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1. Introduction  

1.0  Overview and Introduction 
This report summarizes the experimental apparatus developed in the Transportation Air Quality 

Laboratory (TAQ Lab) at the University of Vermont to compare light-duty diesel engine 

performance and exhaust emissions when operating on petroleum diesel (henceforth referred to as 

petrodiesel) and biodiesel fuel blends.  This work was conducted between July 2008, when the 

Armfield, Ltd. Light-Duty Diesel (LDD) Engine Dynamometer Test System (Model CM-12) was 

received, and June 2013.   The engine housed in the CM-12 unit is a Volkswagen (VW) SDi 1.9 

liter industrial engine, similar to those used in on-road vehicles similar to the VW Jetta or Golf, but 

without a turbocharger or exhaust aftertreatment.  The objective of the research was to evaluate 

how the alternative fuel, biodiesel, would affect emissions and engine performance (fuel economy 

and torque) relative to the baseline petrodiesel.  In this preliminary report, the experimental 

apparatus is described in detail and emissions results are presented for a series of steady-state tests 

with petrodiesel and soybean biodiesel blends.   

1.1 Study Motivation 
The diesel engine is a well-established and widely used technology that is a vital component of 

modern day transportation networks.  Emissions produced by diesel engines, however, have been 

linked to climate change, air pollution and adverse human health effects.  The composition of diesel 

exhaust depends on several factors, including engine operating conditions and fuel composition. 

Hazardous products of diesel fuel combustion include particulate matter (measured by both particle 

mass (PM) and particle number (PN)) and gas phase substances such as carbon monoxide (CO), 

carbon dioxide (CO₂ , a greenhouse gas), oxides of nitrogen (NO + NO2 = NOx), and various 

hydrocarbons (HCs).  Of particular concern to public health are air toxics, including polycyclic 

aromatic hydrocarbons (PAHs), and particles with diameters less than 0.1µm, ultrafine particles 

(UFP), which can deeply penetrate the human respiratory system due to their small size .  

Advancements in diesel engine technology and the emergence of alternative biofuels are promising 

means of reducing several harmful combustion products formed during diesel engine operation. 

Federal legislation mandating the use of renewable fuels that can be produced domestically such 

as the 2007 Energy Independence and Security Act (EISA) led to a surge in the production and use 

of biodiesel (Figure 1-1), despite the fact that relatively little was known about how the transition 

from conventional petroleum-based fuels to renewable biofuels would affect vehicle emissions 

profiles and, therefore, ambient air quality and human health.   
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Figure 1-1. Biodiesel Production, Exports and Consumption in the United States, 2001 to 

2011. (Source: EIA Annual Energy Review, 2011 Table 10.4 from the U.S. Energy 

Information Administration (1)) 

 

 

 

Vehicle emissions regulations have become more stringent over time in order to address air quality 

concerns.  Currently, emissions of light-duty vehicles (LDV; i.e., passenger cars and trucks) in the 

U.S. are regulated by the Tier 2 emissions regulation.  This regulation limits the emissions (on a 

g/mile basis) of non-methane hydrocarbons (NMHC), CO, NOx, PM, and formaldehyde (HCHO) 

measured while the vehicle follows the Federal Test Procedure (FTP) 75 drive cycle on a chassis 

dynamometer.  The Tier 2 vehicle emission regulation went into full effect in 2009 (2).  In March 

of 2013, the U.S. Environmental Protection Agency (EPA) signed a proposed rule that introduced 

Tier 3 emissions standards for LDVs.  Tier 3 reduces the acceptable emissions levels from the Tier 

2 and is slated to be phased in between 2017 and 2025 (3). 
 

Because vegetable oils and animal fats are lipids that can be used as feedstocks for biodiesel fuel 

production through the transesterification process, biodiesel is a potential renewable energy source 

with a net benefit life-cycle greenhouse gas emissions profile (4).   During the transesterification 

process, lipids react with alcohol in the presence of a catalyst to form mono-alkyl esters and 

glycerin.  Current mass production of biodiesel commonly reacts methanol with the feedstock oil 

(typically soybean oil in the U.S. and rapeseed oil in Europe) resulting in a mixture of fatty acid 

methyl esters (FAMEs).  The regulations controlling the quality of biodiesel (EN14214 in Europe 

and ASTM D6751-12 in the U.S.), therefore, focus on the use of methanol as the alcohol reactant 

although ethanol could also be used which would result in a mixture of fatty acid ethyl esters 

(FAEE) (4). Table 1-1 compares the properties of typical number 2 petrodiesel and 100% soybean 

biodiesel (B100) fuel.  Biodiesel has a lower energy density, higher viscosity, higher cloud and 

pour point temperatures, higher cetane number, and higher oxygen content than petrodiesel.  These 

properties affect fuel consumption, start of combustion, fuel handling under cold weather 

conditions as well as tailpipe emissions.   The effect of each of these factors on tailpipe emissions 

is described in more detail below.  Increasingly, biodiesel has been produced and used in on-road 

vehicles as blends with petrodiesel; typical in-use blends contain 5 to 20 percent biodiesel (B5 to 

B20), computed on a volumetric basis.  The low blend percentage reflects the disadvantages of 

biodiesel use in cold weather relative to petrodiesel. 
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Table 1-1.  Properties of No. 2 Diesel and Biodiesel Fuels (4) 

 
 

 

1.2 Effect of Biodiesel Properties on Engine Operation  

1.2.1 Fuel Consumption  

Biodiesel has a lower energy density than petrodiesel that suggests a larger volume of biodiesel is 

required to generate the same load as petrodiesel.  The increase in fuel delivery needed is described 

by three separate mechanisms (5, 6): (1) operator compensation, (2) fuel viscosity, and (3) fuel 

density.   

Operator compensation refers to the unconscious act of a driver increasing throttle when 

the vehicle is fueled with biodiesel to evoke the same power response from the engine compared 

to when it is fueled with petrodiesel (5).  Although increasing the quantity of fuel injected in this 

way may seem innocuous, it may have associated engine control implications.  Depending on 

engine control strategy, the engine control unit (ECU) may modify other engine parameters such 

as start of injection (SOI) and exhaust gas recirculation (EGR) duty cycles in response to a different 

throttle position sensor (TPS) signal. In such a case, these parameters may also have an effect on 

tailpipe emissions. 

It has also been shown that pump-line-nozzle fuel injection systems actually inject more 

biodiesel than petrodiesel given the same throttle position (5, 6).  This phenomenon occurs due to 

the higher viscosity of biodiesel relative to petrodiesel; the result is less leakage between internal 

components of the fuel injector pump, allowing a higher percentage of allocated fuel to reach the 

combustion chamber.   

Biodiesel also has a higher density than petrodiesel and therefore mechanical fuel injectors, 

which operate on a volumetric basis, will inject a higher mass of biodiesel fuel even when injecting 

the same fuel volume as petrodiesel (6).  Unlike operator compensation, the ECU, in many cases, 
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would not be ‘aware’ of the increased fuel injection, resulting in a reduced air-to-fuel ratio (fuel 

enrichment) assuming no other adjustments are made by the ECU. Fuel enrichment is of concern 

because it is typically associated with elevated tailpipe emission events. 

1.2.2 Start of Combustion 

In its simplest form, engine “tuning” refers to the adjustment of two factors: (a) the time combustion 

of the fuel starts in the cylinder relative to engine speed (revolutions per minute; RPM) and (b) the 

mass of fuel injected into the cylinder relative to the mass of air in the cylinder.  Recent advances 

in diesel engine control have resulted in superior process control with respect to (a).  A generational 

shift in fuel injection technology occurred around 2008: changing from pump-line-nozzle to 

common rail fuel injection systems.  Common rail systems utilize electronically-controlled 

injectors rather than mechanically-controlled injectors, enable increased control of start of injection 

(SOI), and provide the ability to divide what used to be one large injection event into smaller, 

precisely-controlled multiple injection events. Manufacturers have also started using in-cylinder 

pressure sensors to accurately measure start of combustion (SOC) (7).  Given how recent this 

generational technology shift occurred, however, the majority of the diesel vehicles on the road still 

utilize the older pump-line-nozzle fuel injection technology.  On these vehicles, SOC is not 

measured, but SOI is, providing feedback to the ECU.  Both SOI and SOC are measured in terms 

of crank angle (CA) relative to the top dead center (TDC) piston position (Figure 1-2). Biodiesel 

fuel can affect both of these events due to differences in fuel properties compared to the petrodiesel 

fuel for which the diesel engines were designed (8). 

 
Figure 1-2. Depiction of crank angle (CA) for different piston positions in engine cylinder.  

Other acronyms: TDC = Top Dead Center; ATDC = After TDC; BDC = Bottom Dead Center; BTDC = Before TDC. 

 

Vehicles equipped with engines that have pump-line-nozzle fuel injection systems are 

susceptible to an advance in SOI when using biodiesel due to its higher viscosity and higher bulk 

modulus relative to petrodiesel (5, 6, 8).  The differences in these fluid properties result is quicker 

pressurization of the fuel line between the fuel pump and the injector and faster transmission of the 
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pressure pulse (8).  These, in turn, advance the opening the mechanical fuel injector in relation to 

crank angle (CA) when using biodiesel.  Thus, SOI occurs early when operating on biodiesel fuel. 

Biodiesel also has a higher cetane number than petrodiesel (see Table 1-1).  Cetane number 

is a measure of a diesel fuel’s combustion quality and affects ignition delay: the higher the cetane 

number, the shorter the ignition delay of the fuel.  Thus, for biodiesel the time delay between SOI 

and SOC is shorter than for petrodiesel.  This means that, even if the ECU is capable of adjusting 

the injection timing to maintain the same SOI with different fuels, biodiesel combustion can still 

be advanced relative to petrodiesel combustion, resulting in fuel enrichment. This ignition advance 

is apparent on both pump-line-nozzle and common rail fuel injection systems without in-cylinder 

pressure sensors (5).  This phenomenon, however, can be accounted for when the ECU utilizes in-

cylinder pressure sensor feedback because SOC can then be directly measured.  

1.2.3 Low Temperature Properties 

One hurdle facing the widespread use of biodiesel is its low temperature behavior relative to 

petrodiesel.  In cold weather, both petrodiesel and biodiesel can coagulate and freeze into a solid 

making it impossible for the fuel to be pumped and injected. The ambient temperatures at which 

the fuel “gels” for biodiesel is typically higher than for petrodiesel.  The two metrics used to 

characterize a fuel’s low temperature performance are cloud point and pour point.  Cloud point is 

the temperature at which solids start to crystallize in the fuel as it is being cooled while pour point 

is the temperature at which the fuel has solidified to a point that it will no longer flow.  Cloud point 

is typically considered the low temperature operability limit (4) of the fuel.  Table 1-2 summarizes 

typical cloud point and pour point values for petrodiesel and pure biodiesel (B100) produced from 

various lipid feedstocks.   

 

Table 1-2. Low temperature properties for No. 2 diesel fuel and B100 from various 

feedstocks (4) 

 
 

 

According to the data presented in Table 1-2, rapeseed methyl ester has the best low temperature 

properties relative to petrodiesel, however, its pour point is still 11°C higher than the highest 

petrodiesel pour point (i.e., the biodiesel will solidify in warmer weather conditions than 

petrodiesel).  Pure biodiesel, however, is not typically used in on-road diesel engines.  When 

biodiesel is blended with petrodiesel, the resulting low temperature properties lie between those of 

the neat fuels shown in Table 1-2 as shown in Figure 1-3. 
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Figure 1-3. Cloud point, pour point, and cold filter plug point (CFPP) measurements for 

different blends of soy biodiesel in low sulfur No. 2 diesel (4) 

 

1.3 Effect of Biodiesel use on Tailpipe Emissions 
There have now been numerous studies on the effect biodiesel fuel has on the emissions from diesel 

engines compared to petrodiesel.  Research is typically performed with direct injection, 

turbocharged, four cylinder, four stroke diesel engines or vehicles (5).  Further, the majority of 

previous studies have examined emissions from heavy-duty diesel (HDD) engines, with fewer 

studies on light-duty diesel (LDD) emissions.  The majority of these studies have shown that fueling 

with biodiesel typically reduces emissions of PM, HC, and CO while slightly increasing NOx 

emissions (4–6).  Changes in these emission rates have been linked to different properties of 

biodiesel.  One significant difference is that biodiesel, unlike petrodiesel, is an oxygenated fuel 

containing approximately 11% oxygen by weight [see Table 1-1].  Higher fuel oxygen content is 

thought to improve combustion quality, therefore, releasing fewer unburned and partially burned 

constituents (4, 5, 9).  Additionally, advances of SOI and SOC relative to CA as discussed in 

Section 1.2, alter in-cylinder flame propagation and have a effect on combustion emissions.   

The 2002 U.S. EPA report, A Comprehensive Analysis of Biodiesel Impacts on Exhaust 

Emissions (10),  correlated the change in CO, HC, NOx, and PM mass emissions relative to 

biodiesel blend percentage using the results of numerous prior studies that utilized HDD engines 

with no EGR or aftertreatment systems.  These relationships are depicted in Figure 1-4 as solid red 

lines that overlay the individual data points used to generate the best-fit lines.  It should be noted 

that the data are plotted in Figure 1-4 as a percent change in pollutant emission rate for tests 

conducted with petroleum diesel, but the composition of this diesel fuel varied between studies as 

did the engine type and model year. 

Figure 1-4 not only depicts the general trends of the EPA findings but also the variability 

of the data found in the literature.  This variability stems from the use of different engines with 

different control technologies, different loading scenarios used for testing, and different test fuels.   
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Figure 1-4. EPA’s criteria pollutant emissions data for biodiesel blends. A) PM; B) NOx; C) 

CO; D) HC (10)   

 

Beyond criteria pollutants PM, NOx, CO, and HC emissions, another area of concern is 

the emission of gas-phase mobile source air toxics (MSATs) as well as particle number 

emissions.   MSATs include carbonyls and polycyclic aromatic hydrocarbons (PAHs). Many  

MSATs are known carcinogens for which a considerable amount of their emission inventory is 

attributed to mobile sources and are constituents of the broader hydrocarbons (HC) emissions 

category (10).  

1.3.1 Particulate Emissions measured by Mass (PM) 

In the U.S., exhaust particle emissions are currently regulated on the basis of gravimetric mass 
of particulate matter (PM).  LDV PM emissions are measured while the vehicle is driven 
through the FTP-75 drive cycle on a chassis dynamometer.  The tailpipe emissions are fed 
into a dilution system and samples of the diluted exhaust are pulled through pre-conditioned, 
pre-weighed filters during the entirety of the dynamometer test.  Once the test is complete, 
the filters are post-conditioned and post-weighed.  The difference between the post-weight 
and the pre-weight is the amount, by mass, of particulate collected.  The emissions rate is then 
calculated by multiplying the measured particle mass by the dilution ratio (DR) and dividing 
it by the number of miles ‘driven’ during the dynamometer test cycle, resulting in an emissions 
factor in grams/mile.  This value is then used to determine whether or not the LDV meets the 
emission standard criteria set forth by the current emission regulation. 

The fuel and test engines used in PM emissions research for biodiesel fuel vary from 
study to study resulting in variation of the reported findings. In some cases, no significant 
change in PM was found, as in Durbin et al. (11), for which B20 and B100 were used. Yet, 
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Graboski et al. (12) reported a 66% reduction in PM while fueling with B100 derived from 
soybean oil.  Although the literature reports considerable variability, the majority of 
previous studies reported reductions in PM emissions when fueling with biodiesel rather 
than petrodiesel (4, 6, 9–13), confirming the pattern shown in Figure 1-4.  

Multiple reasons for decreased PM emissions from engines fueled with biodiesel have 
been put forth.  Neat biodiesel has little to no sulfur, resulting in a reduction in sulfate 
formation when fueling with biodiesel blends (4–6, 8, 9).  Biodiesel is also an oxygenated fuel 
(approximately 11% by weight) which promotes improved combustion in the fuel-rich zones 
of the combustion chamber (6, 9).  Similarly, combustion is also improved during transient 
fuel-rich operating events associated with turbocharger lag due to the increased oxygen 
content of the fuel (6).  It has also been suggested that the advance in SOC (due to both 
advanced SOI and higher cetane number) while using biodiesel provides more time for 
diffusion combustion which increases the oxidation of soot in the high temperature 
environment of the cylinder, effectively reducing the amount of soot emitted (6).  Lastly, when 
operator compensation occurs to make up for the lower heating value of biodiesel (operator 
depresses throttle pedal further), the engine’s ECU may also decrease the exhaust gas 
recirculation (EGR) duty cycle which increases cylinder temperature, promoting soot 
oxidation, and therefore reduces PM emissions (6).  
 

1.3.2 Particulate Emissions Measured by Number (PN) 

Figure 1-5 depicts typical diesel engine exhaust mass- and number-weighted particle size 

distributions along with lung alveolar deposition fraction (14).  The alveolar region is a sensitive 

area of the human lung that may have few natural defenses against large numbers of potentially 

harmful particles (15–19).  As shown in Figure 1-5, ultrafine particles (UFP; diameter < 100 nm) 

account for the majority of the alveolar deposition in the human lung, but are not as well represented 

by the mass-weighted (PM) particle distribution as they are by the number weighting (PN) (14, 20–
23).  Because of they are readily deposited in the alveolar region of the lung, UFPs have a higher 

potential to cause adverse human health effects compared to the larger particles typically found in 

diesel exhaust (14, 15, 21, 24, 25).  Recognizing that UFPs are better represented by the PN metric, 

the European Union’s EURO 5b vehicle emissions standard, which came into effect in 2011, 

contained regulations for both PM and PN.  The EURO 6 regulation, due to take effect in 2014, 

also addresses PN emissions (5, 26). 
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Figure 1-5.  Typical engine exhaust mass (dotted line) and number (solid black line) 

weighted size distributions (left axis) with alveolar deposition fraction (green line, right 

axis)(14) 
 

 

Many researchers have studied both the change in total PN emissions and in the PN size 

distributions during diesel engine operation on biodiesel fuel.  The majority of these tests were 

performed with HHD engines running steady-state drive cycles.  In general, the use of biodiesel 

relative to petrodiesel increases total particle number (TPN) and shifts the particle number 

distribution to smaller size bins (27–32), typically increasing the number of nuclei mode particles 

while decreasing the number of accumulation mode particles (28, 29, 33–35).  These research 

results, however, are quite variable because of the many factors can affect particle formation and 

growth.  These factors include: particle sizing and counting equipment (27, 36); the age and 

characteristics of the engine (5, 6, 8, 37); test cycle (high or low load) (28, 31, 38), and fuel 

composition (30, 34). Biodiesel’s low sulfur content relative to pre-2006 petrodiesel (after July 1, 

2006, petrodiesel sulfur content was regulated to be < 15ppm in the U.S.) provided reductions in 

nuclei mode particles, however, as regulations regarding sulfur content in petrodiesel have become 

more stringent, this benefit has faded.   This shift over time is highlighted by the particle number 

distribution data presented in Aakko et al. (35) for four fuels: (1) EN590 petrodiesel (similar to low 

sulfur diesel (LSD); sulfur <500ppm); (2) RFD - Reformulated petrodiesel (similar to ultra-low 

sulfur diesel (ULSD); sulfur <15ppm); (3) RME30 – 30% v/v Rapeseed methyl ester biodiesel, 

70% EN590 petrodiesel; and (4) RME100 – 100% Rapeseed methyl ester biodiesel  as shown in 

Figure 1-6. 

