples shows that the non-

polar analytes (e.g. alkanes, PAHs) are easily resolved and quantified on a nonpolar GC column, 

such as the Restek Rxi-XLB used in these experiments. However, it was found that FAMEs were 

being double counted on the nonpolar column due to coelution of target analytes such as palmitic 

acid, methyl ester and cis-9-hexadecanoic acid, methyl ester; therefore, a polar column, such as 

the Supelco SLB-IL100 polar column, should be used for quantitation of FAMEs.  

Filter punch analysis for the diesel/biodiesel exhaust PM indicated an increase in nearly all target 

analyte classes (Alkanes, PAHs, FAMEs, and POCs) for B20 biodiesel exhaust. Target analytes 

were chosen based on their toxicological and environmental degradation effects, and computed in 

terms of emission rates per volume of exhaust (ng/m3) as well as PM concentration per mass of 

PM in the exhaust (ng/µgPM). Over all the samples analyzed, compared to B0 petrodiesel, the 

emission rates for B20 biodiesel increased by a factor of 4 for alkanes, 1.5 for PAHs, 20 for 

FAMEs, and 2 for POCs. 

For biodiesel samples, saturated FAMEs made up 81% of the FAMEs detected in the 

exhaust PM, while they made up only 13% of the total FAMEs in the raw fuel. In addition, long-

chain fatty acids (e.g. arachidic acid, methyl ester [C20:0] and behenic acid, methyl ester [C22:0]) 

were not detected in the raw fuel, but were abundant in the exhaust PM. Ester-bound aldehydes, 

also known as core aldehydes (e.g. 9-oxo-nonanoic acid, methyl ester), were also identified in the 

exhaust PM. The mechanism for the formation of these long-chain fatty acids and core aldehydes 

will be the subject of future investigations.   

Appendices VI and VII contain the analytical results for individual target analyte 

concentrations in exhaust PM (normalized by exhaust sample volume and by PM mass), 

cumulative organic compound emissions in each functional group class and fuel composition. 

 
Instrument Detection Limits. Method detection limit (MDL) is defined as the amount of analyte 

that can be identified, measured, and reported with 99% confidence that the amount of analyte in 

a sample is greater than zero (Method 556, US EPA 1998). 

The method detection limits were estimated according to Method 556 (US EPA 1998) using 

Equation 1. 

 

         𝑀𝑒𝑡ℎ𝑜𝑑 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐿𝑖𝑚𝑖𝑡 (𝑀𝐷𝐿) = 𝑆𝑡(𝑛−1,   1−𝑎𝑙𝑝ℎ𝑎 = 99)    (1) 
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where S = standard deviation of n runs for a sample whose concentration of the analyte is about 5 

times the noise level, n = number of replicate, and  𝑡(𝑛−1,   1−𝑎𝑙𝑝ℎ𝑎 = 99) is the Student’s t-value for 

the 99% confidence level with n-1 degrees of freedom. 

MDL for the PAHs were determined by analyzing a 0.125 ppm PAHs standard (number 

of runs, n = 7) on the TD-GCMS, while the detection limits for the alkanes were determined 

using a 0.7 ppm standard (n=7), and the detection limits for the PFBHA-oximes for the POCs 

were estimated using 2 µL of a 2 ppm standard (n=8).  The MDLs for the FAMEs were 

determined by analyzing a 40 ppm standard of the 10 FAMEs mix four times (n=4) on the TD-

GCMS.  Table 3-1 below shows the MDLs of the alkanes, PAHs, PFBHA-oximes for the POCs, 

and FAMEs. 

 

Table 3-1.  Method detection limits of the alkanes, PAHs, FAMEs, and PFBHA-oximes for 

the POCs. n = number of replicate runs. 

Alkanes (n=7) MDL (ng) POC-oximes (n=8) MDL (ng) 

Dodecane 0.62 2-Pentanone 10.67 

Tetradecane 0.45 3-Pentanone 13.71 

Hexadecane 0.31 n-Hexanal 3.23 

Octadecane 0.19 n-Heptanal 2.41 

Eicosane 0.24 n-Octanal 2.93 

Docosane 0.20 2-Nonanone 2.48 

Tetracosane 0.21 n-Nonanal 2.04 

Hexacosane 0.21 n-Decanal 1.67 

Octacosane 0.23 Undecanal 1.00 

Triacontane 0.28 2-Hexanone 5.66 

Dotriacontane 0.30 2-Heptanone 4.11 

Tetratriacontane 0.21 2-Octanone 3.44 

Hexatriacontane 0.62 Dodecanal 1.08 

PAHs (n=7) MDL (ng) Benzaldehyde 2.72 

Naphthalene 0.11 m-Tolualdehyde 2.40 

Acenaphthylene 0.12 o-Tolualdehyde 3.42 

Acenaphthene 0.17 p-Tolualdehyde 2.18 

Fluorene 0.09 Acetophenone 2.72 

Phenanthrene 0.13 1-Indanone 1.05 

Anthracene 0.10 9-Fluorenone 1.30 

Fluoranthene 0.13 Perinaphthenone 0.65 

Pyrene 0.14 Benzophenone 0.92 

Benzo[a]anthracene 0.16 1,4-Benzoquinone 2.60 

Chrysene 0.12 1,4-Naphthoquinone 1.48 

Benzo[b]fluoranthene 0.15 Acenaphthoquinone 1.69 

Benzo[k]fluoranthene 0.23 Anthraquinone 0.55 

Benzo[a]pyrene 0.21 FAMEs (n=4) MDL (ng) 

Indeno[1,2,3-cd]pyrene 0.25 Myristic Acid Methyl Ester 0.71 

Benzo[ghi]perylene 0.23 Palmitic Acid Methyl Ester 1.29 

Dibenz[a,h]anthracene 0.19 Oleic Acid Methyl Ester 2.67 

  Elaidic Acid Methyl Ester 0.98 

  Stearic Acid Methyl Ester 0.83 

  Linolenic Acid Methyl Ester 0.52 

  Linoleic Acid Methyl Ester 11.69 
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  Linolelaidic Acid Methyl Ester 0.17 

  Arachidic Acid Methyl Ester 0.24 

  Behenic Acid Methyl Ester 0.67 

 

The detection limits for the alkanes and PAHs looked quite reasonable, while the detection limits 

for some of the POCs did not look so reasonable.  For example, the PFBHA-oximes for 2-

pentanone, 3-pentanone, and 2-hexanone had quite high detection limits (>5 ng for all the above 

mentioned compounds) which seems very unrealistic.  Other compounds such as n-hexanal, n-

heptanone, 2-octanone, and o-tolualdehyde had MDLs greater than 3 ng.  Because these 

compounds could barely be detected by the TD-GCMS for the concentration used to determine 

the detection limits, their peak areas were quite variable, which later led to very high standard 

deviations.  The high standard deviations obtained led to high values of detection limits for the 

above mentioned compounds (see Equation 1).  The rest of the compounds had reasonable 

detection limits as seen in Table 1.  However, the detection limits for the PFBHA-oximes of the 

POCs were generally seen to be greater than those for the alkanes and PAHs.  Most of the 

FAMEs had plausible detection limits with the exception of linoleic acid methyl ester which had 

detection limits over 10 ng.  The peak areas for palmitic acid, oleic acid, and linoleic acid methyl 

esters were quite variable, which led to high standard deviation values, and hence high detection 

limits as seen in Equation 1.   

Sequential Extractions. From sequential extractions of the filter punches, on average about 75% 

of the mass of the PAHs spiked on the punch was extracted in the first extraction, additional mass 

was extracted during the second extract (about 20%), and less than 5% of the mass was extracted 

in the third extract (Figure 3-1 (a), (b), and (c)).  Thus, three sequential extractions were 

determined to be sufficient to extract all the PAH compounds from the filter punches.  Analysis 

of the residual in the filter punches showed that very little PAH mass was left behind on the filter; 

the measured residual mass accounted for less than 4% of the spiked amount for all PAHs and all 

three QFF replicate punches (Figure 3-1(d)).  

The total %recoveries for all the three filter punches were quite high, ranging from 68 to 

130%.  However, there was some inconsistency for the more volatile PAHs (naphthalene, 

acenaphthylene, acenaphthene, and fluorene) which had recoveries that were not so reproducible.  

The high volatility of these PAHs could explain the variability observed among the three extracts.  

The rest of the PAHs had relatively reproducible recoveries that ranged from 70 to 113% with RSD 

values less than 20%. 

 

It was also established that the three sequential, 3-minute sonication extractions removed 

at least 95% of the target PAH compounds.  During the extraction of the real-world diesel/biodiesel 

filters, however, 5 minutes of sonication were employed during each extraction.  This was done 

because it was believed that dislodging analytes from particulate matter needs more time than that 

required to remove the compounds from a blank filter punch.   
 

From the sequential extraction results, it was established that three 3-minute sequential 

extractions by sonication were sufficient to remove/extract at least 95% of the compounds of 

interest.  During the extraction of the real-world diesel/biodiesel filters, however, 5 minutes of 

sonication were employed during each extraction.  This was done because it was believed that 

dislodging compounds/analytes from particulate matter needs more time than that required to 

remove the compounds from a blank filter punch. 
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Figure 3-1.  Percent Recoveries of the PAHs obtained after 3 sequential extractions of 

three different 1/4 inch QFF punches spiked with 1 µL of a 5 ppm 16 PAHs standard. (a) 

QFF Punch #1, (b) QFF Punch #2, (c) QFF Punch #3, (d) Residual PAHs in the QFF punches. 

 

 

 

(a) 

(b) 

(c) 

(d) 
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Extract Recovery of Target Analytes. Percent recoveries for the PAHs spiked to clean QFFs with 

the PAH and POC standards are shown in Table 3-2.  The %Recoveries for all PAHs were good 

and ranged from 72-112% with the exception of naphthalene (1.6%).  The very low recovery for 

naphthalene was not surprising given its high vapor pressure, which suggests loss during the 

blowdown/ sample concentration step.  Acenaphthylene also had a lower recovery (72%) 

compared to the rest of the PAHs, and this can also be attributed to its higher volatility compared 

to the other PAHs.  The RSD values for all the PAHs were quite low (<20%), suggesting good 

precision of the procedure. 

 

Table 3-2.  Average percent recoveries of the PAHs spiked on 1/4 inch QFF punches. 

Number of replicates n=4. 

PAH Mean Std Dev %RSD 

Naphthalene 1.6 0.1 5.3 

Acenaphthylene 71.8 9.4 13.1 

Acenaphthene 82.2 8.8 10.7 

Fluorene 112.7 7.6 6.7 

Phenanthrene 105.3 9.4 8.9 

Anthracene 100.9 10.4 10.3 

Fluoranthene 105.2 9.1 8.6 

Pyrene 105.6 8.7 8.2 

Benzo[a]anthracene 106.0 8.7 8.2 

Chrysene 106.3 9.1 8.6 

Benzo[b]fluoranthene 104.3 7.4 7.1 

Benzo[k]fluoranthene 105.1 7.2 6.8 

Benzo[a]pyrene 101.1 6.7 6.6 

Indeno[1,2,3-cd]pyrene 106.4 6.7 6.3 

Benzo[ghi]perylene 107.8 6.5 6.0 

Dibenz[a,h]anthracene 109.5 6.5 6.0 

 

Average percent recoveries for the POCs (Table 3-3) were typically much lower than those for the 

PAHs. Recoveries for most of the POCs were greater than 60%, but for 2-hexanone, 2-heptanone, 

undecanal, dodecanal, m-tolualdehyde, 9-fluorenone, and benzoquinone %Recoveries were 

between 50-60%. Only 2-pentanone, 3-pentanone, 1-indanone, and acenaphthoquinone had 

recoveries less than 50%.  The low recoveries of 2-pentanone and 3-pentanone were expected 

because of their high vapor pressures, which means that these compounds were possibly lost during 

the concentration/blowdown step.   The reason for the low recoveries of 1-indanone and 

acenaphthoquinone is not known.  Very high recoveries were obtained for perinaphthenone and 

anthraquinone, 131% and 203%, respectively.  The precision for the extractions was quite good as 

most of the POCs registered RSD values less than 20%.  Only 2-pentanone, 3-pentanone, and 

acenapthoquinone had RSD values greater than 20%.  The high variability for 2-pentanone and 3-

pentanone was expected because of their high volatility, but the reason for the high variability of 

acenaphthoquinone is not known.   