These data shows that, relative to EN590 particulate emissions, neat RME and 

RME/EN590 blends result in an overall decrease in PN, presumably due to the reduction in sulfur 

content when introducing biodiesel into the fuel.  The data for the RFD, however, suggests that 

reformulated petrodiesel fuel with sulfur content less than 15ppm (i.e., ULSD) may reduce nuclei 

mode particles to a higher degree than RME, resulting in less of a biodiesel emissions benefit.     
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Figure 1-6. Particle number distributions from Aakko et al. (35) highlighting the effect of 

reformulating petrodiesel. 

 

Explanations for why biodiesel generally increases total particle number (TPN) emissions relative 

to ULSD have been suggested: 

 Biodiesel emissions increase the particle phase soluble organic fraction (SOF) and the 

effect of increased injection pressure and advanced injection timing as the percentage of 

biodiesel increases in the fuel have been proposed as possible causes of increased TPN (6, 
39).  

 The general reduction in accumulation mode particles reduces the availability of surface 

area for the nuclei mode particle precursor gases to adsorb to while traveling through the 

exhaust system, resulting in higher nuclei mode particles (28, 40).   
 

Thus, while some studies have been found that diverge from the general trend (38, 40–42), most 

studies report an increase in the number of nuclei mode particles when fueling with biodiesel, 

resulting in higher TPN for biodiesel than for petrodiesel.   

 

1.3.3 Regulated Gas-Phase Emissions from Diesel and Biodiesel 

Fueled Engines 

Oxides of Nitrogen (NOx) 

NOx emissions (NO and NO2) are associated with ground-level ozone (6, 43) and secondary organic 

aerosol (SOA) formation (44).  Ground-level ozone presents significant human health risks, can be 

harmful to vegetation, and is one of the main components in urban smog (45).  Diesel engines emit 

appreciable NOx and research has generally shown that NOx emissions from diesel engines running 

on biodiesel range from not significantly different from those for petrodiesel to slightly higher – up 
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to roughly a 23% increase for B100 in heavy-duty diesel engines (see Figure 1-4) (4–6, 28, 30, 31, 
35, 41, 46).  Although the general trend shows an increase in NOx emissions with biodiesel blend 

percentage, some researchers have reported reductions (47–49).  A variety of mechanisms have 

been suggested to explain this phenomenon.   Advanced SOI results in fuel entering the combustion 

chamber earlier and residing in elevated temperature and pressure conditions which are more 

favorable for NOx formation (6, 46).  Also, in-cylinder temperatures increase due to the increased 

amount of biodiesel injected to produce an equivalent power output to that of petrodiesel (6).  
Furthermore, if the increase in biodiesel injected is due to operator compensation as described 

previously, differences in SOI and EGR control by the ECU could promote NOx production (6). 
Recent data, however, has been presented suggesting that fuel injection and EGR control 

strategies that are designed specifically for the in-use fuel’s properties can reduce biodiesel NOx 

emissions to levels at or below those of petrodiesel (46, 50).   
 

Carbon Monoxide (CO) 

CO is emitted from all combustion processes and mobile sources contribute substantially to ambient 

CO in urban areas (51). Elevated CO levels can be harmful to human health because, when inhaled, 

oxygen that would normally go into the blood stream can be replaced by CO, blocking oxygen’s 

pathway into the body and causing tissue damage and, possibly, death (52).  When running on 

biodiesel, diesel engines generally produce less CO [Error! Reference source not found.C](4–6, 30, 
33, 35, 47, 53), although some studies have reported increases in CO (28, 42). The range found in 

the literature is +95% (28) to -50% (10) CO emissions relative to petrodiesel.  The reduction of 

CO emissions has primarily been explained by the increased oxygen content of biodiesel fuel 

leading to more complete combustion (4–6, 54).  
 

Hydrocarbons (HC) 

Some HCs typically emitted by diesel engines are toxic or carcinogenic (4).  When biodiesel is 

used to fuel diesel engines HC emissions generally decrease as shown in Error! Reference source 

not found.D (4–6, 30, 33, 35, 53, 54) although, again, some studies have shown the opposite trend 

with biodiesel blend percentage (28, 54).  The range found in the literature is +58% (55) to -70% 

(10) HC emissions relative to petrodiesel.  Again, the increased oxygen content of biodiesel has 

been credited with improved HC emissions (4–6, 54). 
 

1.3.4 Mobile Source Air Toxic (MSAT) Emissions 

MSATs are air toxic compounds, defined by the U.S. EPA as known or suspected carcinogens (20), 

found in mobile source (vehicles) exhaust (10).  Seven of the individual MSAT compounds focused 

on in the 2006 EPA report ‘Control of Hazardous Air Pollutants From Mobile Sources’ are listed 

in Table 1-3 with their percent contributions from mobile sources and on-road mobile sources (56).  
The effect of biodiesel on MSAT emissions is under studied, but the majority of studies 

where MSATs have been measured show reductions in MSAT emissions with biodiesel compared 

to petrodiesel.  The EPA (10) found a total MSAT reduction of approximately 15% when using 

B100. 

Polycyclic aromatic hydrocarbons (PAHs), a subset of MSATs which are primarily from 

the soluble organic fraction (SOF) of diesel exhaust, are more widely studied because many of them 

are known or suspected carcinogens (20).  Similar to the data found in the literature for regulated 

emissions, the reported effects of biodiesel on PAH emissions are variable, however, PAH 

emissions are generally reduced with biodiesel fuel (13, 41, 57, 58).  Karavalakis et al. (57) 
reported both increases and decreases in PAH emissions which appeared to be dependent on drive 

cycle while Hensen and Jensen (41) reported total PAH reductions of more than 90% when using 
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rapeseed B100.   An interesting note reported by Karavalakis et al. (57) is that the use of oxidized 

biodiesel increases PAH emissions relative to fresh biodiesel.   

 

 

Table 1-3. Mobile source contribution to 1999 National-Scale Air Toxics Assessment (NATA)  

 
 

 

1.3.5 Summary 

In summary, many studies report a decrease in emissions of harmful combustion products from use 

of biodiesel compared to diesel fuel. These include reductions in regulated pollutants (HCs and 

PM) as well as hazardous unregulated emissions (PAHs) in biodiesel exhaust (41). In general, the 

abundance of these compounds in exhaust decreases as biodiesel is used in greater blend 

proportions (Figure 1-2). However, these results are not widely conclusive as some studies have 

reported results which do not follow the general trend (13). Furthermore, other compounds of 

concern are reported to increase with higher biodiesel blend ratios, including NOx and polar 

oxygenated compounds (POCs), which are linked to cellular oxidative stress (42). 
 

The majority of literature on biodiesel emissions pertains to experiments conducted with older 

model, heavy-duty diesel (HDD) engines. Marked differences in particle and gas emissions have 

been demonstrated between exhaust from pre-2007 diesel engines and New Technology Diesel 

Exhaust (NTDE) (37).  Considering increased use of both biodiesel and light-duty diesel (LDD) 

engines in the United States and globally, it is important to understand how these factors interact 

to impact air quality, the environment, and public health under various conditions.  

 

Bio-fuels have increased in popularity in the last ten years.  For diesel vehicles, biodiesel is the bio-

fuel of choice.  As far as combustion is concerned, biodiesel is a ‘drop in’ fuel for compression 

ignition (diesel) engines (4), meaning that the compression ignition engine can run on both 

petrodiesel and biodiesel without any modification.  This, however, does not mean that an engine 

designed to run efficiently with petrodiesel will run just as efficiently with biodiesel.  The goal of 

this research is to better understand the factors that lead to UFP emissions from LDD vehicles, 

while taking into account the fuel used, in order to develop advanced emissions control 

technologies and improve ambient air quality. 
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2. Research Methodology 

2.1 Experimental Setup Overview 
The experimental setup consists of five subsystems and processes, each described in detail below.  

These systems are:  

(i) CM-12 light-duty diesel engine dynamometer & exhaust dilution (Section 2.2);  

(ii) Exhaust sampling and dilution (Section 2.2);  

(iii) (Bio)diesel fuel supply and monitoring (Section 2.3);  

(iv) Gas and particle emissions measurement (Section 2.4); and  

(v)  Data Acquisition and Timing (Section 2.2).   

In addition, the protocols used in the UVM Transportation Air Quality Laboratory (TAQ Lab) to 

ensure sample integrity and reproducibility in measurements are found in Sections 2.5 and 2.6. 

Briefly, a Volkswagen light-duty diesel engine test stand with dynamometer is the central 

component for emissions testing.  Engine exhaust is sampled for gases directly with two instrument 

(FTIR and 5-Gas), but must be diluted to obtain particle number measurements by a suite of time-

resolved particle instruments (EEPS, EAD, UCPC).  Custom-built systems monitor dilution ratio, 

temperatures, pressures and fuel consumption during the tests.  Data acquisition at rates of 1Hz or 

faster are achieved with dedicated computers and a custom PC clock synchronization system.  

These systems are interconnected as shown in Figure 2-1.  Detailed information on all instruments 

and sensors can be found in Appendix A. 

 

 
Figure 2-1. Block diagram of emissions test systems configuration. 

 

 

2.2  CM-12 Light-duty Diesel Engine Dynamometer  
An Armfield, Ltd. model CM-12 “Automotive Diesel Engine Test Cell” was used to generate light-

duty diesel (LDD) engine exhaust in the University of Vermont’s Transportation Air Quality 

Laboratory (TAQLab).  A 1.9 Liter Volkswagen SDi engine (similar to the engine found in the 

Volkswagen Bora, a European market sedan), a four cylinder, naturally aspirated engine with 
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pump-line-nozzle type fuel injection (Bosch VE injection pump) is coupled to a Zelu K-40 (air 

cooled; 145Nm max braking torque) eddy current dynamometer.  Engine and dynamometer 

specifications can be found in Table 2-1. The CM-12 engine emissions certification falls under the 

European Union directive EC 97/68, Stage IIIA.  These emission limits are 5.0 g/kWh for carbon 

monoxide (CO), 4.7 g/kWh for combined hydrocarbon and oxides of nitrogen emissions (HC + 

NOx) and 0.4 g/kWh for particulate matter (PM). 

2.2.1 Armfield Software Control of CM-12 Engine and Dynamometer 

Both engine and dynamometer are controlled with software supplied by Armfield that allows both 

‘manual’ and ‘automatic’ control.  In ‘manual’ mode, the operator can change % brake (power to 

the dynamometer which loads the engine) and % throttle (equivalent to pressing the accelerator 

pedal in a car).  When in ‘automatic’ mode, a set point RPM can be specified and a proportional–

integral–derivative (PID) controller adjusts the % brake setting to achieve the RPM set point while 

the operator continues to control the throttle.  Experiments were conducted to evaluate the beta 

version of Armfield ‘scheduler’ control software that allows the user to pre-define a drive cycle 

that the software will then follow as the engine is running.  Use of the scheduler ensures that the 

engine is cycled through the same ‘driving conditions’ for each replicate test.  Armfield 

implemented the scheduler software in March of 2011 and it was first utilized in the TAQLab in 

June 2011. All data reported here were collected by operating with ‘automatic’ control (steady-

state test cycles). 

Table 2-1.  Armfield CM-12 Component Specifications 

 
 

 

2.2.2 Exhaust Sampling and Dilution 

The exhaust sampling and dilution system consists of: (A) a dilution air source and conditioning 

system, (B) exhaust and dilution air transfer lines, (C) ejector diluter, (D) flow measuring system, 

and (E) sample ports manifold. A custom-built mini-dilution system provided clean, dry dilution 

air for mixing with a subsample of raw engine exhaust from the CM-12 tailpipe. A Dekati Diluter 
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(Dekati, LTD, Finland) served to both sample the tailpipe exhaust and mix the raw exhaust with 

dilution air without the need for an additional sampling pump. 

Ejector Diluter Mechanics.  

Raw exhaust temperature and particle concentrations are too high for current instruments to 

quantify particulate emissions in diesel engine exhaust without dilution. For this research, a single-

stage mini-diluter setup based on a Dekati ejector diluter was employed to mix clean, dry dilution 

air with a raw exhaust subsample from the tailpipe, at a fixed temperature.  Ejector diluters utilize 

the Bernoulli principal to draw sample flow into the diluter without the use of a mechanical pump.  

Clean, dry air is fed into the side port of the diluter under pressure (32 psi) and passes through an 

annular opening which surrounds the ejector nozzle through which the raw exhaust sample enters 

(Figure 2-2).  As the dilution air passes the annular opening, ejector geometry widens substantially 

allowing the air to expand which creates a low pressure zone at the tip of the ejector nozzle.  The 

pressure difference between the tip of the ejector nozzle and the sample inlet induces the raw 

exhaust sample to flow from the exhaust pipe and into the mixing chamber of the Dekati ejector 

diluter (Figure 2-2, inset).  Subsequently, the well-mixed dilute exhaust exits the diluter and is 

sampled by a variety of particle instruments (EEPS, PM Filters, EAD, UCPC; See Section 2.4 

below).  The total dilute exhaust volumetric flow is determined by the sum of dilution air flow and 

exhaust sample flow entering the diluter.  The dilution air flow of this particular system is between 

80 and 85 L/min.  With a dilution air flow of 80 L/min, if a dilution ratio (DR) of 50 is required, 

an exhaust sample inlet flow of 1.63 L/min is necessary to give a final total dilute exhaust flow of 

81.63 L/min.   The total flow of all the instruments sampling this dilute exhaust should not exceed 

90-95% of this total flow (or 73.5- 77.5 L/min) to ensure sufficient excess flow exists in the sample 

setup.  

 
Figure 2-2. Schematic of Dekati ejector diluter flows to dilute raw exhaust for particle 

sampling. 
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Dilution Air Supply. 

A low-cost compressed air system was developed to provide clean, dry air to the Dekati diluter 

(Figure 2-3).  To compress room air and supply sufficient total air flow to the diluter, two oil-less 

air compressors (1 and 2 in Figure 2-3), one with a pump flow rating of 6.4 SCFM (181.2 LPM) 

at 90 psi and a 22 gallon tank and the other with a pump flow rating of 6.2 SCFM (175.6 LPM) at 

90 psi and a 33 gallon tank, both of which have a maximum duty cycle of 50%, were connected in 

parallel.  In order for both compressors to consistently turn on at a specified ‘kick on’ pressure, 

they were both wired and plumbed to a Condor MDR3 (31GC3FXX) pressure switch (3 in Figure 

2-3).  This switch closes, turning the compressor on, when the pressure in the system drops below 

100 psi and opens, turning the compressors off, when the pressure in the system reaches 125 psi.  

This pressure range is staggered from the 120/150 psi kick on/ kick off pressures of the pressure 

switches on the individual compressors resulting in full control by the Condor MDR3 pressure 

switch.  The compressors are both run on 120V and have a max amperage rating of 15A.  In order 

to run two compressors from a common pressure switch, the power for both compressors came 

from one 30-amp, 120V circuit breaker.  Because the compressors both drew more than 15A for a 

split second at start up, if started simultaneously, they would trip the breaker.  To get around this, 

a normally open Schneider Electric contactor (199AX-9) in series with an Artisan delay-on-make 

relay (438USA) was installed on the power feed between the pressure switch and one of the 

compressors.  These components provide a delay in power delivery to the second compressor 

allowing the current spike that occurs during start of the first compressor to occur in advance of the 

current draw from the second compressor start.  

 
Figure 2-3.  Engine Exhaust Dilution System Configuration: 1. Compressor One; 2. Compressor Two; 3. Pressure 

Switch; 4. Coarse Dilution Air Pressure Regulator; 5. Condensation Drain Valve; 6. Condenser/ Expansion Tank in Ice Bath; 7. Precision Air Pressure 

Regulator; 8. Desiccant Tube (Silica Gel and Activated Carbon); 9. HEPA Filter; 10. OMEGA Mass Air Flow Meter;11. Ice Bath; 12. Pressure Sensor; 13. 

Orifice A/ Critical Orifice; 14. Dilution Air Orifice Flow Meter Utilizing Orifice C; 15. Dekati Diluter; 16. Dilution Air Thermocouple; 17. Raw Exhaust 

Sample Orifice Flow Meter Utilizing Orifice D; 18. Raw Exhaust Sample Thermocouple; 19. Orifice B/ Pinhole Orifice; 20. Heat Cord (represented by red 

dots); 21. Perforated Sampling Probe; 22. Exhaust Temperature Thermocouple; 23. Exhaust Pipe Pitot Tube Flow Meter  
 

Beyond the electrical demands of the dilution air system, the air quality is maintained to ensure that 

the dilution air is not introducing contaminants into the diluted exhaust sample prior to 

measurement.  In addition to purifying the air with silica gel (to remove moisture), activated carbon 

(hydrocarbons) and HEPA filtration (particle removal), the dilution air pressure and temperature at 

the side port of the Dekati diluter are precisely maintained to ensure a consistent mass flow rate of 

air into the diluter.  Once the air passes through the pressure switch (3), the air pressure is regulated 

to 50 psi with a ‘coarse’ air pressure regulator (4).  From here the air travels through 3/8” OD metal 
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tubing coiled around an expansion tank.  Both the metal coil and the expansion tank are submerged 

in an ice bath (6), substantially dropping the air temperature resulting in condensation of the 

majority of the moisture in the air into the expansion tank which is equipped with a drain valve (5).  

After the expansion tank, the air passes through an Ingersoll Rand precision air pressure regulator 

(PR4031-100) (7) which regulated the pressure down to 30psi with an accuracy of 0.1%.  Utilizing 

the ‘coarse’ air pressure regulator shields the precision air pressure regulator from the large pressure 

changes in the compressor tanks, which result in finer overall pressure control.  After the air passes 

through the precision pressure regulator, it flows through a 4’ long x 2” diameter tube containing 

silica gel desiccant beads and a small section of activated charcoal to remove any remaining 

moisture and organic compounds (8).  After the desiccant tube, the air flows through a Whatman 

HEPA-CAP 150 (6702-9500) HEPA filter (9) to remove any particles from the air stream.  The air 

then flows through an OMEGA FMA 1700/1800 mass flow meter (10) which monitors the flow 

through the dilution air system.  The desired temperature of the dilution air at the diluter was 30°C, 

however, room temperature often exceeded 30°C when the engine was running.  Even though the 

dilution air was cooled as it passed through the condenser/ expansion tank (6), there was sufficient 

residence time in the dilution system after this point for the dilution air to warm back up to room 

temperature.  To ensure that the dilution air did not go above 30°C, the flow then passed through 

another coil of 3/8” OD metal tubing submerged in an ice bath (11).  After this ice bath, the flow 

entered the side arm of the Dekati diluter.  Because the mass flow rate of the dilution air entering 

the diluter was critical to the overall Dilution Ratio, multiple parameters were measured/ controlled 

in this location.  First, an OMEGA pressure transducer (PX319-100GI) (12) logged and displayed 

dilution air pressure.  This pressure display was used to set dilution air pressure with the precision 

air pressure regulator.  Then, the volumetric flow rate was metered with a critical orifice (13).  

Another orifice, in conjunction with a magnehelic gage, (14) was used as an orifice flow meter to 

measure volumetric flow.  Finally, a thermocouple (16) logged dilution air temperature and served 

as feedback to the temperature controller that maintain a set point dilution air temperature of 30°C 

by modulating the power going to a BriskHeat heat cord (20) wrapped around the entirety of the 

diluter side arm which was also insulated with fiberglass insulation tape.   

Raw Exhaust Sample Probe.  

Because an exhaust sample collected close to the wall of an exhaust pipe has the potential to be 

different than that collected at the center, a perforated sample probe (21) was fabricated and 

installed that spans the diameter of the exhaust pipe.  This ensured that the sample was 

representative of the exhaust leaving the tailpipe.  The probe was connected to a 3/8” OD, 17-inch 

long stainless steel transfer line that transported the exhaust sample to the inlet port of the Dekati 

diluter.  A pinhole orifice (19) installed in the transfer line 7.5 inches from the exhaust sample 

probe controlled the amount of raw exhaust sample entering the Dekati diluter and downstream 

orifice, in conjunction with a magnehelic gage (17), located 6 inches from the pinhole orifice was 

used as an orifice flow meter to measure raw exhaust sample flow.  A thermocouple (18) measured 

temperature within the transfer line and provided temperature feedback to a heat cord controller 

that maintained a raw exhaust sample temperature set point of 110°C by modulating the power 

going to the Briskheat heat cord (20) wrapped around the entirety of the transfer line. The transfer 

line was also insulated with fiberglass insulation tape. 

Dilution System Tuning.  

The Dekati diluter was originally designed to provide a dilution ratio (DR) of ~8.  This research, 

however, demanded a minimum DR of 50.  From the factory, the diluter came with a 1.3mm 

(0.0512”) diameter critical orifice at the dilution air inlet and was calibrated while maintaining a 

dilution air pressure of 2 bar (29.0psi) on this orifice.  In order to increase the DR, the original 

critical orifice was removed and replaced with a new critical orifice (Orifice A) drilled with a #50 
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(1.778mm / 0.0700” dia.) drill bit (Figure 2-4).  A ‘pinhole’ orifice (Orifice B) which was drilled 

with a #76 (0.508mm / 0.020” dia.) drill bit, was then installed in the raw exhaust sample transfer 

line to reduce the flow of exhaust sample and increase the DR.  The dilution air pressure was set at 

2.068Bar (30.0PSI).  The combination of these modifications resulted in a new DR of ~80, 

measured as the ratio of total diluted exhaust outflow (Qtotal,out, L/min) to raw exhaust sample flow 

entering the Dekati diluter (Qin, Equation 2-1).  

 

 
Figure 2-4.  Locations of orifices (A, B) and orifice meters (C, D) on dilution system. 

 

   

DR =
Qtotal,out

Qin
=
QDilutionAir +QSample

QSample
 (2-1) 

Rather than assuming a constant DR, both ‘Exhaust Sample Inflow’ and ‘Dilution Air Inflow’ were 

logged at a rate of 1 Hz using calibrated transmitting magnehelics (MAGs) to measure the pressure 

difference across orifice meters in both the dilution air line and the raw exhaust transfer line. 

Specific magnehelic model numbers are found in Appendix A. The largest pressure difference that 

can be measured by a MAG sold by Dywer is 50 inches of water (inH2O) (~1.81 psi). Considering 

that the pressure difference across Orifice A is essentially 30 psi, a MAG could not be used in 

conjunction with this orifice to measure dilution air flow; instead, an additional orifice was installed 

downstream of Orifice A, on the low pressure side, for dilution air flow measurement. This orifice, 

Orifice C, was drilled with a letter H (6.756mm / 0.2660” dia.) drill bit, and a 0-1.0 inH2O 

transmitting MAG (Dwyer Inc., Model 605-1) measured the differential pressure across it.  In the 

raw exhaust sample transfer line, Orifice B could not be used to reliably measure flow due to the 

pressure pulses from the engine’s exhaust.  To measure transfer line flow, Orifice D, drilled with 

a #43 (2.261mm / 0.0890” dia.) drill bit, was installed on the low pressure side/ downstream of 

Orifice B and a 0-0.5 inH2O transmitting MAG(Dwyer Inc., Model 605-0) measured differential 

pressure across this orifice.  With the transfer line orifices in this orientation, Orifice B isolated 

Orifice D from the engine exhaust pressure pulses, resulting in a relatively stable measurement of 

differential pressure (flowrate is ~ 1.04 L/min) in this location. 
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Flow Measurement and Temperature Control. 

Orifice flow meters measure volumetric flow rate, not mass flow rate.  Because the density of a gas 

is sensitive to temperature, mass flow will change as a function of temperature while volumetric 

flow remains constant.  Temperature variation also affects particle evolution – as the exhaust gases 

cool, gas phase constituents can nucleate as new particles or condense onto existing larger particles.  

To ensure that flow rates and particle nucleation/condensation rates were consistent during each 

run and from run to run, both the raw exhaust transfer line and the dilution air line were temperature 

controlled.  The set point temperatures for the gases in the raw exhaust transfer line and in the 

dilution air line were 110 °C and 30 °C, respectively.  To tightly control and monitor these gas 

temperatures, two 1/16” ungrounded, dual element J-type thermocouples (16 and 18 in Figure 2-

3 above) fed back gas temperature data to custom-built heat cord controllers (Fuji Electronics 

Controller - PXR3-TEY1-4V0A1 and Carlo Gavazzi solid state relay - RM1E23AA25) which, in 

turn, modulated the temperature of the BriskHeat HWC1060 heat cords wrapped around each line.  

The average gas temperatures measured during the most recent transient run 

(1_06AUG2013_B000) were 107.25oC (StDev = 0.375) and 25.78oC (StDev = 0.340) for the 

transfer line and the dilution air line, respectively.  These measurements are slightly offset from the 

set point temperatures due to thermocouple calibration differences between the heat cord 

controllers and the Labview system.  

 

2.2.3 Data Acquisition System 

The experimental apparatus was instrumented to acquire real-time system operation and emissions 

data.  Up to eight instruments were used to measure different parameters simultaneously.  Two of 

the instruments, Armfield and Scantool, shared a computer while all of the other instruments 

utilized a dedicated computer.  The computers used for data acquisition from various instruments 

are listed in Table 2-2.  

 
Computer Clock Synchronization. There are four possible sources of time misalignment between 

data collected from different instruments/computers.  The first is clock synchronization error – a 

simple time shift from one data set to another – for example, the clock on one PC could be 30 

seconds behind that of another PC.  The second is a misalignment due to sensor response – the time 

necessary for a sensor to ‘see’ a change in the parameter it is measuring.  The third is a real, physical 

lag – for example, the time it takes combustion gases to travel from the combustion chamber to the 

sampling location in the exhaust system.  The fourth source of time misalignment is that of 

sampling residence time – the time it takes for a sample to flow from the sample port to the 

instrument where it is measured.  To minimize the amount of time alignment necessary after data 

collection, procedures were developed to improve instrument clock synchronization.  

Initially, in order to minimize temporal misalignment, a large clock was displayed on a 

computer screen that could be seen from all of the other computers used for data acquisition.  The 

clocks on the other computers were then manually synchronized to that clock before each data 

collection event.  In September 2012, all of the computers were linked through a local area network 

(LAN) and one of the computers was designated as a time server.  This allowed automatic 

synchronization of all LAN-connected computers prior to each collection event using the ‘Date and 

Time’ application embedded in the Windows operating system.  Even with this synchronization, 

the clocks on some of the computers would desynchronize in less than 10 minutes.  To address this 

issue, Automachron simple network time protocol (SNTP) software was installed on the computers 

in May 2013.  This software automatically synchronized the clock of the computer to the time 

server every 16 seconds, minimizing the chances of the computers becoming asynchronous over 

the 2 plus hour experiment duration. 
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Table 2-2 Computers used for each sampling instrument 

 
 

Armfield Engine and Dynamometer Parameters.  

The CM-12 came from Armfield with a rudimentary data acquisition system read through the 

Armfield software using sensors that Armfield had installed.  The parameters that were acquired 

through the Armfield software are listed in Table 2-3.  Initially, the Armfield software was set to 

log data at a frequency of 1Hz but the logging frequency was increased to 2Hz in April of 2013 

while developing a transient drive cycle.   

 

Armfield Sensor Calibration. The majority of the parameters logged through the Armfield 

software were assumed to be factory calibrated.  The only adjustment made was in Febuary of 2012 

when the ‘zero’ and ‘span’ potentiometers associated with the Armfield throttle position were 

adjusted so that the throttle position reported Armfield and Scantool were the same. 

 

Table 2-3 Armfield Sensors on CM-12 Test Cell 

 
 

Scantool Engine Parameters   

Engine operating parameters were also acquired from the On Board Diagnostics (OBD-II) system 

embedded in the Volkswagen engine control unit (ECU).  The OBD-II system was accessed with 

Rosstech VCDS Scantool software through which specific engine operating parameters were 

selected for acquisition.  The Scantool software does not allow the user to specify an acquisition 

frequency, therefore, these parameters were acquired at a variable ‘as fast as possible’ rate.  

Initially, multiple engine parameters from different measuring blocks were accessed through 

Sensor Type Signal Conditioning Sensor Manufacturer

Throttle Position (%)
Measured from control 

portion of software
N/A N/A

Brake Setting (%)
Measured from control 

portion of software
N/A N/A

Heat Exchanger Water Flow 

(LPM)
Paddle wheel flowmeter Buffer Amplifier/attenuator GEMS RFA 3/4

Manifold Air Pressure (kPa)
Differential Pressure Sensor 

across orifice
Amplifier Honeywell, 26PC

Manifold Air Temp (°C) ‘K’ type thermocouple Compensated Amplifier Armfield

Heat Exchanger Water Inlet 

Temp (°C)
‘K’ type thermocouple Compensated Amplifier Armfield

Heat Exchanger Water Outlet 

Temp (°C)
‘K’ type thermocouple Compensated Amplifier Armfield

Exhaust Manifold Temp (°C) ‘K’ type thermocouple Compensated Amplifier Armfield

Engine Speed (RPM) Magnetic pick-up Firmware counter RS

Torque (Nm) Load Cell Differential Amplifier Strain Measurement Devices, S200

Cylinder Pressure piezo Proprietary Charge amplifier Kistler
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‘Advanced Measuring Blocks’ in the VCDS software.  Selecting the parameters logged in this 

manner resulted in a data collection frequency of ~0.5Hz.  After further investigation, it was found 

that all desired parameters could be read through measuring block ‘000’.  Switching from data 

collection through multiple measuring blocks to data collection through one measuring block 

increased the sampling rate to ~3Hz.  Measuring block ‘000’, however, did not output measurement 

physical units.  Instead, because the ECU is an 8-bit system, this measuring block reports raw byte 

values in the form of decimal numbers between 0 and 255 (Table A-3 in Appendix A).   

 

Scantool Sensor Calibration. In order to assign physical units to each measuring block ‘000’ 

parameter, a series of engine tests were performed while logging measuring block ‘000’ and other 

measuring blocks that output the desired parameters with physical units.  These data were then used 

to calibrate measuring block ‘000’ data to physical units.  The parameters read by the Scantool and 

their calibration equations can be found in TABLE 2.4.  

 

Table 2-4. Rosstech Scantool Sensors and Calibration Equations* 

 
* byte indicates the 0-255 value logged from the ECU measuring block ‘000’. 

Labview Data Acquisition for Temperature, Flow and Pressure Sensors 

A Labview (v. 8.6; National Instruments) data acquisition system specifically built for this research 

acquired data pertaining to both engine operation and exhaust dilution conditions at a rate of 1Hz.  

The data collection system was comprised of five components (Table 2-5). The Labview data 

acquisition system was configured to log sixteen single-ended signals through a single PCMCIA 

data acquisition card.  In total, 14 of these channels were used (Appendix A, Table A-##).  All of 

the sensors were connected to the connector enclosure with BNC cables which are intrinsically 

electrically shielded.  The enclosure itself electrically shielded the connector block and the cable 

that connected the connector block to the PCMCIA card was electrically shielded as well.  This 

shielding minimized the noise in the signals and helped ensure that the data collected was of the 

highest quality.  In addition to the data logged through the PCMCIA card, the labview virtual 

instrument (vi) also logged fuel tank weight through the laptop’s RS-232 port which was connected 

to the fuel tank scale.   

 

Table 2-5.  Data Acquisition Components 

Position Parameters Calibration	Equation

000-1 Engine	Speed	(RPM) =	21*(byte)

000-2 Start	of	Injection	(°BTDC) =	0.08*(byte)-3.12

000-3 Throttle	Position	(%) =	(byte)/2.55

000-4 Injection	Quantity	(mg/stroke) =	0.2*(byte)

000-5 Not	Used	-	no	sensor	data N/A

000-6 Atmospheric	Pressure	(mbar) =	4.914*(byte)+7.3506

000-7 Engine	Coolant	Temp	(°C) =	(-0.68878)*(byte)+135.983

000-8 Intake	Temp	(°C) =	(-0.68182)*(byte)+135.191

000-9 Fuel	Temp	(°C) =	0.5625*(byte)-30.4875

000-10 Not	Used	-	no	sensor	data N/A

Measuring	Block	'000'	Parameters	and	Calibration
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Labview Sensor Calibration.  Factory calibration equations were used for all of the sensors logged 

through Labview except for the three differential pressure sensors that were connected to the Dwyer 

MAGs and the VW/BOSCH mass flow meter (MAF).  Table 2.6 lists the 15 parameters logged at 

1 Hz by Labview and their calibration equations. Calibration procedures are described below. 

 

Table 2-6.  Labview Parameters and Calibration Equations for Sensors 

 
 

Magnehelics. Calibration of the dilution air and exhaust sample transfer line MAGs was performed 

with the heat cords at the 30 and 100oC set point temperatures.  With the temperatures held constant, 

the magnehelic calibrations are effectively mass flow rate calibrations.  To perform calibration, the 

dilution air pressure was adjusted with the precision regulator to affect both dilution air flow rate 

and transfer line flow rate.  Calibration was performed with all components in the dilution system 

connected, with one exception - to calibrate the aerosol inlet transfer line flow, the dilution system 

was disconnected from the tailpipe probe so a bubble flow meter could be used to measure transfer 

line flow.  The air source was the dilution air system as described above.  Dilution air pressure was 

adjusted in steps around the 30 psi pressure set point used during engine tests to generate different 

flow rates for both the transfer line and dilution air magnehelics.  The calibration dilution air 

pressures were (in psi) 15, 20, 25, 27, 28, 29, 30, 31, 32, 33 and calibration proceeded from high 

pressure to low pressure.  Altering this pressure changed the amount of dilution air forced through 

Orifice A and into the Dekati diluter which, in turn, altered the inlet flow in the raw exhaust transfer 

line.  The dilution air flow (~82 LPM) was measured with an OMEGA mass flow meter (FMA 

1700/1800) with a range of 0-100 LPM.  A 200 mL bubble flow meter was used to calibrate the 

raw exhaust transfer line flow (~1 LPM) because this type of flow meter introduces minimal 

pressure drop to the system, resulting in little to no effect on the flow measurement. During 

calibration, the dilution air pressure was adjusted to various settings around the standard 30psi set 

point while MAG data, OMEGA flow meter, dilution air pressure, and temperature data were 

logged continuously and 10 manual replicate measurements of the time necessary for the soap film 

in the bubble flow meter to travel through the 200mL volume were measured at each setting.  At 

least 7.45 minutes were spent at each pressure setting to obtain the manual bubble flow meter 

measurements while the 1Hz data used to determine average MAG readings for each pressure 

setting was collected simultaneously.   The calibration curve relationships between measured flow 

rate and the transmitting magnehelic voltage readings are shown in Figure 2-5 and best-fit curves 
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are found in Table 2-aaa.  The dilution ratios determined for each engine run are shown in Table 

2-bbb and ranged from 50 to 92. 

 

 
Figure 2-5.  Calibration curves for exhaust sample transfer line and dilution air 

magnehelics.  MAGs were calibrated while the dilution system was at the heat cord 

temperature setpoints (100oC and 30oC, respectively). The transfer line flow data (top 

plot) were collected with the bubble flow meter and dilution air flow rate (bottom plot) 

was measured by an Omega 0-100Lpm mass air flow meter. 

 

 

Pitot Tube and Mass Air Flow Sensor. Calibration of both the pitot tube exhaust flow meter and 

the MAF sensor on the air intake of the engine were performed using an Ametek Nautilair 12.3” 

Variable Speed Blower and a Sierra Instrument mass flow meter (model number: 620S-L04-M1-

EN2-V1-DD-0) with a calibrated 0 to 4000 sLPM range.  To calibrate these sensors, they were 

attached to the blower with the Sierra flow meter inline (upstream for the pitot tube (Figure 2-6a), 

downstream for the MAF Sensor (Figure 2-6b)).   