The results for the extraction of QFF punches spiked with the PAHs and POCs standards indicated 

that the analytes in the diesel and biodiesel exhaust PM could be extracted and analyzed with good 

reproducibility (<20% RSD), but that POC extraction and analysis was not as effective as that for 

PAHs. 

 

Table 3-3.  Average percent recoveries of the POCs spiked on ¼-inch QFF punches. 

Number of replicates n=4. 
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Compounds Mean Std Dev %RSD 

2-Pentanone 32.2 6.9 21.5 

3-Pentanone 24.1 7.9 32.8 

2-Hexanone 53.0 11.4 21.5 

n-Hexanal 74.1 7.8 10.5 

2-Heptanone 56.7 10.4 18.3 

n-Heptanal 84.9 15.7 18.5 

2-Octanone 81.5 13.7 16.8 

n-Octanal 91.0 4.6 5.1 

2-Nonanone 67.8 13.5 19.9 

n-Nonanal 80.4 6.6 8.3 

n-Decanal 60.2 6.0 10.1 

Undecanal 56.8 6.3 11.0 

Dodecanal 55.8 5.4 9.7 

Benzaldehyde 70.0 9.0 12.8 

1,4-Benzoquinone 51.7 9.4 18.2 

Acetophenone 66.1 7.6 11.5 

m-Tolualdehyde 59.1 7.5 12.7 

o-Tolualdehyde 65.5 12.0 18.2 

p-Tolualdehyde 61.9 7.1 11.5 

1-Indanone 48.8 3.8 7.8 

1,4-Naphthoquinone 75.0 8.9 11.9 

9-Fluorenone 59.6 4.3 7.3 

Perinaphthenonea 131.9 11.9 9.0 

Benzophenone 71.3 10.5 14.7 

Acenaphthoquinone 30.1 12.3 40.8 

Anthraquinonea 203.3 11.4 5.6 

a the analyte was quantitated in its un-derivatized form. 
 

3.2 Quantitation and Recovery Standards 
The four compounds added to the filter punch extracts during processing were intended to be useful 

for evaluating samples experiencing analytical losses due to (a) poor nonpolar compound extraction 

(tetracosane-d50); (b) excessive blowdown and evaporative loss (anthracene-d10); (c)poor  or 

incomplete derivatization reaction yield (6-Fluoro-4-Chromanone); and (d) poor polar fraction 

extraction (2-Fluoro-9_Fluorenone).  Table 3-4 shows the average recoveries of these quantitation 

and recovery standards that were used during the extraction of the QFF punches spiked with PAHs 

and POCs.  For polar analytes, 6-fluoro-4-chromanone was used as the quantitation standard for 

the derivatized POCs, and it had an average %recovery of 95%, with an RSD value of 8.6%.  This 

means that the derivatization process was both successfully and reproducibly performed.  The 

%recovery for the POCs recovery standard (2-fluoro-9-fluorenone) was low (only 46.5%), but it 

was quite reproducible with a %RSD value of 12% for four replicate standards.  The extraction and 

analysis of the nonpolar compound recovery standards (anthracene-d10 and tetracosane-d50) were 
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quite good with percent recoveries of 82.9% and 77.5%, respectively.  The %RSD values for 

anthracene-d10 and tetracosane-d50 were also good (15.4% and 12.5% for anthracene-d10 and 

tetracosane-d50, respectively).  These results for the quantitation and recovery standards confirm 

that these compounds could be used with confidence for the quantitation of the recoveries of the 

extracted analytes in the real-world diesel and biodiesel filter samples. 

 

Table 3-4.  Average percent recoveries for the quantitation and recovery standards used 

during the extraction of the 1/4 inch QFF punches spiked with PAHs and POCs.  Number of 

replicates n=4. 

Compound Mean Std Dev %RSD 

6-Fluoro-4-Chromanone 95.5 8.2 8.6 

2-Fluoro-9-Fluorenone 46.5 5.6 12.1 

Anthracene-d10 82.9 12.7 15.4 

Tetracosane-d50 77.5 9.6 12.5 

 

 

Determination of Number of 1/4 inch Punches to be Extracted. The mass of PAHs and POCs in 

the single punch and the punch-pair extracts from the denuded (Filter #228) and undenuded 

(Filter #229) filters are shown in Tables 3-5 and 3-6, respectively.  No PAH were detected in the 

single or punch-pair extracts for Filter #228 (Table 3-4) possibly because all the PAHs were 

deposited in the XAD-coated denuder upstream of Filter #228. For Filter #229, four PAHs 

(acenaphtylene, acenaphtene, phenantherene, and pyrene) were detected in the one punch extract, 

while 7 PAHs were detected in the punch-pair extract.  Acenaphthylene and acenaphthene were 

detected in the single punch extract for Filter #229, but they were not seen in the punch-pair 

extract for the same filter.  The reason for this discrepancy could be loss of these two PAHs 

during the extraction and analysis of the punch-pair extract for Filter #229 because of their higher 

volatility and also due to the fact that the concentrations of these PAHs detected in the single 

punch extract were near the detection limits.  The total mass of PAHs detected in the single punch 

extract for Filter #229 was 2.44 ng, while that detected in the punch-pair extract of the same filter 

was 6.98 ng, more than two times the single punch mass.  The higher mass in the extract of two 

punches suggests the possibility of better analytical accuracy when concentrations are higher.  

Also, this result indicates that in order to achieve improved detectability of the PAHs in the real-

world diesel/biodiesel exhaust PM samples, two punches need to be combined into a single 

extract. 

Ten POCs were detected in the single punch extract for Filter #228, while 16 POCs were 

detected in the punch-pair extract for the same filter (Table 3-6).  The total mass of POCs in the 

single punch extract for Filter #228 was 4.48 ng, and that in the punch-pair extract was 27.62 ng, 

again more than a factor of two increase when a second punch is extracted.  For the undenuded 

Filter #229, more POCs were detected in the punch-pair extract than in the single punch extract 

(20 POCs punch-pair versus 16 POCs single punch).  The total mass of POCs in the single punch 

extract for Filter #229 was 3.10 ng, while that in the punch-pair extract was 11.99 ng, a factor of 

four difference.  The POCs extraction results also confirmed that extraction of a pair of punches 

in a single extraction led to better detectability of the analytes of interest than extraction of a 

single punch. 

 

Table 3-5.  PAHs detected in single punch and punch-pair extracts of Filters #228 and 

229*   

 

Filter #228         

1 Punch 

Filter #228         

2 Punches 

Filter #229          

1 Punch 

Filter #229         

2 Punches 

Compound 

Mass of PAH 

(ng) 

Mass of PAH 

(ng) 

Mass of PAH 

(ng) 

Mass of PAH 

(ng) 
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Naphthalene ND ND ND ND 

Acenaphthylene ND ND Bel Cal ND 

Acenaphthene ND ND 1.32 ND 

Fluorene ND ND ND 1.22 

Phenanthrene ND ND 0.6 0.6 

Anthracene ND ND ND ND 

Fluoranthene ND ND ND 0.62 

Pyrene ND ND 0.52 0.54 

Benzo[a]anthracene ND ND ND 2.48 

Chrysene ND ND ND 1.78 

Benzo[b]fluoranthene ND ND ND 0.28 

Benzo[k]fluoranthene ND ND ND ND 

Benzo[a]pyrene ND ND ND ND 

Indeno[1,2,3-cd]pyrene ND ND ND ND 

Benzo[ghi]perylene ND ND ND ND 

Dibenz[a,h]anthracene ND ND ND ND 

Total - - 2.44 6.98 

Both Filters #228 and 229 were used for sampling during a B00 run.  Filter #228 was downstream of a denuder, while 

Filter #229 did not have a denuder in front of it.  ND means that the analyte was not detected; Bel Cal means that the 

compound was detected but its concentration was so small that the ChemStation software gave a negative value 

(“Below Calibration”). 

  

Table 3-6.  POCs detected in single punch vs. punch-pair extracts of Filters #228 and 229*   

 

Filter #228         

1 Punch 

Filter #228         

2 Punches 

Filter #229          

1 Punch 

Filter #229         2 

Punches 

Compound 

Mass of POC 

(ng)  

Mass of POC 

(ng)  

Mass of 

POC (ng)  

Mass of POC 

(ng)  

2-Pentanone ND ND ND ND 

3-Pentanone ND ND ND ND 

n-Hexanal 0.02 0.22 0.02 0.06 

n-Heptanal ND ND ND ND 

n-Octanal ND ND ND ND 

2-Nonanone ND ND ND ND 

n-Nonanal 0.07 0.76 0.20 0.50 

n-Decanal 0.17 0.92 0.06 0.48 

Undecanal 0.06 0.20 0.09 0.17 

2-Hexanone ND 1.47 0.06 0.06 

2-Heptanone 0.40 0.56 0.20 1.56 

2-Octanone 0.15 0.89 0.99 5.08 

Dodecanal 0.13 0.31 0.15 0.27 

Benzaldehyde ND 0.18 0.03 0.21 

m-Tolualdehyde ND 0.02 0.01 0.04 

o-Tolualdehyde ND ND ND ND 

p-Tolualdehyde ND ND ND 0.01 

Acetophenone ND 0.08 0.03 0.10 

1-Indanone ND ND ND 0.01 

9-Fluorenone ND 0.02 ND 0.03 

Perinaphthenone ND ND 0.72 2.08 

Benzophenone 0.31 0.39 0.40 0.46 



UVM TRC Report # 14-009 

  

 22 

1,4-Benzoquinone ND ND 0.01 0.09 

1,4-Naphthoquinone ND 0.02 0.04 0.08 

Acenaphthoquinone ND ND ND ND 

Anthraquinone 0.03 0.06 0.09 0.12 

Total Mass (ng) 1.49 6.10 3.10 11.20 

* Both Filters #228 and 229 were used for sampling during a B00 run.  Filter #228 was downstream of a 

denuder, while Filter #229 did not have a denuder in front of it.  ND means that the analyte was not detected. 

3.3 Quantitation and Speciation of Exhaust PM Filter Samples 

PM Filter Gravimetric Mass. The B00 filters had mpre gravimetric mass than the B20 

filters as seen in Table 3-7.  As expected, the filetrs used for the blank runs had very little PM 

mass sampled although filter #72 had a negative PM measurement of -1.302.  The negative mass 

for filter #72 could be due to measurement errors or due to the moisture absorbed by the QFF 

used for that particular run.  Note that QFFs are hygroscopic, and therefore, are capable of giving 

inaccurate gravimetric mass measurements especially for very small mass measurements.  In 

general, the PM concentrations (µg/m3) were unexpectedly found to be higher in B20 than in 

B00.  Such an observation was surprising given that previous research has shown that the PM 

concentrations decrease with increasing biodiesel concentration (e.g. McComick et al., 2001; 

Knothe et al., 2006).   