 
Figure 2-6. Calibration setup for push-through flow of exhaust Pitot tube (a) and pull-

through flow for MAF sensor (b).  

a. 

b
. 
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Flow was pushed past the pitot tube and pulled through the MAF sensor to simulate their actual 

use.  Once connected, data for the Sierra flow meter, the MAF sensor and the pitot tube transmitting 

MAG (Dwyer, 605-10) were logged at 1Hz with Labview software.  The blower was set to various 

flow rates between 0 and 4000 LPM (maximum calculated pumping rate of the 1.9L engine with a 

maximum RPM of 4000 is ~3800LPM).  For each flow setting, flow was allowed to stabilize and 

then approximately one minute of data were collected for calibration.  The factory calibration 

equation was applied to the logged Sierra flow meter voltage.  The resulting Sierra flow rates and 

sensor voltages were then averaged for each flow position and used to compute the calibration 

equations for the sensor.  The raw voltage data collected for the MAF sensor and its calibration 

curve can be seen in Figure 2-7 and Figure 2-8 shows the calibration data for the pitot tube exhaust 

flow sensor. 

 

 

Figure 2-7. MAF Sensor Calibration: (left) Raw voltage; (right) calibration curve based on 

Sierra flow meter flowrate data 

 
Figure 2-8. Pitot MAG Calibration: (left) Raw voltage; (right) calibration curve based on 

Sierra flow meter flowrate data 

2.2.4 Tailpipe Emissions Test Sequence 

Emissions tests for a certain biodiesel fuel blend involved the following sequence of steps:  (a)if 

using a different fuel then what is currently in the fuel system, purge engine fuel system of 

previous fuel (1 day prior to test); (b) warm-up all instrumentation and data acquisition systems 

(minimum of 1 hr); (c) collect instrument blank (IB) data on all real-time instruments; (d) collect 

tunnel blank (TB) data on all real-time instruments; (e) Start CM-12 diesel engine; (f) run engine 

Warm-Up cycle until the engine coolant thermostat opens [92±1°C]; (g) conduct emissions test 

run with gas, particle number and PM filter sampling trains; (h) cool down engine (idle for 3-5 

minutes); (i) CM-12 engine off; (j) collect post-run TB; (k) collect post-run IB with real-time 

instruments. Copies of run logsheets and SOPs for all test procedures are found in Appendix C. 

 Periodically, “Engine Blank” runs were performed where the entire test sequence was 

replicated except that the CM-12 engine was not started.  During all tests, log sheets were filled out 

by TAQ Lab personnel to ensure test-to-test reproducibility and keep track of ambient sampling 

conditions, deviations from standard operating procedures (SOPs) and electronic data filenames.  
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Every CM-12 engine emissions test was given a unique TestID indicating the test replicate number 

for that date – sample date – fuel blend.  For example, a B20 blend run as the first test on February 

9, 2012 would have a TestID of 1 – 09FEB2012 – B020.  All electronic data were immediately 

copied to the HolmenGroup server after every engine test run and all data files collected during a 

specific TestID were stored in a separate folder.   
  

Fuel Purging  

The CM-12 was equipped with a fuel purging system to minimize the chance of fuel crossover 

between tests with different fuel types.  To further minimize the possibility of fuel contamination, 

each fuel blend had a designated 6-gallon plastic fuel tank.  These fuel tanks were connected to the 

fuel system by self-sealing quick connect fittings.  Because this engine has both a fuel feed line and 

a fuel return line, two valves were used to switch the fuel system from biodiesel to petrodiesel.  As 

shown in Figure 2-9, the valve on the feed line switched between the biodiesel fuel tank and the 

petrodiesel fuel tank while the valve for the return line switched between the biodiesel fuel tank, a 

waste fuel storage tank, and the petrodiesel fuel tank.  The procedure to purge the fuel system from 

petrodiesel to biodiesel is as follows: 

1. Start engine and allow idle to stabilize (both valves initially on petrodiesel). 

2. Simultaneously, switch the feed line valve to biodiesel and the return line valve to waste. 

3. Allow the engine to idle for 5 minutes to completely clear the fuel system (fuel lines, fuel 

filter, and fuel pump) of petrodiesel. 

4. Switch the return line valve to biodiesel. 

One might think that when purging from one biodiesel blend to another, the fuel tank for the new 

biodiesel blend could just replace the petrodiesel fuel tank in Figure 2-9, however, because the 

engine is equipped with just one dedicated petrodiesel fuel filter, this is not the case.  To avoid 

contaminating the petrodiesel fuel filter with any biodiesel, the procedure used to purge the fuel 

system from one biodiesel blend to another was as follows: 

1. With the engine off, remove the feed and return fuel lines from the original biodiesel fuel 

tank. 

2. Replace the original biodiesel fuel tank with the new biodiesel fuel tank without 

connecting the fuel lines. 

3. Connect the return line that typically connects to the biodiesel tank to the waste tank. 

4. Start the engine – as soon as the engine is running, connect the biodiesel feed line to the 

new biodiesel tank.  This ensures that there is suction on the line and that any remnant of 

the original biodiesel in the line will not drip into the new tank. 

5. Run the engine for 5 minutes to allow the system to purge to the new fuel. 

6. Shut the engine off. 

7.  Disconnect the biodiesel return line from the waste tank and connect it to the new 

biodiesel tank. 



UVM TRC Report # 14-008 

  

 26 

 

 
Figure 2-9. Fuel Switching System with the valves in the ‘Biodiesel’ Position 

 

The 5-minute purge duration used in both procedures was determined by collecting fuel samples 

from the return line every minute after the feed line was switched to the new fuel.  These samples 

were then analyzed for FAME content with the IROX-D; the fuel sample collected at 5 minutes 

was consistently found to have the same FAME content as the new fuel. 

 

Drive Cycles.  

Multiple drive cycles were developed for collecting emissions data.  The drive cycle primarily used 

from July 2010 to October 2011 was the “semi-transient” cycle depicted in Figure 2-10.  From 

October 2011 to December 2012, a series of steady-state operating cycles were run at 40% load 

(2000RPM 40% Throttle) and 80% load (2200RPM, 67% Throttle).  Development of a real-world 

transient drive cycle (Figure 2-10) began in December 2012 and was finalized in May 2013.  A 

‘burn out’ cycle was also developed to burn FAMEs residue out of the exhaust system after B100 

runs.  This cycle was a steady-state, extremely high load, hot exhaust run at 85% throttle and 3300 

RPM.  It is run for about 10 minutes; longer operation at these conditions result in excessive 

dynamometer temperatures indicated by incandescence of the dynamometer rotors. 
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Figure 2-10. Second-by-second drive cycles. Measured RPM (squares) on left scale; 

throttle position (diamonds) on right scale A. Transient drive cycle.  MAX Throttle position 

72%; MAX measured RPM ~3500.  B. Semi-transient drive cycle.  MAX Throttle position 

40%; MAX measured RPM ~3500. 

 

Oil and Fuel Filter Changes.  

Engine oil was changed between different sets of tests to minimize lubrication oil contamination 

from fuel type to fuel type.  Since receiving the CM-12, Castrol ‘EDGE with STP’ SAE 5W-40 

engine oil has exclusively been used.  This is a full synthetic motor oil that meets Volkswagen oil 

specifications 501 01, 502 00, and 505 00.  Small quantities have been purchased from the local 
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auto parts store and, when controlling for production lot, large quantities have been purchased from 

a regional distributer, Windward Petroleum, Rutland, VT.  Oil filters have also typically been 

purchased from the local auto parts store, however, when controlling for production lot, multiple 

filters were purchased from idparts.com (Pembroke, MA) along with fuel filters.   

 

 

2.3 (Bio)diesel Fuel Supply and Monitoring 
 

2.3.1 Fuel Composition And Biodiesel Fuel Blending  

Neat ultra-low sulfur on-road petro-diesel, used as a baseline fuel, and neat soybean oil based 

biodiesel were obtained for this testing and blended when necessary (petro-diesel - Trono Fuels, 

Burlington, VT; biodiesel - Denis K. Burke, Inc., Chelsea, MA). The results for four different 

biodiesel/petrodiesel blends, denoted as BXXX, where XXX is the percentage (by volume) of 

biodiesel in the blend are reported here.  These blends were B000 (petro-diesel), B020, B050, and 

B100 for the steady-state tests conducted at 40% load (SS40) and B0 and B100 for the steady-state 

80% load (SS80) tests. All biodiesel blends were prepared as small volumes using a splash blending 

procedure (See SOP in Appendix B). Future emissions testing will utilize biodiesel fuels made 

from feedstocks of both waste vegetable oil (WVO) and soybean oil that was processed specifically 

for the UVM TAQlab at the University of Connecticut’s Biofuel Consortium.  

An IROX-Diesel mid-infrared instrument was used to characterize the fuel composition 

and physical properties.  The IROX-Diesel instrument uses Fourier transform infrared (FTIR) 

spectroscopy to determine characteristics of fuel.  The instrument determines the mid-range 

infrared absorption spectrum over the 650cm-1 to 3100cm-1 wavenumber analysis range. The IROX-

D sample data are compared to the instrument’s database on well-characterized petroleum diesel 

and biodiesel blends to interpolate the fuel sample blend volume (FAME content), density, and 

distillation temperatures (T90 and T95) based on the FTIR spectrum. The instrument is capable of 

measuring biodiesel content up 40% by volume. Above this content, samples must be diluted to 

within the measureable range (0-40%) by dilution with n-Hexane. Hexanes were used as the blanks 

for all IROX-D measurements.   Fuel samples were collected from the fuel tank before and after 

emissions testing and stored in clean, amber glass vials at -4oC until IROX-D analysis. 

 

2.4  Gas and Particle Emissions Measurement 
Multiple samples were collected from the diluted flow, one of which had to be forced to 

instrumentation in an adjacent laboratory.  To force the flow necessary for this sample, the port on 

the Dekati diluter typically used to exhaust the excess sample flow was plugged and a ‘T’ fitting 

followed by a ball valve were connected to the outlet of the diluter.  The ball valve was then used 

as a throttling valve to pressurize the diluted sample below it just enough to push flow through the 

‘T’ fitting, denoted as port ‘DL-A’, and into the other room.  In addition to pushing sample flow 

into the other room, the pressure induced by the valve also slightly decreased the transfer line flow, 

increasing the DR.  The remainder of the flow went through the ball valve and into an 8-port 

stainless steel manifold (SMARTFLOW, 8SS-8-3-A) which enable additional sampling in the same 

room as the engine (ports labeled DL-B through DL-I). Table 2-7 summarizes the final 

arrangement of emissions sampling instruments on each manifold port. 

 

Table 2-7. Diluted Samples and Flows by Port Identifier.  Minimum dilution system flow is 

80 LPM resulting in a minimum of 5 LPM excess flow. 
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2.4.1 Particle Mass & Number Measurement   

Filters 

Particle mass measurements were made using stainless steel filter holders containing pre-

conditioned and pre-weighed 47mm diameter Teflo or Fiberfilm filters (Pall Gelman see Table 2-

8).  In various engine emissions tests, PM filters were located either on a separate raw exhaust 

sample line or at one of the dilution system manifold ports.  PM was sampled at a flowrate of 20 

L/min. In addition, quartz fiber filters (QFFs, Tissuquartz, Pall 2500QAO-UP) were collected from 

the manifold to enable chemical analysis as discussed in a separate report (TRC 14-009).  

 

Table 2-8. PM Filter Specifications used for PM mass and chemical composition 

 
 

EEPS 

A TSI, Inc. Model 3090 Engine Exhaust Particle Sizer (EEPS) was used to measure the particle 

number (PN) concentration (#/cc) in the diluted exhaust simultaneously for 32 different particle 

diameter channels from 5.6nm to 560nm. The EEPS data was logged at 10Hz using proprietary 

EEPS software (TSI Engine Exhaust Particle Sizer Software, Release Version 3.1.0.0). 

Diluted engine-out particle number emissions were measured with a TSI 3090 Engine Exhaust 

Particle Sizer (EEPS) (32 channels, 5.6 - 560nm) at a frequency of 1Hz.  The bio-diesel blends used 

were soy-based B0, B20, B50, and B100.  The engine was operated at 45% throttle and loaded to 

maintain 2000 RPM for all tests (approximately 40% load for this RPM).  During the steady state 

operation the average calculated dilution ratio was 55 with a standard deviation of 2.4.   

 

UCPC 

To verify the EEPS data, a TSI Model 3025A Ultrafine Condensation Particle Counter (UCPC) 

also counted total particle number concentration with a particle diameter detection range of 3–3000 

nm.  Because the total PN concentration from the entire particle distribution routinely surpassed 
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the maximum detection limit of the UCPC, a TSI Model 3080 Electrostatic Classifier was used to 

select a specific particle size range with a midpoint of 10.75nm for the UCPC to measure.  The 

total concentration measured by the UCPC is then compared to the data collected for the 

corresponding EEPS bin. 

EAD 

A TSI Model 3070A Electrical Aerosol Detector (EAD) was used to measure aerosol diameter 

concentration (mm/cc) in the diluted exhaust. The EAD measures a particle diameter range of 10-

1000nm at 3.75Hz resolution with a one second averaging interval.  

 

2.4.2 Exhaust Gas Measurement 

FTIR 

Raw exhaust sampled from the tailpipe probe was transported via heated line (191°C) into the 

sampling cell of the MKS MultiGas 2030 high-speed FTIR at a flowrate between 12 and 16LPM 

and sampled at a rate of 1 Hz.  The FTIR simultaneously quantified the concentrations of 31 gas-

phase pollutants based on manufacturer calibration curves using select absorbance regions. Before 

and after each sampling run, an instrument blank was acquired while the sample cell was purged 

with dry nitrogen gas to verify proper signal alignment and maximal signal-to-noise instrument 

response across the 500 to 5000 cm-1 wavenumber region.  In addition, a ten-minute tunnel blank 

(TB) was collected immediately before and after each run to obtain background gas concentrations 

in the exhaust system.   These values were used to compute the daily quantitation limits of the FTIR 

instrument.  For the 2012 steady-state emissions tests reported here, the FTIR gas-phase 

concentrations for the following compounds were averaged over the steady-state portion of the test 

cycle: Acetylene (ppm), CH4 (ppm), CO (%)CO (ppm) CO2 (%), Diesel (ppm), Ethane (ppm), 

Ethylene (ppm), Formaldehyde (ppm), H2O (%), HNCO (ppm), N2O (ppm), NH3 (ppm), NO (ppm), 

NO2 High (ppm), NO2 Low (ppm), O3 (ppm), Propane (ppm), Propylene (ppm), Urea ByProduct 

(ppm).  These compounds were recommended by the instrument manufacturer for testing of diesel 

and biodiesel exhaust. 

5-Gas Analyzer 

In addition to the FTIR an Applus+ AutoLogic Inc. 5-Gas analyzer was used to collect gas data 
for CO, CO2, NOx, HC and O2.  In some instances, the 5-gas sampled raw exhaust along with 
the FTIR to determine the relationship between what the instruments were reporting. In 
other instances the 5-gas analyzer sampled diluted exhaust to allow DR calculation via gas 
data to corroborate the DR calculation based on measured volumetric flow data. 
 

 

 

2.5 Data Processing 

2.5.1  Data Pre-Processing: Temporal Alignment.  

Although the clocks on the computers used for data collection were synchronized, the time stamps 

associated with each instrument were not aligned perfectly.  The exhaust emissions (EEPS, CPC, 

FTIR) data were also subject to a time lag associated with the time necessary for the exhaust sample 

to travel from the sample port in the exhaust pipe to the instrument.  The raw data from Scantool, 

Armfield, Labview, and EEPS were aligned as follows.   
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First, because Scantool data were logged at a variable ‘as fast as possible’ rate, they were 

interpolated to the same frequency as the Armfield data using the Matlab function ‘Interp1’ and the 

‘linear’ method.  Then, Armfield output file record numbers were translated to Armfield 

timestamps (hh:mm:ss:ddd)  using the manually recorded start time and the known data collection 

sampling rate.  Because of the error associated with generating the Armfield timestamps, the 

Armfield data were aligned to the Scantool data collected for the same parameter measurement.  

The Pearson’s correlation method was then used to determine the time lag to be assigned to each 

data set. The Armfield data set was shifted in intervals of one time step from -t seconds to +t seconds 

(where t is large enough to obtain a maximum correlation coefficient).  The shifted Armfield 

parameters (throttle position, RPM, intake air pressure, and torque) were correlated to 

corresponding Scantool parameters (throttle position, RPM, RPM, and injection quantity 

respectively) and the lag with the highest correlation coefficient was recorded for each parameter 

being compared.  The average of the four recorded lags was then applied as the Armfield instrument 

offset.  Once the time offset was applied to the Armfield data, it and the Scantool data were 

interpolated to the frequency of the remaining instruments (1Hz). Next, the Labview data were 

aligned with the Armfield/ Scantool data by correlating multiple time shifts of the Labview mass 

air flow (MAF) parameter to the Armfield intake air pressure; both are measures of intake air flow.  

Again, the time offset associated with the highest correlation coefficient was selected and applied 

to time-align the Labview data set with Armfield/Scantool. To align particle and gas emissions 

instrument (EEPS, CPC, FTIR) to the engine operating data, the Scantool fuel injection quantity 

parameter was correlated to EEPS total particle number (TPN) to determine the lag based on the 

highest correlation coefficient.  

2.5.2 Engine Load Calculation.   

The CM-12 dynamometer is instrumented to measure engine torque in real time.  In order to 

evaluate the data collected here in a broader context, it was necessary to calculate percent load, the 

amount of torque currently being generated divided by the maximum torque that could be generated 

at a given engine speed.  To facilitate this calculation, the torque curve provided by Volkswagen 

for the 1.9L SDi engine (Figure 2-11) was interpolated into a piecewise function so that ‘maximum 

torque’ could be calculated across the RPM range.  The maximum torque was calculated for every 

time step using the associated engine speed.  Percent load was then calculated with the following 

equation: 

     % Load = ((Measured Torque)/(Maximum Calculated Torque))*100 2-2 
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Figure 2-11. Volkswagen 1.9L SDi Torque Curve with Polynomial Trendlines 

 

 

2.5.3 Fuel Consumption.  

Fuel injection quantity (mass of fuel per engine stroke) is logged by the scantool.  It is reported in 

units of mg/stroke. To calculate fuel consumption, the following equation was used: 

                     
FuelConsumption (gal) =

m fuel

Stroke
´

2

rev
´RPM ´

lb

453592 mg
´

Dt(sec)´
min

60sec
r fuel (lb / gal)   2-3

 

 

Equation 2-3 was used to calculate the volume of fuel used for every time step in the data set and 

these instantaneous values were summed to give the overall fuel consumption during the test period.  