 

Table 3-7.  PM mass (mg) and concentration (µg/m3) for the filters analyzed in this study. 
Filter 

ID # 

Test Date 

MM/DD/YY 

Fuel Filter 

Type 

PM 

Mass 

(mg) 

Flow rate 

(L/min) 

Sample 

Time 

(min) 

Total 

Flow 

(L) 

PM Con 

(µg/m3) 

DR 

72 8/23/11 Blank QFF -1.302 N/A N/A N/A N/A 19 

73 8/31/11 Blank QFF 0.057 N/A N/A N/A N/A 21 

          

112 9/21/11 B00 QFF 0.274 20 88 1760 155.68 21 

114 9/22/11 B00 QFF 0.233 20 84 1680 138.89 27 

          

126 10/11/11 B20 FF 0.148 10.4 75 780 189.74 30 

128 10/12/11 B20 FF 0.126 9.47 88 833.36 151.20 24 

 

3.2.1 Alkanes 
The concentrations of even n-alkane (C12 – C34) target analytes measured in engine blanks (filters 

#72 and #73), B00 (filters #112 and #114), and B20 (filters #126 and #128) filters (Table 3-8) 

show the alkanes detected in the engine blank filters were not identified with certainty mainly 

because their spectra did not match those for the authentic standards (their Q-values were less 

than 50%).  For the B00 filters, with the exception of dodecane, tetradecane, hexadecane, 

dotriacontane, and tetratriacontane the rest of the alkanes were above their detection limits, 
and were also detected with Q-values greater than 50%.  In the B20 filters, dodecane, 
tetradecane, hexadecane, octadecane, triacontane, and dotriacontane were detected with Q-
values less than 50%.  The rest of the alkanes in the B20 filters were above their detection limits, 
and their Q-values were greater than 50%.  The concentrations of alkanes emitted generally 

increased with increasing molecular weight (size) of the alkanes especially for B20.  More 

variability was seen in the concentrations of alkanes in the B20 filters as seen in Table 1 (RSD 

values for most of the alkanes in B20 were greater than 20%, while most of those for B00 were 
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less than 20%).  The average total alkanes concentrations were found to be about 3.2 times higher 

in B20 than in B00.  This kind of trend was not expected because petrodiesel has more 

hydrocarbons than biodiesel, therefore, petrodiesel is expected to have more hydrocarbon 

emissions than biodiesel.  Additionally, previous research has shown that the concentrations of 

hydrocarbons decrease with increasing biodiesel.  For example, Payri et al., 2009 found that the 

total hydrocarbons decreased by 34%, 54%, and 64% with used frying oil biodiesel blends of 

B30, B50, and B100, respectively in a single cylinder DI diesel engine equipped with a Bosch 

common rail injection system.  Sharp (1998) found that the hydrocarbons emissions decreased by 

almost 20% and 100% with B20 and B100 biodiesel fuel blends run in a 1997 Cummins N14 

engine and a 1997 Cummins B5.9 engine.  The discrepancy of our results from the published 

literature could be mainly due to the inconstant dilution ratios that were used during sampling.  

But it should be noted that the GCMS speciation of normal alkanes does not account for the large 

number of branched alkanes present in exhaust that would be detected by conventional 

spectroscopic exhaust analyzers. 

 

Table 3-8.  Concentrations (ng/m3) of the alkanes in petrodiesel (B00) and soybean 

biodiesel (B20) exhaust PM.   

Concentrations (ng/m3) 

Fuel Type Blank B00 B20 

Filter ID #72 #73 #112 #114 #126 #128 

Air (L) 1240.0 1302.0 1760.0 1680.0 780.0 833.4 

 

Dodecane 420.4a 80.2a 1078.4a 1642.5a 3451.1a 2703.8 

Tetradecane 44.7a 90.3a 725.9a 900.4a 7558.7a 3762.7a 

Hexadecane 109.4a 35.8a 639.8a 492.4a 1355.2 825.6a 

Octadecane 21.7 21.5 454.4 629.6 1026.9 535.7a 

Eicosane 23.6a 20.3a 295.1 629.6 5765.8 1670.2 

Docosane 25.9a 23.7a 5172.9 2870.0 18627.3 2981.1 

Tetracosane 42.4 40.7 3642.7 2550.0 28963.6c 4103.0 

Hexacosane 58.4a 54.6 1558.9 1357.6 3560.5 2098.8 

Octacosane 107.1a 105.6 1825.3 2377.6 8602.4 4323.6 

Triacontane 132.4a 129.4a 2250.9 2694.2 9208.4 5187.0a 

Dotriacontane 154.1a 148.6 2339.7a 3056.4a 9393.6 5666.0a 

Tetratriacontane 172.3a 164.2a 2546.0a 3408.2a 8434.0 6094.6 

N.D. means that the compound was not detected during TD-GCMS analysis. a Mass spectrum did not 
match with that routinely seen for the known authentic chemical standards (Q-value less than 50). b 
Compound concentration was below the limit of detection and was therefore substituted with the limit 
of detection. c Compound concentration was outside calibration range. d Compound did not pass visual 
inspection. 

 

3.2.2 PAHs  
Almost all of the PAHs identified in both the B00 and B20 filters; (a) did not match the spectra 

for the authentic standards (b) had concentrations below the detection limits and (c) did not pass 

the visual inspection criterion (Table 3-9).  Therefore, this means that the concentrations of PAHs 
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obtained were quite uncertain.  The concentrations of PAHs generally increased with increasing 

molecular weight (increasing number of rings) for both fuel types.  The volatile PAHs such as 

naphthalene, acenaphthylene, acenaphthene, and fluorene were surprisingly detected in all filters 

for both fuel types including the engine blanks in spite of their high volatility.  With the exception 

of acenaphthene, the rest of the PAHs were detected in both B00 filters (filter #112 and #114).  

Anthracene and benzo[k]fluoranthene were not detected in any of the B20 filter samples.  High 

variability was further seen in most of the PAHs detected in B20 especially fluorene, 

fluoranthene, pyrene, benzo[a]anthracene, and chrysene that were detected in filter #126 but not 

in filter #128.  The total PAHs concentrations were found to be 1.9 times higher in B20 than in 

B00.  The reason for this observation could also be due to the inconstant dilution ratios used.  

Although many previous studies reported reductions in PAHs emissions with increasing 

biodiesel, some studies reported increases in PAHs emissions with increasing biodiesel.  For 

example, Karavalakis et al., 2011 reported both reductions and increases in PAHs emissions for 

the variety of biodiesel fuels and driving cycles they used in their study.  The authors found that 

the used frying oil methyl esters (UFOME) biodiesel blends resulted in 11, 27, 21, and 19% 

increases in total PAHs emissions for the New European Driving Cycle (NEDC), Artemis Urban, 

Road, and Motorway driving cycles, respectively.  Although our results corroborate results from 

some of the previous studies, it is important to note that most PAHs were not detected with a lot 

of certainty given that their concentrations were near the detection limits.  Future work will aim at 

extracting bigger punches in order to increase the mass of PAHs extracted, and thus injected onto 

the GC column for analysis. 

 

Table 3-9.  Concentrations (ng/m3) of the PAHs in petrodiesel (B00) and soybean 

biodiesel (B20) exhaust PM.   

Concentrations (ng/m3) 

Fuel Type Blank B00 B20 

Filter ID #72 #73 #112 #114 #126 #128 

Air (L) 1240.0 1302.0 1760.0 1680.0 780.0 833.4 

PAHs 

Naphthalene 3.8b,d 3.7a,b,d 56.7b,d 76.4b,d 182.9b,d 137.0b,d 

Acenaphthylene 4.3a,b,d N.D. 63.3a,b,d 168.8a,b 204.2b,d 152.9 a,b,d 

Acenaphthene 6.0a,b,d 5.7a,b,d N.D. 119.0a,b,d 284.7a,b,d 213.2 a,b,d 

Fluorene 3.4a,d N.D. 49.6a 63.3b 168.3a,b,d N.D. 

Phenanthrene 4.6a,b,d 4.3b,d 67.5a,b 90.9b 217.5b 162.9b 

Anthracene N.D. N.D. 50.9a,b,d 68.6b,d N.D. N.D. 

Fluoranthene N.D. N.D. 66.1a,b,d 89.1a,b,d 213.2a,b,d N.D. 

Pyrene N.D. N.D. 72.1a,b,d 97.1b,d 232.4b N.D. 

Benzo[a]anthracene N.D. N.D. 81.0b,d 109.1a,b,d 261.0b,d N.D. 

Chrysene N.D. N.D. 63.2a,b,d 85.1a,b,d 203.6a,b,d N.D. 

Benzo[b]fluoranthene N.D. N.D. 79.8a,b 107.4b 257.1b 192.5a,b 

Benzo[k]fluoranthene N.D. N.D. 119.7a,b 161.2a,b N.D. N.D. 

Benzo[a]pyrene N.D. N.D. 109.2b,d 147.1a,b,d 352.1a,b,d 263.6 a,b,d 

Indeno[1,2,3-
cd]pyrene N.D. N.D. 130.1b,d 175.2b 419.3a,b,d 314.0 a,b,d 
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Benzo[ghi]perylene N.D. N.D. 119.0b 160.3a,b 383.6 a,b,d 287.3 a,b,d 

Dibenz[a,h]anthracen
e N.D. N.D. 101.4a,b,d 136.5a,b 326.8 a,b,d 244.7 a,b,d 

N.D. means that the compound was not detected during TD-GCMS analysis. a Mass spectrum did not 
match with that routinely seen for the known authentic chemical standards (Q-value less than 50). b 
Compound concentration was below the limit of detection and was therefore substituted with the limit 
of detection. c Compound concentration was outside calibration range. d Compound did not pass visual 
inspection. 

 

3.2.3 FAMEs 
All FAMEs were detected in both B00 and B20 filters.  In general, the individual FAMEs 

concentrations were greater in the B20 PM filters than in the B00 PM filters (Table 3-10), as 

expected.  It is important to note that the FAMEs detected in the B00 filters (#112 and 114) did 

not match the spectra for the authentic standards (Q-values less than 50%), with the exception of 

palmitic acid methyl ester, elaidic acid methyl ester, and stearic acid methyl ester.  Because 

petrodiesel does not contain FAMEs, it was not surprising that most of the FAMEs detected in the 

B00 filters had such uncertainties in their identification.  Most of the FAMEs detected in the B20 

filters were detected with high confidence.  Only linolenic acid, linoleic acid, and linolelaidic acid 
methyl esters were either detected with concentrations below the detection limits, or with a Q-
value less that 50% for filter #126.  Myristic acid, linolenic acid, linoleic acid, and linolelaidic acid 
methyl esters were the only FAMEs that were either detected with concentrations below the 
detection limits, or with a Q-value less that 50% for filter #128.   

The saturated FAMEs (myristic acid ME, palmitic acid ME, stearic acid ME, arachidic 

acid ME, and behenic acid ME) made up most of the FAMEs mass detected in the B20 PM 

filters.  The saturated FAMEs contributed to 65% of the total FAMEs concentration for filter 

#126, and 75% of the FAMEs concentration for filter #128.  This was expected given that the 

saturated FAMEs are less reactive to oxidation than the unsaturated FAMEs.  Therefore, during 

the combustion of the FAMEs in the engine, the unsaturated FAMEs are more susceptible to 

oxidation because of the presence of the double bonds, while the saturated FAMEs do not easily 

provide reactive sites for oxidation.  In spite of the fact that biodiesel is majorly made up of 

unsaturated FAMEs, it is evident from these results that the biodiesel exhaust PM is mostly 

composed of saturated FAMEs as seen in Table 3.  More variability was seen in the palmitic acid 

methyl ester and stearic acid methyl ester concentrations with RSD values greater than 100% for 

both methyl esters.   

It is also important to note that arachidic acid methyl ester and behenic acid methyl ester were not 

detected in the raw biodiesel fuel samples.  Other methyl esters that are not shown in Table 5 

such as heneicosanoic acid methyl ester were detected in the B20 filter samples.  It was quite 

surprising to see FAMEs that were not detected in the raw fuel samples.  This, therefore, implies 

that these FAMEs were probably produced during the combustion of the biodiesel fuel/FAMEs, 

most likely the unsaturated FAMEs in the engine.  Note that odd-numbered FAMEs do not occur 

in nature, which implies that the observed odd-numbered FAMEs in this study were formed 

during the combustion of biodiesel in the engine.  More studies need to be conducted in order to 

better understand the mechanism by which the extra FAMEs are produced during the combustion 

of the FAMEs in the engine. 

The average total concentrations per fuel type were also obtained and it was found that 

the blank filters (filters #72 and #73) had an average total concentration of 11 ng/m3, while the 

B00 filters (filters #112 and #114) had an average total concentration of 16990 ng/m3, and the 

B20 filters had an average total concentration of 188981 ng/m3.  A lot of variability was seen in 

the FAMEs concentrations for B20, where most of the FAMEs had %RSD values greater than 

50%.  The average total FAMEs concentration of B20 was found to be 11 times higher than that 
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of B00.  Because B00 is a pure petrodiesel fuel, it was not expected to see any FAMEs in the B00 

PM filter samples.  Therefore, the FAMEs detected in the engine blank and B00 filters were 

potentially due to carryover in the engine. 

 

Table 3-10.  Concentrations (ng/m3) for the FAMEs in petrodiesel (B00) and soybean 

biodiesel (B20) exhaust PM.   

Concentrations (ng/m3) 

Fuel Type Blank B00 B20 

Filter ID #72 #73 #112 #114 #126 #128 

Air (L) 1240.0 1302.0 1760.0 1680.0 780.0 833.4 

FAMEs 

Myristic 

Acid ME 44.0b 32.8 7355.9a,c 9313.5a,c 4587.4 914.7b 

Palmitic 

Acid ME 438.9c 232.1c 4324.2c 4579.4 122983.8c 4840.4 

Oleic Acid 

ME 159.9 89.7b,c 1393.2a,b,c 1876.6a,b,c 15765.4 3362.7c 

Elaidic Acid 

ME 34.6a,b,c 32.9a,b,c 786.0 826.5c 37035.7c 1404.9c 

Stearic Acid 

ME 125.3b 48.4b 1101.9b 1480.7b 113245.1c 8987.5b 

Linolenic 

Acid ME 19.8a,b,c 20.0a 284.6a,c 368.1a,b,c 3467.9a 695.4 a,b,c 

Linoleic 

Acid ME 412.5b,c 392.8a,b,c 6102.6a,b,c 8219.9a,b,c 19671.4b 14729.5 a,b,c 

Linolelaidic 

Acid ME 13.9 10.1 151.5a 204.0a 488.2a 359.2a 

Arachidic 

Acid ME 8.6a,b,c 8.2b,c 127.4a,b,c 171.6a,b,c 16034.8c 3277.4c 

Behenic 

Acid ME 23.8b 22.7b,c 352.1a,b,c 474.3a,b 22364.5c 5035.8c 

N.D. means that the compound was not detected during TD-GCMS analysis. a Mass spectrum did not 
match with that routinely seen for the known authentic chemical standards (Q-value less than 50). b 
Compound concentration was below the limit of detection and was therefore substituted with the limit 
of detection. c Compound concentration was outside calibration range. d Compound did not pass visual 
inspection. 

 
 

3.2.4 Carbonyls 
In general, the individual carbonyls concentrations were greater in the B20 filter samples than in 

the B00 filter samples with the exception of perinaphthenone (Table 3-11).  2-Hexanone, 2-

octanone, and nonanal showed somewhat higher variability in the B20 PM than the rest of the 

carbonyls.  1,4-Benzoquinone and acenaphthoquinone were not detected in any of the filters for 

both fuel types.  Furthermore, octanal and 2-nonanone were only detected in filter #126 (B20).  2-

Pentanone and 3-pentanone had concentrations below the detection limits in both B00 and B20 

filters.  With the exception of filter #72, the concentrations of 2-heptanone in the rest of the filters 

were below the detection limit.  The low and medium molecular weight carbonyls (mostly 

aliphatic carbonyls with MW<160) such as hexanal, heptanal, nonanal, decanal, 2-hexanone, and 

2-octanone appeared to contribute the most to the observed concentrations in both B00 and B20.  

Previous studies such as (Jakober et al., 2008; Guarieiro et al., 2008; Karavalakis et al., 2011 etc.) 

have shown that the carbonyls emissions in diesel engines fueled with both diesel and biodiesel 
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are dominated by the low molecular weight carbonyls.  The aliphatic carbonyls contributed 70% 

to the total concentration in B00, while they contributed 71% to the total concentration for B20.  

The aliphatic carbonyls concentration was 2.3 times higher in B20 than in B00, while the 

aromatic carbonyls concentration was 2.2 times higher in B20 than in B00.   

The high concentrations of the carbonyls in the engine blank runs could probably be due 

to background contamination.  The average total concentration for B20 was 2.3 times higher than 

that for B00.  Based on previous literature, this result was expected.  For example, Cahill and 

Okamoto (2012) found that the total gas and particle-phase aldehyde emission rates were about 1 

to 2 times higher when soybean B50 and B100 fuels were used for the two drive cycles they used 

in their study.  It is also important to note that most of the previous studies (e.g. Guarieiro et al., 

2008; Correa and Arbilla. 2008; Karavalakis et al., 2011) have mostly concentrated on gas-phase 

carbonyl emissions only, and they found that there were considerable increases in carbonyl 

emissions with increasing biodiesel percentage. 

The increase in carbonyl emissions with biodiesel can be attributed to the presence of 

oxygen atoms in the ester molecule of biodiesel fuel (Correa and Arbilla. 2008).  Additionally, 

the ester group could be responsible for the higher carbonyl emissions in biodiesel because the 

decomposition of the ester group can lead to formation of carbonyl and olefin products by 

bimolecular hydrogen abstraction (Schwartz et al., 2006). 

 

Table 3-11.  Concentrations (ng/m3) for the carbonyls in petrodiesel (B00) and soybean 

biodiesel (B20) exhaust PM.. 

Concentrations (ng/m3) 

Fuel Type Blank B00 B20 

Filter ID #72 #73 #112 #114 #126 #128 

Air (L) 1240.0 1302.0 1760.0 1680.0 780.0 833.4 

POCs 

2-Pentanone N.D. 53.1b 1128.6b 1800.8b 4593.0b 3887.7b 

3-Pentanone 28.6b,c 32.1b,c 581.7b 829.2b 1966.0b 1560.1b 

n-Hexanal 93.9 94.2 1953.5 2579.8 10709.4c 5793.6 

n-Heptanal 174.7 103.8 3803.4c 5363.3c 8734.3c 3281.4 

n-Octanal N.D. N.D. N.D. N.D. 5564.4 N.D. 

2-Nonanone N.D. N.D. N.D. N.D. 4904.8 N.D. 

n-Nonanal 157.6 186.6c 2691.6c 4194.1c 20592.4c 8626.2c 

n-Decanal 74.3 114.4 1389.0 2002.2 6040.2 2975.2 

Undecanal 50.3 58.4 863.9 1175.7 3015.8 1900.5 

2-Hexanone 168.9 149.0 5707.1c 8607.1c 10424.3c 21558.2c 

2-Heptanone 50.5b 219.1c 945.0b 1186.9b 2198.9b 4596.9b 

2-Octanone 185.9c 172.8c 3912.5c 6488.3c 2716.5b 10788.4b 

Dodecanal 46.7 61.1 831.1 1141.9 2951.8 1763.9 

Benzaldehyde 86.8 84.6 1321.4 1761.9 4282.3 3228.0 

m-Tolualdehyde 56.0 53.6 861.9 1119.4 2731.9 2046.1 

o-Tolualdehyde 72.0 89.7 746.9b 1829.1 6067.4 4619.3 
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p-Tolualdehyde 54.3 52.0 819.6 1097.2 2586.3 1944.8 

Acetophenone 59.7 57.5 902.7 1217.0 2931.3 2168.5 

1-Indanone 23.0c 22.6c 348.5c 468.9c 1102.3c N.D. 

9-Fluorenone 47.6 44.9 751.2 N.D. 2296.9 1700.9 

Perinaphthenon

e N.D. N.D. 1272.1 1216.4 N.D. 676.6c 

Benzophenone 173.7 217.5c 3342.8c 4589.7c 10663.5c 8723.6c 

1,4-

Benzoquinone N.D. N.D. N.D. N.D. N.D. N.D. 

1,4-

Naphthoquinon

e N.D. N.D. 347.0b,c N.D. 1090.9b,c 833.9b,c 

Acenaphthoqui

none N.D. N.D. N.D. N.D. N.D. N.D. 

Anthraquinone 18.0c 18.1c 392.2c 517.9c 1289.9c 682.8c 

N.D. means that the compound was not detected during TD-GCMS analysis. a Mass spectrum did not 
match with that routinely seen for the known authentic chemical standards (Q-value less than 50). b 
Compound concentration was below the limit of detection and was therefore substituted with the limit 
of detection. c Compound concentration was outside calibration range. d Compound did not pass visual 
inspection. 

 

3.3 Fuel Composition as a Function of Biodiesel Blend 

Percentage 
The FAMEs, PAHs, and Alkanes were quantitated in the raw fuel samples prepared with Burke 

soy biodiesel and Shell petrodiesel. Each compound was then grouped according to its functional 

group and the aggregate mass for each group is shown below in Figure 3-2. Values represent an 

average of 45 raw fuel samples, consisting of 8 B0 samples, 10 B20 samples, 12 B50 samples, 

and 15 B100 samples. Error bars represent one standard deviation from the mean. FAMEs were 

shown to increase linearly with increasing biodiesel blend percentage, while alkanes and PAHs 

decreased. The alkanes did not show a linear relationship, and also showed little change from B0 

to B50 blends and a steep drop after B50. This may be due to the fact that odd number alkanes 

were not quantitated by GCMS, therefore accounting for only a fraction of the alkanes present in 

the petrodiesel. None of the 16 EPA PAHs were seen in any of the raw fuels. There were, 

however, various tetramethyl naphthalene compounds that were observed in the raw petrodiesel. 

These compounds were quantified based on the calibration curves for naphthalene, and are 

represented in Figure 3-2. 
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Figure 3-2. Distribution of each primary functional group as a function of biodiesel blend 

percentage. FAMEs were seen to increase linearly with increasing biodiesel percentage 

while alkanes and PAHs decrease. 

 

3.3.1 Biodiesel Fuel Composition by Feedstock 
The proportions of the FAMEs present in biodiesel can also vary from feedstock to feedstock. 

Three different biodiesel samples were taken from different feedstocks and analyzed for their 

relative proportion of FAMEs. These values were then compared to literature values for soybean 

biodiesel (Moser,2009). The results are summarized in Table 3-12. 

 

Table 3-12. The proportion of FAMEs found in biodiesel relative to the total FAMEs found in 

each sample. 

Proportions of FAMEs by Feedstock 

 Feedstock 

Fatty acid Burke UConn WVO Moser 2009 

C14:0 0 0 0 0 

C16:0 10 9 10 11 

C18:0 3 2 3 4 

C18:1 40 22 26 23 

C18:2 43 62 56 54 

C18:3 4 5 5 8 

C20:0 0 0 0 0 

C22:0 0 0 0 0 
 

The UConn soybean biodiesel and the waste vegetable oil had similar proportions of FAMEs to 

the values for soybean biodiesel reported by Moser. The Burke soy biodiesel had much higher 

relative concentrations of methyl oleate (C18:1) than the other two samples. This indicates that 
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the feedstocks from which these biodiesels were produced varied slightly. This could also impact 

the chemical composition and quantity of exhaust PM that would be expected from the 

combustion of each type of biodiesel. 

 

3.3.2 FAMES Chemical Composition of Exhaust PM 
A pair of duplicate runs was completed in October 2012 with a B20 blend of Burke soy biodiesel 

and Shell petrodiesel. The PM from these runs was diluted through the exhaust dilution system 

and collected on fiber film filters #126 and 128. Filter #126 had a 189.74 µg/m3 of PM while 

filter #128 had 151.20 µg/m3. The 1/4 inch punches from these filters were collected in pairs and 

analyzed by GCMS to determine the chemical composition. The FAMEs were quantitated in both 

the raw fuels and the exhaust PM to develop a better understanding of how biodiesel reacts in a 

diesel engine. The results for the raw fuel are shown below in Figure 3-3.  

 

 
Figure 3-3. Proportions of FAMEs found in the raw Burke soy biodiesel used for engine runs 

on October 2011. The values represent an average of five runs taken over three days 

from different locations in the gas tank before and after engine runs.  

 

The raw Burke soybean biodiesel was primarily composed of unsaturated FAMEs (e.g. oleic and 

linoleic acid). Only 11% of the FAMEs found in these samples were fully saturated. Unsaturated 

FAMEs have higher energy content by volume, so it would be assumed that a biodiesel with a 

higher proportion of saturated FAMEs would be desirable, however, Figure 3-4 shows that the 

FAMEs found in the exhaust PM are primarily saturated. This implies that saturated FAMEs are 

inherently less reactive than unsaturated FAMEs, and saturated FAMEs pass through the 

combustion cylinders in the diesel engine relatively unscathed. 
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Figure 3-4. The proportions of FAMEs found in the exhaust PM for fiber film filter #126 run on 

October 11, 2011. The values shown represent an average of two runs taken from 

different 1/4 inch punch pairs that were analyzed by TD-GCMS. 