In April 2012, after the SS40 data was collected, an ADAM Equipment GBK 70a scale (0-70lb/0-

32kg x 0.002lb/ 0.001kg) was added to the Labview system which logged the weight of the fuel 

tank at a frequency of 1 Hz.  The fuel weight measured with this scale, in conjunction with the fuel 

density measured with the IROX-D, provide another measure of fuel consumption. To compare 

these two measures of fuel consumption the data collected during SS80 testing were analyzed.  

Because the duration of these tests were not all the same, steady state fuel consumption was 

normalized to gallons per hour.  First, fuel consumption was calculated from the scantool data with 

the equation above and compared to the scale data (labeled ‘Uncorrected Injection Quantity’ and 

‘Scale Data’ in Figure 2-12). 
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Figure 2-12. Fuel consumption data comparison 

 

 

Fuel consumption calculated from the scantool data overestimated B000 fuel consumption and 

underestimated B100 fuel consumption as compared to scale data.  Realizing that the scantool 

measure is based on average B000 fuel properties, and that fuel density was used in the fuel 

consumption calculation, a density ratio was applied to the scantool calculation which yielded the 

‘Corrected Injection QTY’ data shown in Figure 2-12.  The ‘Corrected Injection QTY’ scantool 

data shows a statistically insignificant difference between B000 fuel consumption and B100 fuel 

consumption according to the scantool data.  This suggests that the scantool Injection QTY data is, 

in actuality, merely a crudely estimated volumetric flow measurement even though it is reported in 

units of mass flow. For this reason, fuel consumption calculated via fuel tank weight is considered 

to be more accurate. 

 

2.5.4 Blank Corrections 

To ensure that particle and gas phase data reported were not influenced by background levels, 

each instrument collected 5 data files - a pre-instrument blank, a pre-tunnel blank, run data, a 

post-tunnel blank, and a post instrument blank.  The instrument blanks were used to verify that 

the instruments were operating similarly before and after the run as well as from run to run.  The 

tunnel blank data were used to correct the gas and particle concentration data collected during the 

run for changes in ambient conditions.  All data were blank corrected based on Equation 2-4 

 

               Corrected Data º RawData - CTBpre-run
+3sTBpre-Run( ) 2-4 
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2.6 System Validation Procedures 
 

A total of 10 test runs were completed at 40% steady-state load (SS40) and 6 runs were completed 

at 80% load (SS80).  The engine and dilution system electronic data successfully logged for each 

test is summarized in Table 2-9.  Lists of the complete test runs can be found in Appendix D. 

 

Table 2-9. Test runs completed at 40% and 80% load and the instruments that successfully 

logged 

 
 

2.6.1 Logsheets and Checklists 

Over the course of this project, multiple log sheets and check lists were developed to ensure 

adequate test run records are collected daily and that the experimental procedure was as repeatable 

as possible from run to run.  Example log sheets used during this study can be found in Appendix 

C.  There were a total of 5 logsheets (Run, EEPS, MultiGas, 5-Gas, Cycle) recorded for each 

emissions test.  In addition, each emissions instrument and the CM-12 engine has its own 

hardbound logbook where information on instrument use, calibration and maintenance activities 

are recorded. 

 

Beyond the real time monitoring of the equipment that is captured on the log sheets, Matlab code 

was written to quickly process the raw data collected during an experiment.   The data from an 

experiment is typically processed with this code within 24 hours to generate plots of key parameters 

such as engine speed and torque, dilution system temperatures, ambient conditions, the calculated 

dilution ratio, exhaust temperature, and EEPS total particle number.  These plots are then compared 

to those of previously collected data to make sure there are not any unexplained deviations.  If 

deviations occurred or instruments malfunctioned, an additional replicate test was performed. 
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2.6.2 Data Quality Control and Instrument Verification 

Procedures are also in place to ensure data quality. Particle number (PN) distributions measured by 

the EEPS were verified against an SMPS system, which is considered to be the “gold standard” for 

PN distribution measurement. For this purpose, a 100ppm emery oil in isopropanol solution was 

prepared in order to generate a standard aerosol of emery oil spheres. The aerosol was generated 

with a TSI Constant Output Atomizer (Model 3076), which produces an aerosol by pressurizing a 

given solution. The aerosol flowed through silica gel and activated carbon to remove moisture and 

organic contaminants from the sample before simultaneous measurement from the EEPS and SMPS 

on a “tee” fitting. Average results from the EEPS measuring a second-by-second distribution for 

seven minutes and the SMPS measuring the distribution three times (3 scans, 150 sec each) over 

the same time-frame are presented in Figure 2-13. The results indicate that the two instruments 

were able to measure the same distribution mode within this test, although the SMPS total particle 

number (TPN) measurement was almost twice that of the EEPS. This result has been reported by 

other studies, with the two instruments often displaying a difference in TPN between 25-38% due 

to their slightly different particle measurement methodologies (Zimmerman et al., 2013 REF 36). 

Because our experimental procedure are comparative in nature, utilizing baselines to determine 

percent differences between conditions (e.g., biodiesel percentage), accurate time-resolved PN 

distribution measurements are more important than absolute TPN values.   
 

 
Figure 2-13. EEPS PN distribution verification against SMPS with standard aerosol 

 

 

For the MKS MultiGas, measurement of gas-phase emissions, the quality assurance/quality 

control procedures described in detail by Sentoff  (2013) were employed.  These procedures 

include daily instrument zero checks using dry nitrogen gas, calibration using a certified 

emissions mix and a daily startup sequence based on manufacturer guidelines to ensure 

instrumentation was operating within specifications. 
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3. Results  

3.1 Summary Of Data Collected  
Between January – December 2012, a total of 45 engine tests were performed to evaluate a number of 

research questions related to the Armfield CM-12 light-duty diesel engine and the sampling system design 

as well as the effect of fuel composition on CM-12 emissions and engine performance.  Table 3-1 

summarizes the test information.  These 2012 tests represent the first series of runs with the near-final CM-

12 testing apparatus described previously in Section 2.  Emissions from the tailpipe were sampled for gases 

and particles simultaneously and soybean biodiesel fuel from Burke Oil was mixed with petrodiesel from a 

single local commercial supplier (Trono Fuels).  Thus, this dataset represents that for which the research team 

could evaluate the quality of the test procedures and collect preliminary emissions data for comparison to the 

literature. 

 

Table 3-1.  Individual Run Test Conditions 
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Steady-state 40% load (SS40) tests were conducted at four biodiesel blend ratios:  B0, B20, B50 

and B100.  Steady-state 80% load (SS80) tests were conducted at just two blend ratios:  B0 and 

B100. Replicate tests were collected for each fuel blend and results are reported below both by 

individual test and as averages of the combined replicate runs on a single fuel blend. 

Ambient Air Conditions 

The mean ambient air temperature and relative humidity (RH) at the beginning of each test are 

plotted in Figure 3-1. For the SS40 tests conducted between January 30, 2012 – March 26, 2012 

the average temperature was 18.4oC and average RH was 28.4%.   The temperature and humidity 

were higher for the SS80 tests that were conducted between May 2-17, 2012:  20.6oC and 46.6% 

RH, respectively. These differences reflect the fact that the TAQ Lab air is unconditioned and 

seasonal changes in ambient air properties will be incorporated into the experimental conditions.  

This test condition mimics real-world seasonal vehicle operation, but demands careful assessment 

of how ambient conditions might influence experimental procedures and emission results. 

 

 
Figure 3-1.  Ambient air temperature and relative humidity at start of SS test runs. 

3.2 Fuel Composition by IROX-D 
 

Figure 3-2 below shows the mid-FTIR absorbance spectra for fuel samples measured by the 

IROX-D instrument. Fuel samples of the same biodiesel blend content are plotted as the same 

color, which may not be immediately visible due to the high similarity of the spectra measured 

within each blend.  As the biodiesel content increased, the intensity of the signal response at the 

1195cm-1 wavenumber region also increased, as expected. This ester (C-O) peak is used by the 

IROX to measure biodiesel (FAME) concentrations between 7-30% by volume. The measured 

biodiesel content for fuel sample is presented in Figure 3-3, and average results are shown in 

Table 3-2. Although results were consistent, B50 and B100 biodiesel content was likely 

underestimated due to the need to dilute samples with n-Hexane. Despite this, the results indicate 

that biodiesel content for all samples of fuels used in testing were within an acceptable range of 

target biodiesel blend composition values. 
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Figure 3-2. IROX Mid-FTIR Absorbance Spectra for raw B0 and B20 fuel samples (left) and 

B50 and B100 samples diluted to 25% with n-hexanes (right) 

 

 
Figure 3-3. IROX results for fuel biodiesel content 

 

Table 3-2. Mean IROX results for fuel biodiesel content 

Fuel 
Type 

Expected 
Value 

(% Bio) 

Mean Actual 
Value 

(% Bio) 

Mean % Diff 
from 

Expected StDev %CV 

B0 0 0.08 0.08 0.12 1.55 

B20 20 20.83 4.17 0.35 1.69 

B50 12.5 11.39 8.98 0.59 5.21 

B100 25 23.71 5.16 0.58 2.44 
 

 

3.3.  Engine Operation: Run-to-Run Reproducibility 

Engine Parameters 

The test-to-test performance of the CM-12 engine and dynamometer was evaluated by comparing 

engine load, torque, engine speed (RPM) and throttle position (Figure 3-4 and Figure 3-5) as 
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well as exhaust manifold temperature (Figure 3-6). RPM and throttle position were programmed 

by the operator and therefore were expected to show much less variability than the response 

parameters, engine torque and engine load.  

For the SS40 tests, there was good reproducibility in the engine load and torque data for 

tests conducted with the same biodiesel fuel blend.  Notably, the SS40 B20 and B0 fuel 

performance metrics were similar to each other and both engine torque and load were 

significantly lower for the B0 and B20 tests compared to B50 and B100 tests (Figure 3-4).  Load 

and torque showed a pattern of increasing values with increasing biodiesel content in the fuel for 

blends greater than B20. 

For the SS80 tests (Figure 3-5), both engine torque and percent load were higher for 

operation on B100 than B0, following the pattern observed for SS40 tests.  The data for both 

SS40 and SS80 operation suggest that engine operating variability was highest for the petrodiesel 

(B0) fuel.  The reason for this result is unknown because ambient conditions were not very 

different between replicate B0 tests on a given fuel blend. 

 

 

 

Figure 3-4.  Mean CM-12 engine operating parameters for SS40 tests:  Torque, % Load, 

Engine Speed and Throttle Position. 
 



UVM TRC Report # 14-008 

  

 40 

 

Figure 3-5.  Mean CM-12 engine operating parameters for SS80 tests:  Torque, % Load, 

Engine Speed and Throttle Position. 
 

Measured exhaust manifold temperatures were much higher for operation at 80% load compared 

to 40% load, as one would expect (Figure 3-6, note y-axis ranges are different).  Exhaust 

temperature also increased with increasing volume fraction of biodiesel in the fuel, but there was 

also high variability between replicate tests on a single fuel blend.  For example, the B50 tests 

show an increasing trend.  The low temperature measured on the SS40 B100 test on March 26, 

2012 was likely due to a 10 degree lower ambient air temperature on that test date. (See 

Appendix D for table of test T and RH conditions). 
 

 

Figure 3-6.  Mean CM-12 exhaust manifold temperature for SS40 (left) and SS80 (right) 

tests. 
 

 

Fuel Consumption 

The real-time gravimetric measurements of fuel remaining in the fuel tank were available for the 

SS80 tests only.  As the data in Figure 3-7 show, there was one test, 28AUG12, using petrodiesel 

fuel, that was of shorter duration because the engine ran out of fuel partway through the SS80 

test.   Thus, to compare the data, the average cumulative fuel consumption rates (gal/hr) were 
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compared by run and averaged over fuel type.  Significantly higher fuel consumption rate was 

observed for the B100 soy biodiesel fuel compared to Trono petroleum diesel (B0).  This is 

expected due to the approximately 10% lower volumetric energy content of biodiesel compared to 

petrodiesel (see Table 1-1).  It should be noted that the CM-12 engine fuel injectors do not adjust 

for changes in fuel properties, thus the lack of adjustment may have resulted in the observed 15% 

(computed as percent difference) higher fuel consumption for B100 compared to B0 because of 

the density and viscosity properties of biodiesel fuel. 

 

 
Figure 3-7.  Fuel consumption for SS80 tests determined by weight of fuel tank during test 

cycle.  Data are averages over steady-state portion of test only. 
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3.4 Gravimetric Total Particulate Matter (PM) Emissions 
PM mass concentrations ranged from 358 for the engine blank run to over 20,000 ug/m3 for the 

March 26, 2012 B100 test.  The filter PM results (Figure 3-8) show distinct differences in the 

mass of particles emitted with engine operating cycle and fuel blend.   First, the SS40 data show 

an increase in PM mass concentration with increasing percentage of soy biodiesel in the fuel.  

This increase with Bxx did not correlate with ambient temperature or RH (Figure 3-8.c/d), both 

factors can affect engine operation and particle emissions. The highest PM mass concentration 

was measured for B100 for both steady-state test cycles.  Interestingly, the B100 mass 

concentration was lower for operation at 80% load compared to 40% load (Figure 3-8.a/b). A 

side-by-side comparison of the SS40 and SS80 runs is shown in Appendix D. 

     

 

 
 

Figure 3-8.  (a and b) Gravimetric PM mass concentration (ug/m3) results and (c and d) 

laboratory test conditions (T and RH) for Teflo and FiberFilm filters collected directly from 

tailpipe without dilution for SS40 and SS80 runs with all biodiesel blends.  Blends on left 

hand side of each plot are for SS40 runs and SS80 runs are on the right hand side.  

 
 

3.5 Mean Particle Number Distributions by Biodiesel Blend 
Mean EEPS particle number data for each biodiesel blend during the SS40 tests are plotted as a 

function of particle diameter (Dp) on a log-log basis in Figure 3-9. The EEPS distributions 

showed very good reproducibility for petrodiesel runs (red symbols in Figure 3-9).  There were 

two distinct particle modes – an accumulation mode near 50 nm diameter and a nanoparticle 

mode at ~10 nm.  This is consistent with diesel engine PN emissions reported in the literature (see 

Section 1.3).  Surprisingly, the B20 number distributions at SS40 were practically identical to 

those measured for B0 fuel over the entire EEPS particle diameter range (5.6 – 560 nm).  This 

result may reflect the characteristics of the CM-12 engine during steady-state test cycles 
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compared to heavy-duty diesel engine and vehicle test results reported in the literature where 

differences have been seen between B0 and B20 emissions (see Section 1.3). 

 

 

 
Figure 3-9.  EEPS Particle Number Distributions for SS40 and SS80 tests.  Data were 

corrected for measured dilution ratio.  Log-Log plot. 

 

 

As observed for the PM filters, the EEPS particle number distribution data (Figure 3-aaa) show an 

increase in particle emissions with increasing biodiesel content in the fuel for steady-state operation 

at 40% load.   In contrast, at 80% load, where only the two fuel end member compositions were 

tested (B100 and B0), there was little difference between the B0 and B100 particle number 

emissions.   Also at SS80, the nanoparticle mode at ~ 10nm diameter was less pronounced 

compared to SS40 operation on B100.  This indicates that, for B100 fuel, the higher operating load 

(SS80) particle emissions are less likely to be comprised of the semi-volatile material that nucleates 

to form the smallest particles during exhaust dilution and cooling.   Previous studies have shown 

that high engine load conditions produce more elemental carbon-rich particles compared to idle 

conditions where the organic carbon (OC) fraction is enhanced. It is this OC fraction generated 

during low-load operation that is likely to be comprised of hydrocarbons and other materials that 

partition easily between the gas and particle phases and lead to a pronounced nanoparticle mode.   

Also notable is the high variability in B100 emissions during SS40 tests.  There was a 

significant increase in particle number emissions (and corresponding surface area and mass) as the 

biodiesel content of the fuel increased, with B100 particle number concentrations up to an order of 

magnitude higher than B50 at some particle diameters.  The shape of the B50 and B100 

distributions deviated from the nearly mono-modal shape of the B0 and B20 distributions with 
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significantly higher emissions for particle diameters less than ~25nm.  Thus, B50 and B100 fuels 

produced elevated nanoparticle emissions compared to B20 and B0 fuel.  

 

The average dilution ratio for the ten 40% load steady-state tests was 55 with a standard deviation 

of 2.4 (CV = 4.4%).  The particle number distributions measured with this system demonstrated 

similar trends to those found in the literature.  The petrodiesel particle number distribution was 

unimodal (modal diameter 52.3nm) with an average peak concentration of 2.74 x 107 particles/cc 

(Figure 3-9).  As the concentration of biodiesel was increased, the PN distribution developed 

additional particle diameter modes.  The B100 distribution showed three distinct modes centered 

at 10.8, 17.8, and 31.7nm particle diameters with peak concentrations averaging 1.38 x 108, 1.27 x 

108, and 1.34 x 108 particles/cc, respectively.    

The duplicate B00 and B20 data demonstrate consistent particle distributions while the B50 

and B100 triplicate data show more variability.  The factors that could explain this are variability 

in ambient conditions (temperature and relative humidity) and aerosol transfer line temperature.  

Both the B00 and B20 data sets were measured on consecutive days (little change in ambient 

conditions) while the transfer line temperature was relatively well controlled (95-115°C; 

sinusoidal).   In contrast, both the B50 and B100 data sets were collected over several days resulting 

in more variable ambient conditions (as much as 15°C; 25%RH difference between the cold and 

dry 26MAR2012 data set and the other two B100 data sets).  Temperature control of the aerosol 

transfer line was also more variable from day to day, ranging from ~25°C during 02MAR2012 the 

B50 data set to ~100°C during the 07MAR2012 data set.  This variability affects particle formation, 

particularly through the condensation mechanism (gases condensing onto solid particles resulting 

in an increase in particle diameter).  Figure 3-10 shows the relationship between total particle 

number concentration (dN, #/cc) and ambient temperature.  The “outlier” at 11oC was the B100 test 

conducted on March 26, 2012. 

 
 

 

 
Figure 3-10.  Relationship between ambient temperature and mean total particle number 

over SS40 and SS80 test cycle. 
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3.6 Particle Diameter Measurement    
Representative “particle length” ( or “particle diameter”) concentration time-series results for EAD 

measurements from each fuel blend are shown in Figures 3-11 for the entire test cycle duration. 

Particle diameter (PD) concentration measurements from the EAD closely tracked total particle 

number (TPN) concentration measurements from the EEPS over the course of each test cycle, with 

similar patterns of peaks in concentrations. Two trends emerge when examining the real-time 

particle diameter plots for tests conducted with different percentages of biodiesel. As biodiesel 

content increased, PD peaks associated with transient engine events, such as engine start and the 

transition into the warm-up phase at the beginning of the cycle, decreased in magnitude. However, 

while the amplitude of these peaks in B0 were almost twice that compared to B100, the PD 

concentration decreased more quickly after the transient event was over for lower biodiesel blends. 