 

The unsaturated FAMEs found in filter #126 made up 89% of the total FAMEs found in the 

exhaust PM. The larger FAMEs (i.e. arachidic and behenic acid) were not detected in the raw 

fuel, but had distinct, gaussian peaks in the exhaust. The origin of these FAMEs could have been 

pyrosynthesis during combustion.  This is substantiated by the fact that odd-numbered FAMEs 

were also identified, but could not have been present in the original fuel due to the fact that they 

do not occur naturally. The proportions of the unsaturated FAMEs (e.g. oleic and linoleic acid) 

decreased by 38% and 41%, respectively, indicating that it is primarily the unsaturated FAMEs 

that contribute to combustion. The relative standard deviations (RSD) for these measurements 

were less than 20% for all compounds except linolelaidic acid and behenic acid, which had RSD 

values higher than 90%. The source of variability for these compounds is not known, but could 

likely be caused by coelution of FAMEs in the nonpolar column. It is not advised to use a 

nonpolar column for quantitation of FAMEs, but due to the high complexity of real world exhaust 

samples, it was deemed necessary. 
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Figure 3-5. The proportions of FAMEs found in the exhaust PM for fiber film filter #128 run on 

October 21, 2011. The values shown represent an average of two runs taken from 

different 1/4 inch punch pairs that were analyzed by TD-GCMS. 

 

3.4 “Fingerprint” Composition by GCMS Extracted Ion Pattern 
Identification of compounds via GC/MS involves verifying retention time through the use of 

chemical standards, analyzing the mass spectral “fingerprint”, and calculating qualifier ion ratios. 

Qualifier ions refer to secondary peaks in a compound’s mass spectrum. These mass spectral peaks 

should elute with the same retention time and have a similar peak shape to the most abundant ion 

in the spectrum (i.e. target ion).  This is typically checked in Chemstation by overlaying extracted 

ion chromatograms (EIC) at m/z values corresponding to the target and qualifier ions of the 

compound of interest.  

MATLAB has the capability to display the EIC in a 3D plot, allowing the user to view a 

variety of EIC chromatograms for many different compounds over a much wider retention time 

range. This has several advantages over Chemstation, such as; the ability to deconvolute real-world 

exhaust samples with large unresolved complex mixtures (UCM), the ability to align peaks based 

on their retention time, and the ability to normalize the z-axis to the response of the internal standard 

over a series of runs.  Figures 3-6 and 3-7 show three-dimensional color-coded plots of functional 

group classes for a B0 and B20 PM filter sample, respectively, based on code written in MATLAB 

to import the GC/MS data files and classify GC peaks based on individual ion ratios. 
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Figure 3-6. 3D EIC from 20 to 40 minutes for B0 Fiber Film filter #18 run on the Armfield 

engine on 11/4/2010.  
 

In Figure 3-6, the petrodiesel three-dimensional extracted ion chromatogram is shown with color-codings 

by functional group. Blue lines are plotted at m/z values of 57, 71, 85 and 99 which correspond to the target 

and qualifier ions for straight chain alkanes. Red lines are plotted at m/z values of 74, 85, and 174 which 

correspond to target ions for FAMEs. Green lines are plotted at specific retention times and m/z values 

corresponding to the 16 EPA PAHs, and the black line is plotted at m/z 188 and corresponds to the internal 

standard, Phenathrene-D10. 

 
Figure 3-7. The 3D EIC from 20 to 40 minutes for B20 Teflon filter #40 run on 11/9/2010.  

 

In Figure 3-7, the three large clusters of red peaks from left to right correspond to 9-oxononanoic acid, 

methyl ester (an oxidation byproduct of oleic acid, methyl ester), palmitic acid, methyl ester, and stearic 

acid, methyl ester. These FAMEs are reproducibly seen in all biodiesel exhaust samples.  Ester-bound 

aldehydes, also known as core aldehydes, were identified in the exhaust PM for biodiesel fuels. One such 

example of a core aldehyde, 9-oxononanoic acid, methyl ester (RT = 22.5mins), may induce hepatic lipid 

peroxidation and may also affect hepatic metabolism (Minamoto et al, 1988). Studies have shown that 

these compounds are a product of thermoxidation of both oleic acid and linoleic acid, the primary 

constituents of soy-based biodiesel (Berdeaux et al, 2002). 
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4. Conclusions 

In the present study, we examined the differences in emissions from a light-duty diesel engine 

fueled with petrodiesel (B0) and at 20% blend of biodiesel (B20).  We focused on the emissions of 

alkanes, PAHs, carbonyls, and FAMEs.  These organic compound families were chosen mainly 

because of their known health effects and their impact on environmental degradation.  The 

emissions were computed based on the volume of air sampled (ng/m3) during the run. 

 

The concentrations for the individual alkanes were generally seen to increase with increasing 

molecular weight for both petrodiesel and biodiesel.  The total alkanes concentrations in biodiesel 

were surprisingly found to be about 3 times higher than those in petrodiesel.  The individual PAHs 

concentrations also increased with increasing molecular weight (number of rings) for both fuel 

types, while the total PAHs concentrations in biodiesel were found to be about 1.5 times higher 

than those in petrodiesel.   

There was no concentration dependence on molecular weight for the individual FAMEs.  

However, it was observed that the saturated FAMEs dominated the FAMEs detected in the 

biodiesel exhaust PM.  The saturated FAMEs made up 70% of the total FAMEs detected in the 

biodiesel exhaust PM, while they made up only 13% of the total FAMEs in the raw biodiesel fuel.  

The mechanism of the formation of the longer chain saturated FAMEs (such as arachidic acid and 

behenic acid methyl esters) that were not found in the raw biodiesel fuel, but found in the biodiesel 

exhaust PM warrants future investigation.  The study results indicate that most of the unsaturated 

FAMEs in biodiesel fuel are combusted in the engine, while the saturated FAMEs make it through 

the engine as unburned fuel.  The concentrations measured for the FAMEs in biodiesel were 11 

times higher than the petrodiesel concentrations and emission rates.   

The low molecular weight carbonyls dominated the carbonyls emissions in both petrodiesel 

and biodiesel.  On average, 70% of the carbonyls emissions in petrodiesel were due to the aliphatic 

carbonyls, while 71% of the carbonyls emissions in biodiesel were due to the aliphatic carbonyls.  

The total carbonyls concentrations in biodiesel were 2 times higher than the petrodiesel 

concentrations and emission rates.   

The preliminary results of this study show that use of biodiesel leads to an increase in the 

concentrations of most of the compounds studied (alkanes, PAHs, and carbonyls).  More replicate 

engine runs, however, need to be conducted in order to make more accurate conclusions about the 

effect of biodiesel on the emission of alkanes, PAHs, and carbonyls.  We are currently conducting 

a sampling campaign that involves measurement of emissions from different biodiesel blends (B00, 

B10, B20, B50, and B100) for both soybean and waste grease biodiesel feedstocks.  Three replicate 

engine runs will be completed for each biodiesel blend.  Raw exhaust PM filter samples, not the 

diluted exhaust samples extracted in this report, are collected for chemical analysis to achieve 

higher measured mass in punch extracts to make more reliable conclusions on the effect of biodiesel 

on the emission of alkanes, PAHs, carbonyls, and FAMEs. 
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Appendices 

 

Tables of QA/QC data and raw experimental results are provided in the following 7 

appendices. 
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Appendix I.  Chemical Standard Mixture Compositions 
Table I-A. Commercially available standard compound mixture compositions 

Compounds Compound ID CAS Number Conc Supplier Cat # 

PAHs Mix (100 µg/mL each in DCM) 

 
Ultra 

Scientific 
PM-611 

Naphthalene NAP 91-20-3 100   

Acenaphthylene ACY 208-96-8 100   

Acenaphthene ACE 83-32-9 100   

Fluorene FLU 86-73-7 100   

Phenanthrene PHEN 85-01-8 100   

Anthracene ANTH 120-12-7 100   

Fluoranthene FLUOR 206-44-0 100   

Pyrene PYR 129-00-0 100   

Benzo[a]anthracene BAA 56-55-3 100   

Chrysene CHRY 218-01-9 100   

Benzo[b]fluoranthene BBF 205-99-2 100   

Benzo[k]fluoranthene BBK 207-08-9 100   

Benzo[a]pyrene BAP 50-32-8 100   

Indeno[1,2,3-cd]pyrene IDP 193-39-5 100   

Benzo[ghi]perylene BGP 191-24-2 100   

Dibenz[a,h]anthracene DAA 53-70-3 100   

POCs 

2-Pentanone 2PNN 107-87-9 Pure Sigma Aldrich 68950-100ML 

3-Pentanone 3PNN 96-22-0 Pure Sigma Aldrich 
127604-

100ML 

2-Hexanone 2HXN 591-78-6 Pure Sigma Aldrich 02473-5ML 

2-Heptanone 2HPN 110-43-0 Pure Sigma Aldrich 02476-1ML 

2-Octanone 2OCT 111-13-7 Pure Sigma Aldrich 02479-1ML 

2-Nonanone 2NNE 821-55-6 Pure Sigma Aldrich 108731-5G 

n-Hexanal HXNL 66-25-1 Pure Sigma Aldrich 115606-2ML 

n-Heptanal HPTL 111-71-7 Pure Sigma Aldrich W254002 

n-Octanal OCTL 124-13-0 Pure Sigma Aldrich O5608-25ML 

n-Nonanal NNNL 124-19-6 Pure Sigma Aldrich 442719 

n-Decanal DECL 112-31-2 Pure Sigma Aldrich D7384-25G 

Undecanal UDCL 112-44-7 Pure Sigma Aldrich U2202-25G 

Dodecanal DDCL 112-54-9 Pure Sigma Aldrich W261505 

Benzaldehyde BZDE 100-52-7 Pure Sigma Aldrich B1334-2G 

m-Tolualdehyde mTOL 620-23-5 Pure Sigma Aldrich T35505-5G 

o-Tolualdehyde oTOL 529-20-4 Pure Sigma Aldrich 117552-25G 

p-Tolualdehyde pTOL 104-87-0 Pure Sigma Aldrich T35602-100G 

Acetophenone ACNE 98-86-2 Pure Sigma Aldrich 42163-1ML-F 

1-Indanone 1IND 83-33-0 Pure Sigma Aldrich I2304-10G 

9-Fluorenone 9FLN 486-25-9 Pure Sigma Aldrich F1506-5G-A 

Perinaphthenone PNNN 548-39-0 Pure Sigma Aldrich P10801-1G 

Benzophenone BZP 119-61-9 Pure Sigma Aldrich 239852-50G 

1,4-Benzoquinone BQN 106-51-4 Pure Sigma Aldrich PHR1028-1G 

1,4-Naphthoquinone NQN 130-15-4 Pure Sigma Aldrich 70372-50G 

Acenaphthoquinone ACNQ 82-86-0 Pure Sigma Aldrich A201-25G-A 

Anthraquinone ATQ 84-65-1 Pure Sigma Aldrich 31466-250MG 

Alkanes Mix (50 mg/L each in n-heptane) 

    Sigma Aldrich 68281-2ML-F 

Dodecane DDCN 112-40-3 50   
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Tetradecane TDCN 629-59-4 50   

Hexadecane HDCN 544-76-3 50   

Octadecane ODCN 593-45-3 50   

Eicosane ECSN 112-95-8 50   

Docosane DCSN 629-97-0 50   

Tetracosane TCSN 646-31-1 50   

Hexacosane HCSN 630-01-3 50   

Octacosane OCSN 630-02-4 50   

Triacontane TCTN 638-68-6 50   

Dotriacontane DCTN 544-85-4 50   

Tetratriacontane TECTN 14167-59-0 50   

Hexatriacontane HCTN 630-06-8 50   

FAMEs Mix, 100 mg Neat 

   

(% of each 

FAME in 

Mix) 

Sigma Aldrich 18917-1AMP 

Myristic Acid Methyl Ester MAME 124-10-7 4   

Palmitic Acid Methyl Ester PAME 112-39-0 10   

Stearic Acid Methyl Ester SAME 112-61-8 6   

Oleic Acid Methyl Ester OAME 112-62-9 25   

Elaidic Acid Methyl Ester EAME 1937-62-8 10   

Linoleic Acid Methyl Ester LIEC 112-63-0 34   

Linolelaidic Acid Methyl Ester LDIC 2566-97-4 2   

Linolenic Acid Methyl Ester LNIC 301-00-8 5   

Arachidic Acid Methyl Ester AAME 1120-28-1 2   

Behenic Acid Methyl Ester BAME 929-77-1 2   

Internal, Quantitation and Recovery Standards 

Phenanthrene-d10 Phen-d10 1517-22-2 
1000 µg/mL 

in DCM 

Ultra 

Scientific 
IST-230 

Perylene-d12 Pery-d12 1520-96-3 
2000 µg/mL 

in DCM 

Ultra 

Scientific 
ATS-150-1 

Anthracene-d10 Anth-d10 1719-06-8 
1000 µg/mL 

in DCM 

Ultra 

Scientific 
IST-110 

Tetracosane-d50 TECSN-d50 16416-32-3 Pure Sigma Aldrich 
451770-

100MG 

6-Fluoro-4-chromanone 6F4C 66892-34-0 Pure Sigma Aldrich 364991-1G 

2-Fluoro-9-fluorenone 2F9F 343-01-1 Pure Sigma Aldrich F9000-1G 

Other Chemicals      

Pentafluorobenzylhydroxylamine PFBHA 57981-02-9 Pure Sigma Aldrich 76735-1G 
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Appendix II.  GC/MS Calibration Standards 
Table II-A. Calibration standards used for preparation of calibration curves 

 Standard 1 

(ng/µL) 

Standard 2 

(ng/µL) 

Standard 3 

(ng/µL) 

Standard 4 

(ng/µL) 

Standard 5 

(ng/µL) 

PAHs  0.6 1.3 2.7 6.6 13.3 

Alkanes 0.6 1.3 2.7 6.6 13.3 

Carbonyls 2 4 6 8 10 

FAMEs      

Myristic Acid ME (C14:0) 0.5 1.1 1.6 2.1 2.7 

Palmitic Acid ME (C16:0) 1.3 2.7 4.0 5.3 6.6 

Oleic Acid ME (C18:1) 3.3 6.6 10.0 13.3 16.6 

Elaidic Acid ME (C18:1) 1.3 2.7 4.0 5.3 6.6 

Stearic Acid ME (C18:0) 0.8 1.6 2.4 3.2 4.0 

Linolenic Acid ME (C18:3) 0.7 1.3 2.0 2.7 3.3 

Linoleic Acid ME (C18:2) 4.5 9.0 13.5 18.0 22.5 

Linolelaidic Acid ME (C18:2) 0.3 0.5 0.8 1.1 1.3 

Arachidic Acid ME (C20:0) 0.3 0.5 0.8 1.1 1.3 

Behenic Acid ME (C22:0) 0.3 0.5 0.8 1.1 1.3 
All PAHs, alkanes, and carbonyls were at equal concentrations in their respective standards.  The FAMEs in the mix were at 

different concentrations, i.e.  myristic acid ME (4%), palmitic acid ME (10%), oleic acid ME (25%), elaidic acid ME (10%), 

stearic acid ME (6%), linolenic acid ME (5%), linoleic acid ME (34%), linolelaidic acid ME (2%), arachidic acid ME (2%), and 

behenic acid ME (2%). 
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Appendix III.  GC/MS Calibration Curves 
Figure III-A. Example Calibration Curves for Target Analytes 

(a) PAHs 
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(b) Alkanes 
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(c) Carbonyls 

       
 

       
 

(d) FAMEs 
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Appendix IV.  Carbonyl Quantification Ions 
Table IV-A. Mass Spectrometry Quantification Ions for Individual Carbonyls 

Compound MWi MWf Most Abundant Ions RT 

Aliphatic Carbonyls 

2-Pentanone 86 281 181, 195, 253, 264, 281 20.27, 20.39 

3-Pentanone 86 281 181, 253, 281 20.16 

2-Hexanone 100 295 181,195, 236, 253 21.62, 21.76 

Hexanal 100 295 181, 239, 195 22.66, 22.71 

2-Heptanone 114 309 181, 253, 72, 266 22.88, 23.07 

Heptanal 114 309 181, 239, 252 24.00 

2-Octanone 128 323 72, 181, 253, 323 24.09, 24.30 

Octanal 128 323 181, 239, 323 25.34 

2-Nonanone 142 337 181, 236, 253, 337 25.41, 25.70 

Nonanal 142 337 181, 239, 252, 337 27.08 

Decanal 156 351 181, 239, 252, 334 29.28 

Undecanal 170 365 181, 239, 252 31.85 

Dodecanal 184 379 181, 198, 239 34.71 

Aromatic Carbonyls 

Benzaldehyde 106 301 181, 271, 301 25.95, 26.12 

1,4-Benzoquinone 108 303 181, 195, 317, 498 48.75 

Acetophenone 120 315 181, 298, 315 27.10 

m-Tolualdehyde 120 315 181, 285, 315 28.13 

o-Tolualdehyde 120 315 181, 300, 315 28.24 

p-Tolualdehyde 120 315 181, 285, 315 28.50 

1-Indanone 132 327 116, 181, 327 32.19, 32.66 

1,4 Napthoquinone 158 353 181, 295, 353 41.73 

9-Fluorenone 180 375 

152, 180, 192 

166, 181, 375 28.28, 48.49 

Perinaphthenone 180 375 152, 180, 76 32.84 

Benzophenone 182 572 

182, 105, 77 

165, 181, 196, 377 25.53, 38.33 

Acenaphthoquinone 182 377 

153, 181, 377 

152, 181, 572 50.69, 68.80 

Anthraquinone 208 403 152, 180, 208 34.79 

2-Fluoro 9-Fluorenone 198 393 

198, 170, 85 

181, 393, 195, 363 

27.57, 47.79, 

47.96 

6-Fluoro 4-Chromanone 166 361 181, 361, 149, 108 33.69, 34.73 
MWi = Molecular Weight of Carbonyl, MWf = Molecular Weight of PFBHA-oxime of Carbonyl, RT = Retention Time. 
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Appendix V.  Recovery and Quantitation Standard Results 
Table V-A. Percent Recoveries for the Recovery and Quantitation Standards Obtained During 

Extraction of the Diesel and Biodiesel Filters. 

Filter Punch Pair Tetracosane-d50 Anthracene-d10 
2-Fluoro-9-

fluorenone 

6-Fluoro-4-

chromanone 

Filter #72 Punch Pair 1 78.8 49.8 91.8 52.1 

Filter #72 Punch Pair 2 103.0 50.4 78.5 76.5 

Filter #73 Punch Pair 1 73.4 49.6 117.4 52.7 

Filter #73 Punch Pair 2 75.2 51.0 74.1 75.2 

Filter #112 Punch Pair 1 117.9 50.2 88.4 68.8 

Filter #112 Punch Pair 2 139.2 77.4 102.1 52.8 

Filter #114 Punch Pair 1 70.6 50.0 103.3 56.6 

Filter #114 Punch Pair 2 78.2 49.8 94.7 72.1 

Filter #126 Punch Pair 1 74.6 50.0 90.6 30.4 

Filter #126 Punch Pair 2 199.0 109.4 88.3 75.8 

Filter #128 Punch Pair 1 32.4 50.8 89.0 46.7 

Filter #128 Punch Pair 2 96.5 51.6 80.4 69.0 

     

Mean 94.9 57.5 91.5 60.7 

STD 42.3 18.1 11.9 14.4 

RSD 44.6 31.5 13.0 23.7 
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Appendix VI. Target Analyte Concentrations for Extracted PM Filters. 
The following tables summarize the GC/MS analysis results for the blank, B0 and B20 PM filters 

collected and extracted in this study.  The following flag key applies to all of these tables for the 

measured analyte mass, concentrations and emission rates. 

Table VI-A.  GC/MS Data Flag Descriptions 

 
 

Flag
a

b compound	concentration	was	substituted	with	the	limit	of	detection

c

d

Description
mass	spectrum	didn't	match	with	that	routinely	seen	for	the	known	

authentic	chemical	standards	(Q-value	less	than	50)

compound	concentration	is	outside	calibration	range

compound	did	not	pass	visual	inspection
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Table VI-B. Target Alkane and PAH Analyte Total Mass by Fuel Type 

 
 

  

Fuel	Type

Filter	ID

Dodecane 521.3 a 104.4 a 90.4 a 102.2 a 89.7 a 93.9

Tetradecane 55.4 a 117.5 a 60.8 a 56.0 a 196.5 a 130.7 a

Hexadecane 135.7 a 46.6 a 53.6 a 30.6 a 35.2 28.7 a

Octadecane 26.9 28.0 38.1 39.2 26.7 18.6 a

Eicosane 29.3 a 26.5 a 24.7 39.2 149.9 58.0

Docosane 32.2 a 30.9 a 433.5 178.6 484.3 103.5

Tetracosane 52.5 53.0 305.3 158.7 753.1 c 142.5

Hexacosane 72.4 a 71.1 130.7 84.5 92.6 72.9

Octacosane 132.8 a 137.4 153.0 147.9 223.7 150.1

Triacontane 164.1 a 168.5 a 188.6 167.6 239.4 180.1 a

Dotriacontane 191.1 a 193.5 196.1 a 190.2 a 244.2 196.7 a

Tetratriacontane 213.6 a 213.8 a 213.4 a 212.1 a 219.3 211.6

Naphthalene 4.8
b,d

4.8 a,b,d 4.8 b,d 4.8 b,d 4.8 b,d 4.8 b,d

Acenaphthylene 5.3
a,b,d

N.D. 5.3 a,b,d 10.5 a,b 5.3 b,d 5.3 a,b,d

Acenaphthene 7.4
a,b,d

7.4 a,b,d N.D. 7.4 a,b,d 7.4 a,b,d 7.4 a,b,d

Fluorene 4.2
a,d

N.D. 4.2 a 3.9 b 4.4 a,b,d N.D.

Phenanthrene 5.7
a,b,d

5.7 b,d 5.7 a,b 5.7 b 5.7 b 5.7 b

Anthracene N.D. N.D. 4.3 a,b,d 4.3 b,d N.D. N.D.

Fluoranthene N.D. N.D. 5.5 a,b,d 5.5 a,b,d 5.5 a,b,d N.D.

Pyrene N.D. N.D. 6.0 a,b,d 6.0 b,d 6.0 b N.D.

Benzo[a]anthracene N.D. N.D. 6.8 b,d 6.8 a,b,d 6.8 b,d N.D.

Chrysene N.D. N.D. 5.3 a,b,d 5.3 a,b,d 5.3 a,b,d N.D.

Benzo[b]fluoranthene N.D. N.D. 6.7 a,b 6.7 b 6.7 b 6.7 a,b

Benzo[k]fluoranthene N.D. N.D. 10.0 a,b 10.0 a,b N.D. N.D.