Also, as biodiesel concentration increased in the fuel, it took much longer for the EAD signal to 

reach a stable level during the steady-state portion of the run. For example, PD reached a stable 

level after a few minutes of steady-state operation for B0 and B20 blends, after approximately 15 

minutes for B50 blends, and after more than 30 minutes for B100 blends.  The reason for these 

delays is unknown, but deserves more detailed examination of the fuel effects on engine and/or 

exhaust system behavior and performance. 

 

 
Figure 3-11.  Electrical Aerosol Detector (EAD) Full Run Time Series Data for B0, B20, B50 

and B100 blends. 

 

3.7 Gas-Phase Emissions 
In this preliminary work with the MKS FTIR instrument and biodiesel fuel blends, the 

manufacturer’s suggested analysis method was used for data collection. Figure 3-12 compares the 

instrument check parameters for each set of biodiesel blend runs.  Only for he B100 blend were 

any FTIR instrument parameters quite different from other tests.  The B100 phase angle and 
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interferogram peak-to-peak ratio were much smaller than for other blends and the laser PP and laser 

DC voltage data were off-scale.  These deviations were due to the 20MAR12 run where data were 

apparently not recorded properly to the stored file. 

A comparison of tunnel blank data collected before and after the B0 and B20 runs in 

February 201 (Figure 3-13) for each of the 20 gases shows that there were some tests where there 

were extreme percent differences between the ambient air gas concentrations before and after the 

test.  A positive percent difference in Figure 3-13 means that the pre-TB concentration exceeded 

that for the post-TB.  These extreme differences can occur either because the TAQLab is located 

near a parking lot that is busy at different times of day with vehicles arriving and leaving or are 

related to gases with extremely low concentrations that show high variability near the instrument 

detection limit.  The latter is likely for the high percent differences measured for ozone, an analyte 

not expected in the exhaust.  

The mean gas-phase concentrations (ppm or % depending on gas) are listed in Table 3-3 

for the full run and for the steady-state portion of the run separately in order to evaluate how the 

cold-start and engine warm-up concentrations differ from that for steady operation.  The 40% 

steady-state/total run gas concentration ratio varied from about 0.5 to 2.5 and was different between 

gases, but did not vary much between biodiesel blends for a given gas compound.  

 

 
Figure 3-12.  MultiGas FTIR Instrument Check Parameter Mean Values for SS40 Runs 

 

 
Figure 3-13.  Pre- vs. Post Tunnel Blank Gas Concentration Comparison (as Percent 

Difference) for B0 and B20 SS40 Runs  
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Table 3-3. Mean (± 1 sd) Gas-phase Concentrations for SS40 Tests: Total Run and SS 

portion of run only.  

 
 

Replicate runs on the same biodiesel fuel blend showed very good reproducibility, with comparable 

spectra between replicate runs on a given biodiesel blend. Individual gas concentration coefficient 

of variation ranged from 0-65%, but most gases had CV<20% with a general increase in variability 

with increasing biodiesel content. Further work is needed to ensure accurate individual gas species 

quantitation in biodiesel exhaust, especially for carbonyl compounds like formaldehyde, a MSAT 

compound. 

The gas-phase emissions of CO2 did not vary with biodiesel blend for SS40 operation.  This 

is surprising given that CO2 emissions are tied to fuel consumption; the low 40% load operation 

may explain this result. The CO concentration in B0 was higher than for the biodiesel blends.  

Surprisingly, the NOx concentrations decreased with increasing biodiesel in the fuel blend (Figure 

3-14). Total hydrocarbons (THC) decreased with increasing biodiesel, but ammonia increased 

(Figure 3-15). 

 The MKS parameter identified as “diesel” decreased in concentration from B0 to B50, but 

then increased to the B0 concentration when the engine operated on B100.  The “diesel” analyte is 

based on manufacturer measurements of the volatile gas-phase compounds produced when diesel 

fuel was heated.  Apparently, the B100 exhaust contained compounds with similar infrared 

absorbance bands to these “diesel” components.  Further investigation of the “diesel” analyte’s 

characteristics is warranted to better understand the information provided by the MKS MultiGas 

instrument. 
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Figure 3-14. Selected Gas Concentrations for SS40 Runs (linear y-axis scale) 

 

 

 
Figure 3-15. Selected Gas Concentrations for SS40 Runs (log y-axis scale). Error bars 

represent one standard deviation. 
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4. Conclusions 

The steady-state emission test experiments enable us to make the following preliminary 

conclusions on (1) the capabilities of the CM-12 exhaust sampling system and (2) how biodiesel 

tailpipe emissions vary with blend ratio for a light-duty diesel engine. 

 

Experimental Setup Quality and Reproducibility of Cycle and DR. The data collected thus far are 

promising.  Dilution ratio was consistent with a 4.4% variability over a 6 month sampling period. 

The initial results have indicated a need for better transfer line temperature control, as the 

temperature in this line affects both particle evolution and flow measurement accuracy.  The 

temperature control system was upgraded for data collection in 2013 and 2014.  Now that the 

dilution system exhibits a consistent dilution ratio from day to day during steady-state engine 

operation, more realistic transient engine operation will be investigated in future emissions tests.   
 

Fuel consumption by Bxx. Initial results determined that scantool fuel injection quantity is not an 

accurate measure of fuel consumption when operating on biodiesel fuels with fuel properties that 

deviate from those of petrodiesel. Testing of a gravimetric method for fuel consumption 

demonstrated the usefulness of this approach for biodiesel studies.   

Fuel Bxx Composition by Mid-IR. The IROX-D instrument was determined to give reliable 

biodiesel blend volume % data for B0 to B100 blends as long as fuels with Bxx > 30% were 

carefully diluted in n-hexanes prior to analysis.   

PN Distributions and Total Particle Number. The elevated 10nm particle mode observed in the 

B50 and B100 distributions indicates a distinct primary nanoparticle formation process occurs for 

these fuel blends at 40% load, but not at 80% load.  In contrast, the accumulation mode (50 nm 

and greater) particle concentrations did not increase as much with increasing percent biodiesel or 

percent load.  

FTIR Analyzer’s Capabilities.  Replicate runs on the same biodiesel fuel blend showed very good 

reproducibility, with comparable spectra between blends and individual gas concentrations 

varying up to 65% over the steady-state portion of the run for most gases. Further work is needed 

to ensure that quantitation of individual gases for biodiesel exhaust is reliable and calibrations 

should be independently verified for complex gas mixtures using GC-MS.  Especially important 

for biodiesel exhaust will be development of FTIR methods to accurately quantify gas-phase 

carbonyls.  Further, a FTIR data analysis method should be developed to identify a surrogate 

measure for Total HC that meets EPA emission test compliance. 
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Appendices 

 

Information on instrument setup details, standard operating procedures for fuel blending 

and tables of raw experimental results are provided in the following 5 appendices. 
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Appendix A.  Experimental Sampling Setup Instrumentation Detail 
Table A.1. CM-12 Light-Duty Diesel Engine Dynamometer Test Equipment 

 
 

 

 

 

Table A.2. Scantool 8-bit Interpretation Table 

 
  

Description Use QTY Model	Number	

1 Gast	Pump Filter	sampling 3 714645-V114-D303X

2 Gast	Pump	 Impinger/	filter	sampling 1 0523-101Q-G588DX

3 Pall/	Gelman	47mm	Filter	holders Filter	Sampling 8 2220

4 MKS	FTIR Gas	phase	pollutant	collection 1 Multigas	2030	HS

5 Cole-Parmer	sample	pump FTIR	sample	pump 1 L-79200-00

6 Applus+	AutoLogic	Inc.	Gas	Analyzer Gas	phase	pollutant	collection 1 310-0120	REV.	3

7 URG	Denuders Gas	phase	pollutant	collection 6 URG-2000-30B4-242

8 TSI	Engine	Exhaust	Particle	Sizer Real	time	PN	distribution	collection 1 3090

9 TSI	Ultrafine	Condensation	Particle	Counter Real	time	TPN	collection 1 3025A

10 TSI	electrostatic	Classifier Particle	size	selector 1 3080

11 TSI	Electrical	Aerosol	Detector Real	time	TPN	collection 1 3070A

12 Craftsman	Air	Compressor	1 Pressurize	and	store	room	air 1 919.167340

13 Craftsman	Air	Compressor	2 Pressurize	and	store	room	air 1 919.167220

14 Condor	MDR3	Pressure	Switch Compressor	control 1 31GC3FXX

15 Schneider	Electric	contactor Compressor	control 1 199AX-9

16 Artisan	delay-on-make	relay	 Compressor	control 1 438USA

17 Course	pressure	regulator Air	pressure	control 1 N/A

18 Condenser/	expansion	tank Air	Drying 1 Custom	Built

19 Ingersoll	Rand	precision	air	pressure	regulator Air	pressure	control 1 PR4031-100

20 4'x2"	Diameter	desiccant/	activated	charcoal	tube Air	Drying	and	purification 1 Custom	Built

21 Whatman	HEPA-CAP	150	Filter Air	Purification 1 6702-9500

22 Ice	bath	heat	exchanger Temperature	control 1 Custom	Built

23 OMEGA	mass	flow	meter Flow	Measurement	 1 FMA	1742

24 OMEGA	pressure	transducer	 Pressure	Measurement	 1 PX319-100GI

25 Fuji	Electronics	Temperature	Controller Temperature	control 2 PXR3-TEY1-4V0A1

26 Carlo	Gavazzi	solid	state	relay Temperature	control 2 RM1E23AA25

27 BriskHeat	heat	cords Temperature	control 3 HWC1060

28 Dwyer	Magnehelic Flow	Measurement	 2 605-1	&	605-0

29 Agilent	Power	Supply Sensor	excitation 1 E3631A

30 National	Instruments	electronics	enclosure Data	acquisition	electronics 1 CA-1000

	Equipment	List	

PM	Collection	

Gas	Phase	Pollutant	Collection	

PN	Collection

Dilution	Air	System

Data	Collection	System

bit	value 1 2 4 8 16 32 64 128

bit	position 1 2 3 4 5 6 7 8 byte	values

0 0 0 0 0 0 0 0 = 0

1 0 0 0 0 0 0 0 = 1

1 0 1 0 1 0 1 0 = 85

1 1 1 1 1 1 1 1 = 255

8	Bit	System

Binary	
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Table A.3.  Labview Channel Setup 
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Appendix B.  Biodiesel Fuel Blending & Analysis Procedures 

Standard Operating Procedures for Signature Project #2 
 
Biodiesel Emissions and Performance Testing with the Armfield CM-12 
Engine Testbed.  
 
This document is a compilation of a number of standard operating 
procedures. 
 

Authors: 

Daryl Deprey  

Tyler Feralio 

Brad Haire April 22, 2011 

Table of contents 

 

I. BXX Biodiesel Splash Blending Procedure 

I.1. Abstract 

I.2. Safety Precautions 

I.3. Step by Step Procedure 

I.4. Clean up 

II. Fuel Purging Procedure 

II.1. Abstract 

II.2. Safety Precautions 

II.3. Step by Step Procedure 

III. IROX Diesel Fuel Analysis Procedure 

 

I. BXX Biodiesel Splash Blending Procedure 
I.1. Abstract: 

Biodiesel (B100) is typically mixed with petrodiesel for use.  The mixture is denoted as BXX where XX 

is the percentage by volume of biodiesel to petrodiesel.  For example, B85 is 85% biodiesel (B100), 15% 

petrodiesel by volume.  B100 is 100% biodiesel.  Biodiesel generally has a higher specific gravity than 

petrodiesel so a splash blending technique with inversion mixing will adequately blend the fuels.  BXX 

Blends will be prepared 24 hours before usage to ensure complete mixing. 

 

I.2. Safety Precautions: 
Safety goggles, gloves, and protective clothing (apron) shall be worn while mixing all fuels.  The fuel 

blends should be prepared in a laboratory fume hood or equally well-ventilated area. 

 

I.3. Step by Step Procedure: 
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I.3.1. With the desired BXX blend determined prior to mixing, appropriately label the 

red 6 gallon plastic fuel storage container with the following information: BXX blend; 

Batch Number; Date; Biodiesel Feedstock, Supplier and Date Acquired; Petrodiesel 

Source, and Date Acquired.   Labels should be acquired for this information.  the label, 

after it is applied and filled out, should be covered with clear packing tape to prevent the 

ink on the label from bleeding if it gets wet. 

I.3.2. Determine the BXX blend desired for mixing.  Refer to Table 1 below for 

accurate volumes of biodiesel and petrodiesel for desired blend ratio. 
 

Table 2: BXX Mixing Volumes to Prepare 10 Liters of Blended Biodiesel Fuel 

10 L BXX Mixing Volumes  
Designed by: Daryl Deprey & David Wheeler 

Date: 6/4/2010 

BXX 
% 

Biodiesel 

Volume 

Biodiesel (L) 

% 

Petrodiesel 

Volume 

Petrodiesel (L) 

B2 2 0.2 98 9.8 

B5 5 0.5 95 9.5 

B15 15 1.5 85 8.5 

B20 20 2 80 8 

B100 100 10 0 0 

 

I.3.3. Using the 1L glass graduated cylinder, measure and pour the appropriate volume 

of petrodiesel into the designated BXX blend storage fuel tank. 

I.3.4. Using the 1L glass graduated cylinder designated for B100 biodiesel and 

appropriate feedstock, measure and pour the determined volume of biodiesel into the 

designated BXX storage fuel tank.  IMPORTANT: The biodiesel must be added to the 

fuel tank after the petrodiesel to ensure complete splash blending. 

 To further ensure complete blending, inversion mixing must be done.  With the 

storage container sealed shut, slowly invert the tank every taking 3 seconds to 

complete the invertion15 times to further and completely blend the fuels 

I.3.5. Place the BXX fuel mixture into the fire safety cabinet and store for 24 hours 

prior to experimental use to finish blending.   

I.3.6. To identify if complete blending has been achieved, remove one 30mL sample 

each from at the top, middle and bottom of the fuel tank with a 30mL pipet.  These 

samples should then be placed in 30mL amber glass bottles and labeled appropriately. 

I.3.7. Analyze these samples using the IROX-Diesel FTIR instrument.  The technique 

for testing will be done following the IROX-Diesel Analysis Procedure.  Compare the 

sample density results; if the density values for the three samples are within 0.5% of each 

other then complete mixing has been achieved.  Record the test name and number in both 

the test log and on the fuel storage container. 

 

 

I.4. Clean up: 

I.4.1. Wash all glassware down with hot soapy water. 

 After the glassware is clean it will no longer smell of fuel 

I.4.2. Rinse glassware with Deionized water 

I.4.3. Rinse glassware with Acetone for quick drying 

 

 



UVM TRC Report # 14-008 

  

58 

 

II.  Fuel Purging Procedure 
 

This is the procedure for purging from one fuel to another for the Armfield CM-12 engine.  To ensure 

consistent methodology and cleaning of system and to eliminate cross-contamination of fuels the fuels 

lines must be purged of the previous run’s fuel. 

 

Safety. Safety goggles, gloves, and protective clothing should be worn.  Area should also be well 

ventilated while swapping fuels and running the Armfield engine. 

 

 Procedure: 
1. Make sure there is enough fuel in both the biodiesel and diesel fuel tanks to complete the purging 

process.  This will be a function of the volume of fuel contained in the fuel lines, filter, and 

injection pump.  At 0% throttle/ 0% brake the volumetric flow rate of the fuel flowing through the 

return fuel line has been measured to be approximately 1 Liter/min.  To determine the volume of 

fuel and time necessary to purge the fuel system samples of fuel from the return fuel line should 

be taken once every minute from the time that the ‘FEED’ valve is changed.  These samples can 

then be tested with the IROX-D to determine how long it takes for the fuel system to purge to the 

new fuel. 

2. Purging from Diesel to Biodiesel: 

a. Start engine and warm up at 0% throttle/ 0% brake for 5 minutes. 

b. Switch ‘FEED’ valve to ‘BIO’ and ‘RETURN’ valve to ‘WASTE’ as close to 

simultaneously as possible. 

c. Allow engine to run for 5 minutes or until the fuel in the fuel line is known to have fully 

purged. 

d. Switch ‘RETURN’ valve to ‘BIO’ 

3. Purging from Biodiesel to Diesel: 

a. Start engine and warm up at 0% throttle/ 0% brake for 5 minutes. 

b. Switch ‘FEED’ valve to ‘PETRO’ and ‘RETURN’ valve to ‘WASTE’ as close to 

simultaneously as possible. 

c. Allow engine to run for 5 minutes or until the fuel in the fuel line is known to have fully 

purged. 

d. Switch ‘RETURN’ valve to ‘PETRO’ 
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 IROX Diesel Fuel Analysis Procedure 
 

Abstract: 

The IROX Diesel can be used to analyze properties of petrodiesel, biodiesel, and blends of both.  The 

IROX Diesel instrument uses Fourier transform infrared spectroscopy to determine characteristics of fuel.  

The IROX diesel instrument determines the mid-range infrared absorption spectrum.  The mid-infrared 

wavenumber range analyzed is 650cm-1 to 3100cm-1.  This is done by an infrared source emitting the 

range of wavelengths through a sample.  A detector then determines the absorption of the sample.  

Organic compounds create distinct peaks in the mid-infrared spectrum.  The IROX Diesel is used to 

create the mid-infrared spectrum to determine the organic compounds that exist in the fuels.  The purpose 

of this procedure is to document how the IROX Diesel instrument and IROX MiniWin program are used 

to analyze fuel samples. 

 

Safety: 

Safety goggles, gloves, and protective clothing should be worn.  Area should also be well ventilated while 

pouring fuels for IROX analysis. 

 

Materials: 
-30mL Amber Glass Bottles w/ Teflon Cap -Pipettor 

-40mL Hexanes, HPLC, 98.5%, UN1208   -25mL Beaker 

-IROX Diesel FTIR Instrument V3.21; Serial # 

21-520-0300 

-30mL Pipet 

-MiniWin IROX Software V2.24  

 

 

3.1 IROX Diesel Setup and Calibration 
1. Switch on the instrument with the power switch above the power connector on the rear 

panel.  

2. Wait for the instrument to run through the initiation steps which include, “warming up 

FTIR” and “adjusting FTIR” until the Hexane calibration menu appears as seen below 

in Figure 1.  

 
Figure 1: IROX Diesel Hexane Calibration Menu 

a. ATTENTION: The Calibration of the FTIR spectrometer must be performed once 

a day before the IROX is used for sample measurements. Make sure that the 

machine is only completing one rinse cycle. Otherwise it will consume 5 ml extra 
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per rinse. Also be sure that auto is selected (has thick border) under setup menu.  

If it is not, move cursor to auto and press TASK.  Auto should be highlighted 

when the cursor is moved to another selection.  Auto uses makes the IROX-D use 

the auto sampler tube to acquire the sample instead of the operator using a 

syringe. 

  

b. To navigate to the calibration menu move the cursor to “calib.” and select TASK.  

The cursor should then be moved to “FTIR” and TASK will be selected again.  

This will bring you to the calibration menu as previously shown in Figure 1. 

3. Add approximately 15mL of 98.5%, HPLC grade, Hexanes (GIVE manufacturer and 

catalog # currently in use) to a clean, acid washed 25mL glass beaker.  This will be used 

for the calibration. 

4. With the sample tube connected to the Luer inlet on the right side of the IROX, insert the 

end of the tube into the beaker of n-Hexanes, as shown in Figure 2 below. 

 

 
Figure 2: IROX Diesel Sampling Setup 

 

5. Press RUN to start the calibration measurement and follow the instructions on the display 

to remove the sampling tube when prompted. 

6. When the measurement is finished, the display changes to back to the Hexane calibration 

menu. 

a. According to an email with the Grabner Support Team, the magnitudes of the 

peaks on the calibration reference spectrum are not indicative of the quality of the 

calibration. As long as no errors are reported by the instrument the calibration is 

“acceptable”. Move the cursor to SAVE and press TASK.  If an error occurs the 

machine should be readjusted.  This can be done by going selecting “setup” in the 

main menu then selecting “adjust” and pressing TASK.  The calibration will then 

have to be repeated. 

7. Shift the cursor to END and press TASK. The new reference spectrum is stored and used 

for further calculation of concentrations.  

8. The display will show the Start-up menu as shown below in Figure 3. 
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Figure 3: IROX Main Menu 

3.2 Fuel Sampling: 
Using a 30 mL pipet and pipette remove 30mL of sample fuel from the desired fuel tank.  Place 

this sample into a 30mL amber glass bottle and close with proper Teflon cap.  The sample can 

then be stored at room temperature or used for further testing. 

 

3.3 Testing Fuel Samples Using IROX MiniWin V2.24: 

1. Prepare the sample of fuel by filling a minimum of 15mL of fuel from the sample bottles 

into a 25 mL beaker and place the sample tube in the sample as shown in Figure 2 above. 

2. Open IROX MiniWin version 2.24 file path, C:\Program Files\Grabner Instruments\ 

Miniwin Irox the Dell Latitude E6400 companion laptop .   

3. Verify that the IROX Diesel instrument is connected to IROX MiniWin by viewing the 

COM status in the bottom right corner of the program as shown in Figure 4.  “IROX-D V 

3.21” should show up in the middle box as shown. 

 
Figure 4: IROX MiniWin COM Status 

 

4. Select the “IROX Measurement” button on the toolbar, as shown by the red arrow in 

Figure 5 below. 
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Figure 5: IROX MiniWin V2.24, Measure Button 

 

5. The measurement window that opens is shown in Figure 6.  In this window, properly 

name the test under “Sample-ID” and make sure “1” is selected under “Groups”.  Select 

“SET” in the window to upload the test name and group number to the IROX instrument. 

a. “Group 1” selects the default characteristics that the instrument will analyze.  

<<LIST THOSE CHARACTERISTICS HERE>> 

b. The Sample-ID, test operator, type of fuel being testing, and date should also all 

be recorded IROX Logbook found near the computer. 

 
Figure 6: IROX MiniWin Measurement Window 

 

6. Select “Start” in the measurement window.  The instrument will begin the analysis 

procedure.  Observe the IROX Diesel instrument display and remove the sample tube 

when prompted. 

Always download and save the IROX spectra after the instrument has completed its task under 

the same name as the file name used in step 5.   (Figure 7) 

7. After the analysis another measurement can be performed by following these instructions.  

. 
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Figure 7: IROX Specrum output 

 

 

3.4 Viewing Results and Spectrum Using IROX MiniWin: 

When the analysis is finished the WHAT KIND? (does this mean spectrum or the interpreted 

parameters?) results should be downloaded in IROX MiniWin.  Selecting the “Download Result” 

button on the toolbar, as shown in Figure 8, downloads the result to the compiled result list.  If 

no list is opened it will start a new list. 

 
Figure 8: IROX MiniWin Download Result Button 

 

1. To view the individual sample results, select the measurement from the list.  The results 

will appear above the list.  Scroll through the list to view desired characteristics.  The 

results list and results are shown below in Figure 9. If there was a specific warning 

associated with the sample it would be displayed  

 
Figure 9: IROX MiniWin Results Window 

Spectrum 

download 

button 
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2. To download the FTIR spectrum produced by the instrument select “Download 

Spectrum” on the toolbar as shown in Figure 9. 

 
Figure 10: IROX MiniWin Download Spectrum Button 

THIS FIGURE IS SAME AS FIG 8… please FIX. 

3. The spectrum should then be saved with the date in the folder C:\Documents and 

Settings\Rose\My Documents\IROX Diesel Tests\ the companion laptop.  

 

3.5 Shutting Down and Cleaning the IROX Diesel Instrument 
1. When testing is complete for the day, fill the syringe supplied with the instrument with 

5mL of n-Hexanes.  With the sample tube removed, place the syringe in the Luer inlet 

and slowly inject the 98.5%, HPLC grade, Hexanes into the instrument.   

2. Using the empty syringe inject several pumps of air into the instrument.  This is done to 

clean the instrument and eliminate contamination of the instrument after usage. 

3. To shut down the instrument make sure nothing is running and turn the switch located on 

the back of the instrument off. 

4. Dispose of waste fuel in a properly labeled waste container. 

 

 
 
References: 

- NREL: Biodiesel handing and use guide  

- IROX MiniWin Manual 

- IROX Quick Start Guide 

- Skoog, Douglas A., and James J. Leary. Principles of Instrumental Analysis. Fort Worth: 

Saunders College Pub., 1992. Print. 

-  

 

 

Table B.1  Fuel Purchase and Delivery Log 

 
 

  

Distributor Fuel Delivery	Date Quantity	(Gal) Price/Gal Federal	Tax/Gal

Burke Soy	Biodiesel 20-Sep-2010 20 3.00

Trono Petrodiesel 22-Oct-2010 54.5 2.68 0.244

Trono Petrodiesel 9-Mar-2012 51.2 3.86 0.244

Burke Soy	Biodiesel 9-May-2012 20 3.00 0.1875

Trono Petrodiesel 15-Jan-2013 104.8 3.82 0.244

UConn Soy	Biodiesel 17-Jan-2013 50

UConn WVO	Biodiesel 17-Jan-2013 158

Trono Petrodiesel 19-Mar-2013 53.8 3.65 0.244
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Appendix C.  Sampling Checklists and Logsheets 
 

 

 

Figure C.1. Run Logsheet 

 
 

 

Figure C.2.   Labels sheet for PM Filter Petri dishes 

 
 

  

Time ON: Time OFF: Time ON: Time OFF:

Filter ID: Location Pump ID

Flow Rate 

(L/min) Time ON Time OFF

Impinger 

ID: Location Pump ID

Flow Rate 

(L/min) Time ON Time OFF

Total Vol.

 Sampled

Time Exhaust Diluter Pitot

*Test ID Code Format:

SMPS ELPI

IssuesIssues

Number of impingers & their locations

Husky Compressor Outlet Pressure (psi): 

Driving cycle info: 

Heat Tape ( % / Temperature)

OMEGA FM -Approximate Rate ( L/min)

Mini-Diluter Time ON

Yes/No

Impinger Solution:

Setup: 

Heat Tape ( % / Temperature)

Temp:

Temp:

SMPS

 Used 

Yes/No ELPI 

Used

Time ON:

Time ON:

#DIV/0!

Mean

SD

RSD (%)

#DIV/0!

#DIV/0!

Date: 

TAQ LAB

ARMFIELD ENGINE: EMISSIONS SAMPLING LOGSHEET

Test ID Code*: 

Engine Start Time:

NOTE: Please fill all relevant sections highlighted in yellow

Operators: Engine End Time: 

Mini-Diluter Time OFF
Temp. (deg C)

Rel. Humidity (%)
Ambient Sampling Conditions 

in the Lab

Number of Filters & their locations

Magnehelic Readings

File Name

Run Scan No.

SMPS and ELPI Information

PC ID

Notes

Bend DateFuel Type

1-09-26-10-B00

Remarks

Run 

number for 

the day 

- Month - Day - Year- 
Fuel 
(B00=PetroDiesel) 

F
ilt

e
r 

P
ic

s
  

Im
p

in
g

e
r 

P
ic

s
  

 

Armfield	Filter	QFF	Teflo	
FF	 #69	

Project:	

Preweight:	 Postweight:	 Test	#:		

___________g	___________g	Date:	

Date:____By:__	 Date:____By:__	 TP	 DS	

	  

Armfield	Filter	QFF	Teflo	
FF	 #70	

Project:	

Preweight:	 Postweight:	 Test	#:		

___________g	___________g	Date:	

Date:____By:__	 Date:____By:__	 TP	 DS	

 

Armfield	Filter	QFF	Teflo	

FF	 #71	
Project:	

Preweight:	 Postweight:	 Test	#:		

___________g	___________g	Date:	

Date:____By:__	 Date:____By:__	 TP	 DS	

	  

Armfield	Filter	QFF	Teflo	

FF	 #72	
Project:	

Preweight:	 Postweight:	 Test	#:		

___________g	___________g	Date:	

Date:____By:__	 Date:____By:__	 TP	 DS	
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Figure C.3.  EEPS and FTIR Instrument Logsheet  

 

 

 
 

Personnel:

In-Lab:

Outdoor:

Pre-Run ☐ ☐☐ _

_

_____preEEPSoffsets ☐ ☐☐ _

_

_____FTIRbkg

☐ ☐☐ _

_

_____SPECS ☐ ☐☐ _

_

_____SNR1

☐ ☐☐ Synchronize☐☐ T

i

me ☐ ☐☐ Fi lter☐☐ #☐

☐

 ___

_

__☐☐ Pre-

w

eight☐☐ _____

_

__

Instrument Start: Start:

Blank Stop: Stop:

☐ ☐☐ _

_

_____FTIR1 ☐ ☐☐ _

_

_____EEPS1

Notes:

Tunnel Start: Start:

Blank Stop: Stop:

☐ ☐☐ _

_

_____FTIR2 ☐ ☐☐ _

_

_____EEPS2

Notes:

Sampling Start: Start:

Run Stop: Stop:

☐ ☐☐ _

_

_____FTIR3 ☐ ☐☐ _

_

_____EEPS3

Notes: Start:

Stop:

☐ ☐☐ _

_

_____EEPS3b☐☐ (i

f

☐☐ nee

d

ed)

Sampling Notes

Time Observations

Tunnel Start: Start:

Blank Stop: Stop:

☐ ☐☐ _

_

_____FTIR4 ☐ ☐☐ _

_

_____EEPS4

Notes:

Instrument Start: Start:

Blank Stop: Stop:

☐ ☐☐ _

_

_____FTIR5 ☐ ☐☐ _

_

_____EEPS5

Notes:

Post-Run ☐ ☐☐ _

_

_____postEEPSoffsets ☐ ☐☐ _

_

_____SNR2

☐ ☐☐ _

_

_____SPECS☐☐ (c

o

mplete) ☐ ☐☐ F

i

lter☐☐ #☐☐  ____ _☐☐ Post- weight☐☐ _____

_

__

Notes: ☐ Label☐☐ O

t

her☐☐ Fi

l

ters☐☐ Use

d

F
T
IR

E
E
P
S

F
T
IR

E
E
P
S

Diesel Engine Testing

Transportation Air Quality Laboratory

                                                   EEPS and FTIR Log Sheet                    Date: 
F
T
IR

E
E
P
S

Ambient Conditions

F
T
IR

E
E
P
S

F
T
IR

E
E
P
S
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Figure C.4.  5-Gas, EAD and SMPS Instrument Logsheet 
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Figure C.5.  Aggressive Drive Cycle Worksheet 
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Figure C.6. Run Checklist 

 

CM12 Run Checklist: 

Pre Run: 

□ If running a completely new setup, go through it with Dr. Holmen to make sure everything is in 

place 

□ If sampling equipment has been rearranged or added, perform calculation to make sure the sum of 

the flow required by equipment is not greater than the sample flow 

□ Start instrument blanks 

o See logsheets for individual pieces of equipment (FTIR, EEPS, ELPI, EAD, SMPS, 5-

Gas, etc.) 

□ Turn compressors on making sure that the drain valves are closed and that the hoses are attached 

correctly 

□ Turn the Agilent power supply on for the Labview instruments and set to 24V 

□ When instrument blanks are complete and the compressors are full, open the valve to turn the 

dilution system on; record dilution system on time 

□ Turn the extraction system on 

□ Make sure all ports are either plugged or going to sampling equipment and that back flow will not 

occur. 

□ Start logging Labview data.  Record starting time. 

□ Load the ‘blank’ impingers.   

□ Turn Gillian pumps on 

□ If using the FTIR, load new filter on the inlet and make sure its pump runs for the entirety of all 

tunnel blanks.  If FTIR is not being used make sure the line/port is plugged. 

□ Start tunnel blanks 

o See logsheets for individual pieces of equipment (FTIR, EEPS, ELPI, EAD, SMPS, 5-

Gas, etc.) 

□ Once all tunnel blanks are complete turn Gillian pumps off and clear them 

□ Remove and cap the ‘blank’ impingers and replace with ’test’ impingers 

□ Load filters 

□ Check to make sure all pump connections are secure and that rotameter valves are fully open 

Starting Engine & Equipment after tunnel blanks are complete 

□ Make sure scantool wire is connected 

□ Turn cooling water flow on 

□ Start Gillian and Fasco pumps, setting flow rates; record start times (~30sec before engine start) 

□ Select ‘Remote’ and ‘Ignition’ radio buttons in Armfield software 

□ Start logging scantool and Armfield data; record start times 

□ Start engine by clicking and holding the ‘Start’ radio button until the engine starts. Record start 

time. 

o If there is a false start, turn the ‘Ignition’ radio button off and back on quickly and try to 

start again. 

□ Once engine is running, select the ‘Brake’ radio button 
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□ Open ‘Control’ and select ‘Automatic’.  Change the ‘Set point RPM’ to ~ 100RPM less than 

steady state and click ‘Apply’. 

o Make sure the ‘Brake %’ changes to something other than 0 within 1 min of selecting 

‘Apply’ 

□ ~7.5min after the engine was started, initiate the scheduler 

During Run 

□ Monitor equipment and take manual readings during each mode.  These readings should be taken 

after the engine has stabilized (between 1/2way through the mode and the end of the mode).  

Record the time of the reading. 

□ Make sure all information is filled out on logsheets 

Shut Down 

□ Turn ‘Ignition’ radio button off in Armfield software to stop engine 

□ Stop logging through Armfield; record the stop time 

□ Turn Gillian and Fasco pumps off; record time off (~30sec after engine off) 

□ Record total volume pumped via Gillian pumps.  Clear once recorded. 

□ Remove ‘test’ impingers and install ‘blank’ impingers 

□ Turn coolant water flow off 

□ Save Armfield & scantool data to HolmenGroup Drive 

□ Turn Gillian pumps back on 

□ Start tunnel blanks 

o See logsheets for individual pieces of equipment (FTIR, EEPS, ELPI, EAD, SMPS, 5-

Gas, etc.) 

□ If using the FTIR, make sure FTIR pump runs to the completion of tunnel blanks for all 

equipment. 

□ Once tunnel blanks are complete, remove FTIR inlet filters, store for analysis. 

□ Stop Labview from logging and save to the HolmenGroup drive 

□ Start instrument blanks 

o See logsheets for individual pieces of equipment (FTIR, EEPS, ELPI, EAD, SMPS, 5-

Gas, etc.) 

□ Turn off extraction system 

□ Turn off dilution system 

□ Turn off compressors 

□ Once instrument blanks are complete, drain compressor tanks. 