Benzo[a]pyrene N.D. N.D. 9.2 b,d 9.2 a,b,d 9.2 a,b,d 9.2 a,b,d

Indeno[1,2,3-cd]pyrene N.D. N.D. 10.9 b,d 10.9 b 10.9 a,b,d 10.9 a,b,d

Benzo[ghi]perylene N.D. N.D. 10.0 b 10.0 a,b 10.0 a,b,d 10.0 a,b,d

Dibenz[a,h]anthracene N.D. N.D. 8.5 a,b,d 8.5 a,b 8.5 a,b,d 8.5 a,b,d

ALKANES

Blank B0 B20

#72 #73 #112 #114 #126 #128

Total	Mass	on	Filter	(ng)

PAHs
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Table VI-C. Target FAME and POC Analyte Total Mass by Fuel Type 

  

Fuel	Type

Filter	ID

Myristic	Acid	ME 54.5 b 42.7 b 616.5 a,b,c 579.5 a,b,c 119.3 b 31.8 b

Palmitic	Acid	ME 544.3 b,c 302.2 b,c 362.4 b,c 284.9 b 3197.6 c 168.1 b

Oleic	Acid	ME 198.2 116.8 c 116.8 a,c 116.8 a,c 409.9 116.8 b,c

Elaidic	Acid	ME 42.9 a,b,c 42.9 a,b,c 65.9 51.4 b,c 962.9 c 48.8 b,c

Stearic	Acid	ME 155.4 b 63.0 b 92.4 b 92.1 b 2944.4 c 312.1 b

Linolenic	Acid	ME 24.6 a,c 26.0 a 23.9 a,c 22.9 a,c 90.2 a 24.1 a,c

Linoleic	Acid	ME 511.5 c 511.5 a,c 511.5 a,b,c 511.5 a,b,c 511.5 511.5 a,b,c

Linolelaidic	Acid	ME 17.3 13.1 12.7 a 12.7 a 12.7 a 12.5 a

Arachidic	Acid	ME 10.7 a,b,c 10.7 b,c 10.7 a,b,c 10.7 a,b,c 416.9 c 113.8 c

Behenic	Acid	ME 29.5 b 29.5 b,c 29.5 a,b,c 29.5 a,b 581.5 c 174.9 c

2-Pentanone N.D. 69.1 b 94.1 b 111.8 b 120.6 b 135.2 b

3-Pentanone 35.5 b,c 41.8 b,c 48.5 b 51.5 b 51.6 b 54.2 b

n-Hexanal 116.5 122.6 162.8 160.2 281.2 c 201.4

n-Heptanal 216.6 135.2 317.0 c 333.1 c 229.3 c 114.1

n-Octanal N.D. N.D. N.D. N.D. 146.1 N.D.

2-Nonanone N.D. N.D. N.D. N.D. 128.8 N.D.

n-Nonanal 195.4 243.0 c 224.3 c 260.5 c 540.6 c 299.9 c

n-Decanal 92.1 148.9 115.7 124.4 158.6 103.4

Undecanal 62.4 76.1 72.0 73.0 79.2 66.1

2-Hexanone 209.4 194.0 475.6 c 534.6 c 273.7 c 749.5 c

2-Heptanone 62.7 b 285.3 c 78.7 b 73.7 b 57.7 b 159.8 b

2-Octanone 230.5 c 224.9 c 326.0 c 403.0 c 71.3 b 375.1 b

Dodecanal 57.9 79.6 69.3 70.9 77.5 61.3

Benzaldehyde 107.7 110.1 110.1 109.4 112.4 112.2

m-Tolualdehyde 69.4 69.8 71.8 69.5 71.7 71.1

o-Tolualdehyde 89.2 116.8 62.2 b 113.6 159.3 160.6

p-Tolualdehyde 67.4 67.7 68.3 68.1 67.9 67.6

Acetophenone 74.0 74.9 75.2 75.6 77.0 75.4

1-Indanone 28.6 c 29.4 c 29.0 c 29.1 c 28.9 c N.D.

9-Fluorenone 59.0 58.5 62.6 N.D. 60.3 59.1

Perinaphthenone N.D. N.D. 106.0 75.5 N.D. 23.5 c

Benzophenone 215.4 283.2 c 278.6 c 285.1 c 280.0 c 303.3 c

1,4-Benzoquinone N.D. N.D. N.D. N.D. N.D. N.D.

1,4-Naphthoquinone N.D. N.D. 28.9 b,c N.D. 28.6 b,c 29.0 b,c

Acenaphthoquinone N.D. N.D. N.D. N.D. N.D. N.D.

Anthraquinone 22.3 c 23.6 c 32.7 c 32.2 c 33.9 c 23.7 c

#72 #73 #112 #114 #126 #128

Total	Mass	on	Filter	(ng)

Blank B0 B20

FAMEs

POCs
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Table VI-D. Target Alkane and PAH Analyte Concentrations by Fuel Type 

 
 

  

Fuel	Type

Filter	ID

Air	(L)

Dodecane 420.4 a 80.2 a 1078.4 a 1642.5 a 3451.1 a 2703.8

Tetradecane 44.7 a 90.3 a 725.9 a 900.4 a 7558.7 a 3762.7 a

Hexadecane 109.4 a 35.8 a 639.8 a 492.4 a 1355.2 825.6 a

Octadecane 21.7 21.5 454.4 629.6 1026.9 535.7 a

Eicosane 23.6 a 20.3 a 295.1 629.6 5765.8 1670.2

Docosane 25.9 a 23.7 a 5172.9 2870.0 18627.3 2981.1

Tetracosane 42.4 40.7 3642.7 2550.0 28963.6 c 4103.0

Hexacosane 58.4 a 54.6 1558.9 1357.6 3560.5 2098.8

Octacosane 107.1 a 105.6 1825.3 2377.6 8602.4 4323.6

Triacontane 132.4 a 129.4 a 2250.9 2694.2 9208.4 5187.0 a

Dotriacontane 154.1 a 148.6 2339.7 a 3056.4 a 9393.6 5666.0 a

Tetratriacontane 172.3 a 164.2 a 2546.0 a 3408.2 a 8434.0 6094.6

Naphthalene 3.8 b,d 3.7 a,b,d 56.7 b,d 76.4 b,d 182.9 b,d 137.0 b,d

Acenaphthylene 4.3 a,b,d N.D. 63.3 a,b,d 168.8 a,b 204.2 b,d 152.9 a,b,d

Acenaphthene 6.0 a,b,d 5.7 a,b,d N.D. 119.0 a,b,d 284.7 a,b,d 213.2 a,b,d

Fluorene 3.4 a,d N.D. 49.6 a 63.3 b 168.3 a,b,d N.D.

Phenanthrene 4.6 a,b,d 4.3 b,d 67.5 a,b 90.9 b 217.5 b 162.9 b

Anthracene N.D. N.D. 50.9 a,b,d 68.6 b,d N.D. N.D.

Fluoranthene N.D. N.D. 66.1 a,b,d 89.1 a,b,d 213.2 a,b,d N.D.

Pyrene N.D. N.D. 72.1 a,b,d 97.1 b,d 232.4 b N.D.

Benzo[a]anthracene N.D. N.D. 81.0 b,d 109.1 a,b,d 261.0 b,d N.D.

Chrysene N.D. N.D. 63.2 a,b,d 85.1 a,b,d 203.6 a,b,d N.D.

Benzo[b]fluoranthene N.D. N.D. 79.8 a,b 107.4 b 257.1 b 192.5 a,b

Benzo[k]fluoranthene N.D. N.D. 119.7 a,b 161.2 a,b N.D. N.D.

Benzo[a]pyrene N.D. N.D. 109.2 b,d 147.1 a,b,d 352.1 a,b,d 263.6 a,b,d

Indeno[1,2,3-cd]pyrene N.D. N.D. 130.1 b,d 175.2 b 419.3 a,b,d 314.0 a,b,d

Benzo[ghi]perylene N.D. N.D. 119.0 b 160.3 a,b 383.6 a,b,d 287.3 a,b,d

Dibenz[a,h]anthracene N.D. N.D. 101.4 a,b,d 136.5 a,b 326.8 a,b,d 244.7 a,b,d

#72

1240.00

#73

1302.00

B20

#112

1760.00

#114

1680.00

#126

780.00

Concentrations	(ng/m3)

#128

833.36

Blank B0

ALKANES

PAHs
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Table VI-E. Target FAME and POC Analyte Concentrations by Fuel Type 

 
  

Fuel	Type

Filter	ID

Air	(L)

Myristic	Acid	ME 44.0 b 32.8 7355.9 a,c 9313.5 a,c 4587.4 914.7 b

Palmitic	Acid	ME 438.9 c 232.1 c 4324.2 c 4579.4 ###### c 4840.4

Oleic	Acid	ME 159.9 89.7 b,c 1393.2 a,b,c 1876.6 a,b,c 15765.4 3362.7 c

Elaidic	Acid	ME 34.6 a,b,c 32.9 a,b,c 786.0 826.5 c 37035.7 c 1404.9 c

Stearic	Acid	ME 125.3 b 48.4 b 1101.9 b 1480.7 b ###### c 8987.5 b

Linolenic	Acid	ME 19.8 a,b,c 20.0 a 284.6 a,c 368.1 a,b,c 3467.9 a 695.4 a,b,c

Linoleic	Acid	ME 412.5 b,c 392.8 a,b,c 6102.6 a,b,c 8219.9 a,b,c 19671.4 b 14729.5 a,b,c

Linolelaidic	Acid	ME 13.9 10.1 151.5 a 204.0 a 488.2 a 359.2 a

Arachidic	Acid	ME 8.6 a,b,c 8.2 b,c 127.4 a,b,c 171.6 a,b,c 16034.8 c 3277.4 c

Behenic	Acid	ME 23.8 b 22.7 b,c 352.1 a,b,c 474.3 a,b 22364.5 c 5035.8 c

2-Pentanone N.D. 53.1 b 1128.6 b 1800.8 b 4593.0 b 3887.7 b

3-Pentanone 28.6 b,c 32.1 b,c 581.7 b 829.2 b 1966.0 b 1560.1 b

n-Hexanal 93.9 94.2 1953.5 2579.8 10709.4 c 5793.6

n-Heptanal 174.7 103.8 3803.4 c 5363.3 c 8734.3 c 3281.4

n-Octanal N.D. N.D. N.D. N.D. 5564.4 N.D.

2-Nonanone N.D. N.D. N.D. N.D. 4904.8 N.D.

n-Nonanal 157.6 186.6 c 2691.6 c 4194.1 c 20592.4 c 8626.2 c

n-Decanal 74.3 114.4 1389.0 2002.2 6040.2 2975.2

Undecanal 50.3 58.4 863.9 1175.7 3015.8 1900.5

2-Hexanone 168.9 149.0 5707.1 c 8607.1 c 10424.3 c 21558.2 c

2-Heptanone 50.5 b 219.1 c 945.0 b 1186.9 b 2198.9 b 4596.9 b

2-Octanone 185.9 c 172.8 c 3912.5 c 6488.3 c 2716.5 b 10788.4 b

Dodecanal 46.7 61.1 831.1 1141.9 2951.8 1763.9

Benzaldehyde 86.8 84.6 1321.4 1761.9 4282.3 3228.0

m-Tolualdehyde 56.0 53.6 861.9 1119.4 2731.9 2046.1

o-Tolualdehyde 72.0 89.7 746.9 b 1829.1 6067.4 4619.3

p-Tolualdehyde 54.3 52.0 819.6 1097.2 2586.3 1944.8

Acetophenone 59.7 57.5 902.7 1217.0 2931.3 2168.5

1-Indanone 23.0 c 22.6 c 348.5 c 468.9 c 1102.3 c N.D.

9-Fluorenone 47.6 44.9 751.2 N.D. 2296.9 1700.9

Perinaphthenone N.D. N.D. 1272.1 1216.4 N.D. 676.6 c

Benzophenone 173.7 217.5 c 3342.8 c 4589.7 c 10663.5 c 8723.6 c

1,4-Benzoquinone N.D. N.D. N.D. N.D. N.D. N.D.

1,4-Naphthoquinone N.D. N.D. 347.0 b,c N.D. 1090.9 b,c 833.9 b,c

Acenaphthoquinone N.D. N.D. N.D. N.D. N.D. N.D.

Anthraquinone 18.0 c 18.1 c 392.2 c 517.9 c 1289.9 c 682.8 c

Blank B0 B20

1240.00 1302.00 1760.00 1680.00 780.00 833.36

#72 #73 #112 #114 #126 #128

Concentrations	(ng/m3)

FAMEs

POCs
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Table VI-F. Target Alkane and PAH Analyte Emission Rates by Fuel Type 

 
  

Fuel	Type

Filter	ID

PM	(ug)

Dodecane -400.4 a 1842.2 a 329.9 a 438.0 a 606.3 a 745.1

Tetradecane -42.5 a 2073.9 a 222.0 a 240.1 a 1327.9 a 1036.9 a

Hexadecane -104.2 a 822.6 a 195.7 a 131.3 a 238.1 227.5 a

Octadecane -20.7 494.3 139.0 167.9 180.4 147.6 a

Eicosane -22.5 a 467.3 a 90.3 167.9 1012.9 460.3

Docosane -24.7 a 544.5 a 1582.3 765.3 3272.4 821.5

Tetracosane -40.3 934.6 1114.2 680.0 5088.2 c 1130.7

Hexacosane -55.6 a 1255.2 476.8 362.0 625.5 578.4

Octacosane -102.0 a 2425.3 558.3 634.0 1511.2 1191.5

Triacontane -126.1 a 2973.7 a 688.5 718.4 1617.7 1429.5 a

Dotriacontane -146.7 a 3414.0 715.6 a 815.1 a 1650.2 1561.5 a

Tetratriacontane -164.1 a 3773.2 a 778.7 a 908.8 a 1481.7 1679.6

Naphthalene -3.7 b,d 83.9 a,b,d 17.4 b,d 20.4 b,d 32.1 b,d 37.7 b,d

Acenaphthylene -4.1 a,b,d N.D. 19.4 a,b,d 45.0 a,b 35.9 b,d 42.1 a,b,d

Acenaphthene -5.7 a,b,d 130.6 a,b,d N.D. 31.7 a,b,d 50.0 a,b,d 58.7 a,b,d

Fluorene -3.2 a,d N.D. 15.2 a 16.9 b 29.6 a,b,d N.D.

Phenanthrene -4.3 a,b,d 99.8 b,d 20.6 a,b 24.2 b 38.2 b 44.9 b

Anthracene N.D. N.D. 15.6 a,b,d 18.3 b,d N.D. N.D.

Fluoranthene N.D. N.D. 20.2 a,b,d 23.8 a,b,d 37.5 a,b,d N.D.

Pyrene N.D. N.D. 22.0 a,b,d 25.9 b,d 40.8 b N.D.

Benzo[a]anthracene N.D. N.D. 24.8 b,d 29.1 a,b,d 45.9 b,d N.D.

Chrysene N.D. N.D. 19.3 a,b,d 22.7 a,b,d 35.8 a,b,d N.D.

Benzo[b]fluoranthene N.D. N.D. 24.4 a,b 28.7 b 45.2 b 53.1 a,b

Benzo[k]fluoranthene N.D. N.D. 36.6 a,b 43.0 a,b N.D. N.D.

Benzo[a]pyrene N.D. N.D. 33.4 b,d 39.2 a,b,d 61.9 a,b,d 72.7 a,b,d

Indeno[1,2,3-cd]pyrene N.D. N.D. 39.8 b,d 46.7 b 73.7 a,b,d 86.5 a,b,d

Benzo[ghi]perylene N.D. N.D. 36.4 b 42.7 a,b 67.4 a,b,d 79.2 a,b,d

Dibenz[a,h]anthracene N.D. N.D. 31.0 a,b,d 36.4 a,b 57.4 a,b,d 67.4 a,b,d

ALKANES

#72

-1.302

#73

0.06

Emission	Rates	(ngx/ug	PM)

Blank B0 B20

#112 #114 #126

PAHs

#128

0.130.26 0.18 0.15
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Table VI-G. Target FAME and POC Analyte Emission Rates by Fuel Type 

 
  

Fuel	Type

Filter	ID

PM	(ug)

Myristic	Acid	ME -41.9 b 753.1 2250.0 a,c 2483.6 a,c 805.9 252.1 b

Palmitic	Acid	ME -418.0 c 5333.4 c 1322.7 c 1221.2 21605.3 c 1333.9

Oleic	Acid	ME -152.2 2060.5 b,c 426.1 a,b,c 500.4 a,b,c 2769.6 926.7 c

Elaidic	Acid	ME -32.9 a,b,c 756.2 a,b,c 240.4 220.4 c 6506.3 c 387.2 c

Stearic	Acid	ME -119.3 b 1112.3 b 337.1 b 394.9 b 19894.4 c 2476.8 b

Linolenic	Acid	ME -18.9 a,b,c 459.6 a 87.1 a,c 98.2 a,b,c 609.2 a 191.6 a,b,c

Linoleic	Acid	ME -392.8 b,c 9025.7 a,b,c 1866.6 a,b,c 2192.0 a,b,c 3455.8 b 4059.2 a,b,c

Linolelaidic	Acid	ME -13.3 231.7 46.3 a 54.4 a 85.8 a 99.0 a

Arachidic	Acid	ME -8.2 a,b,c 188.4 b,c 39.0 a,b,c 45.8 a,b,c 2816.9 c 903.2 c

Behenic	Acid	ME -22.7 b 520.8 b,c 107.7 a,b,c 126.5 a,b 3928.9 c 1387.8 c

2-Pentanone N.D. 1219.6 b 343.3 b 479.3 b 814.7 b 1072.7 b

3-Pentanone -27.24 b,c 737.1 b,c 176.9 b 220.7 b 348.8 b 430.5 b

n-Hexanal -89.46 2164.0 594.1 686.7 1899.7 c 1598.6

n-Heptanal -166.37 2385.9 1156.8 c 1427.6 c 1549.4 c 905.4

n-Octanal N.D. N.D. N.D. N.D. 987.1 N.D.

2-Nonanone N.D. N.D. N.D. N.D. 870.1 N.D.

n-Nonanal -150.07 4288.4 c 818.6 c 1116.4 c 3652.9 c 2380.2 c

n-Decanal -70.76 2627.8 422.4 532.9 1071.5 820.9

Undecanal -47.94 1342.2 262.7 313.0 535.0 524.4

2-Hexanone -160.87 3422.8 1735.7 c 2291.0 c 1849.2 c 5948.5 c

2-Heptanone -48.14 b 5034.1 c 287.4 b 315.9 b 390.1 b 1268.4 b

2-Octanone -177.01 c 3969.4 c 1189.9 c 1727.0 c 481.9 b 2976.8 b

Dodecanal -44.45 1404.6 252.8 303.9 523.6 486.7

Benzaldehyde -82.70 1943.5 401.9 469.0 759.6 890.7

m-Tolualdehyde -53.34 1231.8 262.1 298.0 484.6 564.6

o-Tolualdehyde -68.54 2061.7 227.2 b 486.9 1076.3 1274.6

p-Tolualdehyde -51.74 1194.9 249.3 292.0 458.8 536.6

Acetophenone -56.87 1322.2 274.5 323.9 520.0 598.3

1-Indanone -21.94 c 518.4 c 106.0 c 124.8 c 195.5 c N.D.

9-Fluorenone -45.31 1032.4 228.5 N.D. 407.5 469.3

Perinaphthenone N.D. N.D. 386.9 323.8 N.D. 186.7 c

Benzophenone -165.44 4998.4 c 1016.7 c 1221.7 c 1891.6 c 2407.1 c

1,4-Benzoquinone N.D. N.D. N.D. N.D. N.D. N.D.

1,4-Naphthoquinone N.D. N.D. 105.5 b,c N.D. 193.5 b,c 230.1 b,c

Acenaphthoquinone N.D. N.D. N.D. N.D. N.D. N.D.

Anthraquinone -17.15 c 416.1 c 119.3 c 137.8 c 228.8 c 188.4 c

0.18 0.15 0.13

Blank B0 B20

#128

-1.302 0.06 0.26

Emission	Rates	(ngx/ug	PM)

#72 #73 #112 #114 #126

FAMEs

POCs
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Table VI-H. Cumulative Results and Statistics by Fuel Type 

 
 

  

Fuel	Type

Total	Mass	on	

Filter	(ng) St.	Dev. RSD St.	Dev. RSD St.	Dev. RSD

Alkanes 1409.27 308.41 21.88 1647.48 340.45 20.66 2070.95 966.87 46.69

PAHs 14.12 6.34 44.95 71.02 7.27 10.24 54.16 16.87 31.14

FAMEs 850.88 363.35 42.70 1223.25 93.62 7.65 5030.75 5794.56 115.18

POCs 2233.27 312.91 14.01 2982.17 102.80 3.45 3190.92 77.48 2.43

Concentrations	

(ng/m3) St.	Dev. RSD St.	Dev. RSD St.	Dev. RSD

Alkanes 1113.63 281.07 25.24 22569.17 55.62 0.25 72949.79 46665.64 63.97

PAHs 11.20 5.38 48.02 1004.98 309.71 30.82 1879.20 937.34 49.88

FAMEs 674.79 309.15 45.81 16990.43 2269.75 13.36 188981.15 229244.80 121.31

POCs 20884.95 31721.19 151.89 11855.40 1749.17 14.75 23474.84 3231.15 13.76

Emission	Rates	

(ng/ug	PM) St.	Dev. RSD St.	Dev. RSD St.	Dev. RSD

Alkanes 9885.53 15747.85 159.30 6460.11 609.78 9.44 14811.24 5375.62 36.29

PAHs 77.82 130.26 167.39 283.40 60.80 21.45 390.89 78.74 20.14

FAMEs 4815.33 8013.18 166.41 4832.39 178.72 3.70 34542.16 38373.77 111.09

POCs 1753.89 185.70 10.59 1753.89 185.70 10.59 106405.52 18453.92 17.34

Mean,	Standard	Deviation,	and	RSD	of	Primary	Functional	Groups	by	Fuel	Type

Blank B0 B20
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Appendix VII. Biodiesel Blend Fuel Composition. 
Table VII -A. Polar vs. Nonpolar GC Column FAMES Quantitation of Biodiesel Fuel Blends 

Restek Rxi-XLB Non-Polar Column 

 B20 Samples B50 Samples B100 Samples 

FAMES 

Mean 

Conc. 

(ppm) 

St. Dev 

(ppm) RSD (%) 

Mean Conc. 

(ppm) 

St. Dev 

(ppm) RSD (%) 

Mean 

Conc. 

(ppm) 

St. Dev 

(ppm) RSD (%) 

C14:0 0.000 0.000 0 0.000 0.000 0 0.000 0.000 0 

C16:0 0.568 0.146 26 1.936 0.624 32 3.735 0.713 19 

C18:0 0.243 0.129 53 0.698 0.181 26 1.361 0.197 14 

C18:1n9t 0.000 0.000 0 0.068 0.127 188 0.361 0.413 115 

C18:1n9c 0.917 0.309 34 4.876 1.524 31 13.471 3.087 23 

C18:2n6t 0.141 0.073 52 0.393 0.199 51 1.121 0.296 26 

C18:2n6c 1.583 0.239 15 5.748 1.824 32 16.455 4.625 28 

C18:3 0.000 0.000 0 0.000 0.000 0 0.000 0.000 0 

C20:0 0.043 0.136 316 0.122 0.220 181 0.095 0.197 208 

C22:0 0.000 0.000 0 0.000 0.000 0 0.000 0.000 0 

SUM 3.495 0.886 25 13.840 4.334 31 36.599 7.752 21 

Supelco SLB-IL100 Polar Column 

 B20 Samples B50 Samples B100 Samples 

FAMES 

Mean 

Conc. 

(ppm) 

St. Dev 

(ppm) 

RSD 

(%) 

Mean 

Conc. 

(ppm) 

St. Dev 

(ppm) 

RSD 

(%) 

Mean 

Conc. 

(ppm) 

St. Dev 

(ppm) 

RSD 

(%) 

C14:0 0.000 0.000 0 0.000 0.000 0 0.000 0.000 0 

C16:0 0.357 0.240 67 0.741 0.191 26 1.425 0.314 22 

C16:1 0.015 0.017 114 0.024 0.014 60 0.049 0.036 73 

C18:0 0.105 0.098 93 0.237 0.070 29 0.492 0.130 26 

C18:1n9t 0.166 0.573 346 0.188 0.624 332 0.000 0.000 0 

C18:1n9c 1.228 0.847 69 2.333 0.940 40 5.420 1.888 35 

C18:2n6t 0.000 0.000 0 0.000 0.000 0 0.000 0.000 0 

C18:2n6c 1.492 0.894 60 2.805 0.656 23 6.487 2.413 37 

C18:3 0.123 0.106 87 0.271 0.058 21 0.899 0.550 61 

C20:0 0.000 0.000 0 0.000 0.000 0 0.020 0.014 71 

C20:1 0.001 0.002 424 0.000 0.000 0 0.034 0.032 94 

C22:0 0.000 0.000 0 0.000 0.000 0 0.000 0.000 0 

SUM 3.280 1.081 33 7.625 1.985 26 15.887 4.939 31 

 