□ Save all instrument data to :\HolmenGroup\SP2_ArmfieldEngine\Run Logs\(Date of run)) 

□ Photocopy and scan all instrument and run logsheets; copies go to Dr. Holmen, scans are saved 

along with instrument files in a folder called LogSheets&Pics  (:\SP2_ArmfieldEngine\Run 

Logs\(Date of run)\LogSheets&Pic)  

□ Collect fuel samples from fuel tanks once a week. 
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Appendix D. Raw Data Tables 
Table D.1. DILUTION RATIO AND TEST CONDITIONS TABLE.   
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Table D.2. Steady-State Test Run Mean Engine Parameters 
Steady-State 40%: 

 
 

Steady-State 80%: 

 
 

  

Parameter 1_07FEB2012_B000 1_08FEB2012_B000 1_09FEB2012_B020 1_10FEB2012_B020 1_02MAR2012_B050 1_07MAR2012_B050 1_13MAR2012_B050 1_20MAR2012_B100 1_22MAR2012_B100 1_26MAR2012_B100

Amount	of	Time	at	SS	(h) 0.87 0.84 0.84 0.83 0.83 0.81 0.83 0.83 0.41 0.83

Average	Corrected

Torque	[Nm] 51.14 52.02 52.16 51.68 53.56 54.06 53.68 54.63 54.48 55.69

StDev	Corrected

Torque 0.37 0.37 0.50 0.47 0.56 0.52 0.52 0.54 0.46 0.43

Average	Corrected

%	Load	(%) 39.82 40.51 40.62 40.24 41.71 42.09 41.80 42.54 42.42 43.36

StDev	Corrected

%	Laod 0.29 0.29 0.39 0.36 0.43 0.41 0.40 0.42 0.35 0.34

Average	Engine	Speed	(RPM) 2000.66 2000.56 2000.72 2000.57 2000.82 2000.84 2000.66 2000.82 2001.36 2000.72

StDev	Engine	Speed 15.02 14.84 15.62 15.82 14.39 14.74 15.78 15.39 15.92 14.22

Average	Throttle	Position	(%) 45.24 45.24 45.24 45.24 45.00 45.00 45.00 45.00 45.00 45.00

StDev	Throttle	Position 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average	Exhaust	Temperature	(°C) 281.59 280.88 282.94 286.12 289.68 296.06 299.68 303.82 307.75 291.42

StDev	Exhaust	Temperature 1.92 1.69 1.86 1.56 1.70 1.41 1.41 1.64 1.52 1.72

Parameter 1_28AUG2012_B000 1_12SEP2012_B000 1_24OCT2012_B000 1_14MAY2012_B100 1_16MAY2012_B100 1_17MAY2012_B100

Amount of Time at SS (h) 0.62 1.12 1.10 1.14 1.13 1.13

Average Corrected

Torque [Nm] 95.53 94.76 97.55 103.52 102.63 102.72

StDev Corrected

Torque 0.37 0.40 0.58 0.47 0.43 0.43

Average Corrected

% Load (%) 74.10 73.49 75.66 80.29 79.60 79.67

StDev Corrected

% Laod 0.29 0.31 0.45 0.36 0.34 0.34

Average Engine Speed 

(RPM) 2203.03 2201.44 2201.64 2202.04 2202.16 2202.33

StDev Engine Speed 15.23 15.75 16.43 15.61 16.00 16.56

Average Throttle Position 

(%) 67.00 67.00 67.00 67.00 67.00 67.00

StDev Throttle Position 0.00 0.00 0.00 0.00 0.00 0.00

Average Exhaust 

Temperature (°C) 531.74 510.42 476.92 553.97 560.16 545.62

StDev Exhaust Temperature 1.94 1.85 2.66 3.01 2.35 2.40
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Table D.3. Particulate Matter Filter Mass Concentrations 

  

Filter	
Type

Sample
Filter	#

Filter

Sampling	
Location

Exhaust

Sample
Type

QFF 144 DL-C Diluted

QFF 145 DL-C Diluted

FF 171 DL-C Diluted

QFF 146 DL-C Diluted

QFF 147 DL-C Diluted

QFF 150 DL-C Diluted

QFF 148 DL-C Diluted

QFF 149 DL-C Diluted

QFF 151 DL-C Diluted

QFF 179 DL-C Diluted

QFF 180 DL-C Diluted

QFF 202 DL-C Diluted

QFF 181 DL-C Diluted

QFF 203 DL-C Diluted

QFF 204 DL-C Diluted

QFF 205 DL-C Diluted

QFF 206 DL-C Diluted

QFF 210 DL-C Diluted

QFF 142 DL-C Diluted

QFF 212 DL-E Diluted

QFF 211 DL-E Diluted

QFF 143 DL-H Diluted

FF 167 DL-H Diluted

FF 168 DL-H Diluted

FF 169 DL-H Diluted

Teflo 152 DL-H Diluted

Teflo 155 TP Raw

Teflo 155 TP Raw

Teflo 155 TP Raw

Teflo 156 TP Raw

Teflo 156 TP Raw

Teflo 158 TP Raw

Teflo 159 TP Raw

Teflo 161 TP Raw

Teflo 173 TP Raw

Teflo 176 TP Raw

Teflo 178 TP Raw

Teflo 189 TP Raw

Teflo 190 TP Raw

Teflo 192 TP Raw

Teflo 194 TP Raw

Teflo 195 TP Raw

FF 163 TP Raw

FF 183 TP Raw

FF 184 TP Raw

FF 185 TP Raw

FF 186 TP Raw

Teflo 199 TP Raw

Teflo 199 TP Raw

Teflo 200 TP Raw

Teflo 196 TP Raw

Teflo 197 TP Raw

FF 164 TP Raw

Teflo 198 TP Raw

FF 166 TP Raw

FF 162 TP Raw

Teflo 160 TP-FTIR Raw

Teflo 172 TP-FTIR Raw

Teflo 174 TP-FTIR Raw

Teflo 177 TP-FTIR Raw

Teflo 187 TP-FTIR Raw

Teflo 188 TP-FTIR Raw

Teflo 191 TP-FTIR Raw

Teflo 193 TP-FTIR Raw

QFF 182 TP-FTIR Raw

QFF 207 TP-FTIR Raw

QFF 208 TP-FTIR Raw

QFF 209 TP-FTIR Raw

FF 170 TP-FTIR Raw

Teflo 157 TP-Imp Raw

Teflo 157 TP-Imp Raw

Filter Engine	Run	Setup

Fuel
Blend

B000

B000

B000

B020

B020

B050

B050

B050

B100

B100

B100

B000

B000

B100

B100

B100

B100

B100

None

B000

B100

B000

B100

B100

B100

None

B000

B000

B000

B000

B000

B000

B000

B020

B020

B050

B050

B050

B100

B100

B100

B000

B000

B000

B000

B000

B000

B000

B000

B000

B100

B100

B100

B100

B100

None

B000

B020

B020

B050

B050

B050

B100

B100

B000

B100

B100

B100

B100

B000

B000

Engine	Run	Setup

%	Load

40

40

40

40

40

40

40

40

40

40

40

80

80

80

80

80

80

80

None

40

80

40

80

80

80

None

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

80

80

80

80

80

80

80

80

80

80

80

80

80

80

None

40

40

40

40

40

40

40

40

80

80

80

80

80

40

40

Engine	Run	Setup

Test	Date
(mm/dd/yy)

7-Feb-2012

8-Feb-2012

8-Jun-2012

9-Feb-2012

10-Feb-2012

2-Mar-2012

7-Mar-2012

13-Mar-2012

20-Mar-2012

22-Mar-2012

26-Mar-2012

2-May-2012

7-May-2012

3-May-2012

14-May-2012

15-May-2012

16-May-2012

17-May-2012

27-Jan-2012

8-Jun-2012

17-May-2012

7-Feb-2012

14-May-2012

15-May-2012

16-May-2012

27-Jan-2012

30-Jan-2012

30-Jan-2012

30-Jan-2012

31-Jan-2012

31-Jan-2012

7-Feb-2012

8-Feb-2012

9-Feb-2012

10-Feb-2012

2-Mar-2012

7-Mar-2012

13-Mar-2012

20-Mar-2012

22-Mar-2012

26-Mar-2012

2-May-2012

7-May-2012

6-Sep-2012

12-Sep-2012

21-Sep-2012

24-Oct-2012

8-Nov-2012

12-Nov-2012

11-Dec-2012

3-May-2012

14-May-2012

15-May-2012

16-May-2012

17-May-2012

27-Jan-2012

8-Feb-2012

9-Feb-2012

10-Feb-2012

2-Mar-2012

7-Mar-2012

13-Mar-2012

20-Mar-2012

22-Mar-2012

7-May-2012

14-May-2012

15-May-2012

16-May-2012

17-May-2012

31-Jan-2012

31-Jan-2012

Engine	Run	Setup PM	Mass	Collected	on	Filter

Difference	post	wt-pre	
wt	(Δmg)	

0.532

0.532

0.084

0.489

0.187

0.451

-0.371

0.376

0.388

0.288

0.919

0.942

0.062

0.559

0.638

0.497

0.622

0.616

0.084

0.414

0.561

0.403

0.066

0.003

0.088

-0.114

2.182

2.150

2.113

5.777

5.586

3.143

4.833

3.889

5.576

7.017

7.144

7.153

11.125

11.669

21.261

5.720

14.150

6.017

7.485

10.963

5.242

3.848

4.124

5.933

3.567

8.413

9.636

3.071

5.426

0.078

3.481

2.070

2.066

2.548

1.774

1.798

1.623

1.320

4.985

2.423

2.073

2.626

0.733

0.734

0.698

595.11

366.92

65.12

305.02

128.51

318.84

-285.22

250.97

262.75

250.62

601.86

561.04

36.33

335.45

372.52

292.68

377.16

372.62

81.66

367.46

308.37

255.40

63.14

2.89

84.53

-125.54

3978.63

3920.28

3853.42

5974.42

5776.88

3077.29

4072.63

4103.01

7032.51

8105.03

8534.42

10244.23

12861.47

19972.47

20975.73

6683.95

12589.96

12396.63

10240.40

20953.75

6113.99

4048.82

4328.66

6405.04

2091.52

7349.79

6614.42

2424.10

6260.45

358.15

2841.36

1626.74

1631.67

2151.24

1432.08

1435.32

1310.45

1466.06

3946.83

1926.03

1678.44

2124.13

588.43

4125.47

3923.22

Mass	Concentration

(µg/m3)

Filter	may	have	been	torn	in	corner

Run	ended	early

Orifice	clogged	in	Aerosol	Inlet

Orifice	clogged	in	Aerosol	Inlet

Small	tear	on	edge	post-run

From	"dry	run"

Black	specks	present	on	filter	after	run

Denuder	in	line	before	filter

Orifice	clogged	in	Aerosol	Inlet

Torn	along	edge	post-run

From	"dry	run"

Q-n-D	run

2nd	weigh

3rd	weigh

Q-n-D	run	#2

2nd	weigh

Run	ended	early

Splotchy	collection	pattern

Cold	ambient	conditions

Orifice	clogged	in	Aerosol	Inlet

Pre-wt	check	9/5:	69.798mg

Pre-wt	check	9/12:	67.101mg

Pre-wt	check	9/19:	67.761mg

Pre-wt	check	10/24:	70.373mg

First	Engine	Run	for	mass	collection

Second	Engine	Run	for	mass	collection

Sampled	horizontally	with	catch-can

No	post-run	flow-rate	recorded

Orifice	clogged	in	Aerosol	Inlet

From	"dry	run"

Black	specks	present	on	filter	after	run

Degradation	visible	on	back	of	filter

Metallic	particles	on	filter	after	run

Filter	torn	after	run

Metallic	particles	on	filter	after	run

Run	ended	early

Orifice	clogged	in	Aerosol	Inlet

Orifice	clogged	in	Aerosol	Inlet

Some	of	filter	left	on	o-ring	post-run

O-ring	did	not	seal	correctly

Q-n-D	run	#2	

flow	vol	given	by	imp	pump	

2nd	weigh

Notes
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Table D.4. Ambient conditions recorded from ExTech Temperature and Humidity Logger at 

beginning of Engine Runs 

 
 

  

Engine	Run	Date Temp	(°C) R.H.	% RunType

31-Jan-2012 19.4 31.8 SS40%	1

7-Feb-2012 19.6 27.8

8-Feb-2012 18.2 27.7

9-Feb-2012 16.3 18.9

10-Feb-2012 17.6 21.5

2-Mar-2012 14.4 26.5

7-Mar-2012 16.9 19.7

13-Mar-2012 20.7 42.2

20-Mar-2012 23.1 44.7

22-Mar-2012 24.6 43

26-Mar-2012 11.6 13.9

2-May-2012 21.1 43.3 SS80%	1

3-May-2012 20.7 50

7-May-2012 21.3 19.7

14-May-2012 20.6 50.3

15-May-2012 20.4 68.6

16-May-2012 21.8 63

17-May-2012 18.2 31.4

8-Jun-2012 24.8 46.2 SS40%	2

27-Jun-2012 21.9 49.4

28-Aug-2012 28.4 46.6 SS80%	2

6-Sep-2012 25.9 60.4

12-Sep-2012 23.4 40.8

21-Sep-2012 21.4 50.5

24-Oct-2012 16.9 36.1
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Table D.5. IROX RESULTS FOR 2012 CM-12 TEST FUELS    
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Figure D.1.  IROX-Diesel Fuel Properties for fuel samples collected from the fuel tanks, before and 

after CM-12 tests.   
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Table D.6. Steady-State 40% Load Engine Tests from Winter-Spring 2012 
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Table D.7. Steady-State 80% Load Engine Tests from Winter-Spring 2012 

 
 

 

 

 

 

 
Figure D.2.  SS40 and SS80 Average Tailpipe PM Mass Concentrations.  n = number of replicate 

samples.  Error bars are one standard deviation. 
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Table D.8. EEPS Channel Means for SS40 and SS80 Tests 
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Effect of Dilution Ratio Correction on EEPS PN Distributions 

 
Figure D.3.  Uncorrected EEPS mean number distributions by run. 

 

 

 

 

 

 

 
Figure D.4.  EEPS Particle Number Distributions for SS40 and SS80 tests.  Data were corrected for 

measured dilution ratio.   
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Figure D.5.  Average Particle Number Distributions for replicate steady –state emissions tests at 

each biodiesel blend ratio. EEPS data are not corrected for tunnel blank and dilution ratio here. 

  

B00 

100% Petro-Diesel 

B100 

100% Bio-Diesel 

B50 

50% Bio-Diesel; 

50% Petro-Diesel 

B20 

20% Bio-Diesel; 

80% Petro-Diesel 
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Table D.9.  Particle Number Distribution Diameter Modes and Corresponding DR-Corrected 

Concentrations by Blend 
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Table D.10. FTIR Gas-Phase Concentrations for SS40 Biodiesel Runs 

 

  

Acetylene	 B000	Total	 2.853	±	0.01005	

	

Ethylene	 B000	Total	 	15.27	±	0.6410	

	

NO2	High	 B000	Total	 88.65	±	2.032	

(ppm)	 B000	SS	 1.818	±	0.1367	

	

(ppm)	 B000	SS	 7.463	±	0.2318	

	

(ppm)	 B000	SS	 94.34	±	2.542	

	

B020	Total	 	1.877	±	0.4419	
	 	

B020	Total	 	7.695	±	0.5533	
	 	

B020	Total	 	66.26	±	4.227	

	
B020	SS	 	1.705	±	0.3599	

	
	

B020	SS	 	5.555	±	0.1080	

	
	

B020	SS	 	73.30	±	2.554	

	
B050	Total	 2.014	±	0.4254	

	
	

B050	Total	 7.886	±	0.3154	
	

	
B050	Total	 76.12	±	12.01	

	
B050	SS	 1.463	±	0.7633	

	
	

B050	SS	 6.100	±	0.2773	

	
	

B050	SS	 61.38	±	4.369	

	
B100	Total	 3.160	±	0.3143	

	
	

B100	Total	 11.81	±	1.946	
	

	
B100	Total	 53.75	±	9.032	

		 B100	SS	 2.653	±	0.4686	

	

		 B100	SS	 9.014	±	1.525	

	

		 B100	SS	 35.20	±	4.205	

CH4	 B000	Total	 	5.452	±	0.1533	

	

Formaldehyde	 B000	Total	 19.88	±	1.125	

	

NO2	Low	 B000	Total	 	90.12	±	0.5920	

(ppm)	 B000	SS	 3.284	±	0.1189	
	

(ppm)	 B000	SS	 8.206	±	0.6255	
	

(ppm)	 B000	SS	 96.22	±	0.2728	

	

B020	Total	 	3.593	±	0.4477	

	
	

B020	Total	 	8.952	±	0.3283	

	 	

B020	Total	 	67.35	±	4.265	

	
B020	SS	 	2.958	±	0.3760	

	
	

B020	SS	 	5.099	±	0.2739	
	

	
B020	SS	 74.20	±	2.838	

	
B050	Total	 4.326	±	0.4612	

	
	

B050	Total	 8.841	±	0.5144	

	
	

B050	Total	 62.29	±		4.709	

	
B050	SS	 3.233	±	0.1261	

	
	

B050	SS	 5.434	±	0.3478	
	

	
B050	SS	 65.62	±		5.181	

	
B100	Total	 4.740	±	0.5839	

	
	

B100	Total	 11.69	±	2.469	

	
	

B100	Total	 63.42	±		9.588	

		 B100	SS	 3.740	±	0.3939	

	

		 B100	SS	 7.682	±	1.349	

	

		 B100	SS	 62.45	±		10.99	

CO	(ppm)	 B000	Total	 	567.1	±	24.29	

	

H2O	(%)	 B000	Total	 	3.805±	0.03191	

	

O3	150		 B000	Total	 	-3.545	±	0.7148	

	

B000	SS	 405.5	±	3.294	

	 	

B000	SS	 4.478	±	0.03300	

	

hitran	 B000	SS	 -0.8245	±	2.082	

	

B020	Total	 	313.2	±	23.25	

	 	

B020	Total	 	3.566	±	0.1882	

	

(ppm)	 B020	Total	 	0.9242	±	0.1634	

	
B020	SS	 	266.9	±	9.344	

	
	

B020	SS	 	4.469	±	0.1434	

	
	

B020	SS	 	2.149	±	0.1362	

	
B050	Total	 290.2	±	15.22	

	
	

B050	Total	 3.906	±	0.2876	

	
	

B050	Total	 11.70	±		10.45	

	
B050	SS	 241.8	±	12.37	

	
	

B050	SS	 4.6679	±	0.1716	

	
	

B050	SS	 1.618	±		0.2495	

	
B100	Total	 323.1	±	56.60	

	
	

B100	Total	 4.500	±	0.3105	

	
	

B100	Total	 5.645	±		4.856	

		 B100	SS	 253.3	±	43.32	

	

		 B100	SS	 4.931	±	0.4265	

	

		 B100	SS	 1.328	±		0.6632	

CO	(%)	 B000	Total	 0.05029	±	0.0008585	

	

HNCO	 B000	Total	 	7.0865	±	2.211	
	

Propane	 B000	Total	 4.884	±	0.6515	

	

B000	SS	 0.03696	±	0.0004504	
	

(ppm)	 B000	SS	 -0.08540	±	1.633	
	

(ppm)	 B000	SS	 0.7533	±	0.1457	

	

B020	Total	 	0.02750	±	0.001994	

	 	

B020	Total	 	2.515	±	1.242	
	

	

B020	Total	 	2.119	±	0.8333	

	
B020	SS	 	0.02404	±	0.0009327	

	
	

B020	SS	 	0.2527	±	1.002	
	 	

B020	SS	 	1.361	±	1.207	

	
B050	Total	 0.02548	±	0.001331	

	
	

B050	Total	 2.190	±	0.7653	
	 	

B050	Total	 6.804	±		4.464	

	
B050	SS	 0.02164	±	0.001139	

	
	

B050	SS	 0.3902	±	0.7932	
	 	

B050	SS	 -0.7980	±		1.996	

	
B100	Total	 0.02827	±	0.004511	

	
	

B100	Total	 1.383	±	0.6284	
	 	

B100	Total	 -3.281	±		5.864	

		 B100	SS	 0.02248	±	0.003623	

	

		 B100	SS	 -0.4008	±	0.8098	
	

		 B100	SS	 -13.29	±		9.083	

CO2	(%)	 B000	Total	 	3.999	±	0.02376	

	

N2O	 B000	Total	 	0.7429	±	0.09737	

	

Propylene	 B000	Total	 	3.805	±	0.3100	

	

B000	SS	 4.756	±	0.08028	

	

(ppm)	 B000	SS	 0.7569	±	0.09524	

	

(ppm)	 B000	SS	 1.081	±	0.5882	

	

B020	Total	 	3.698	±	0.2399	

	 	

B020	Total	 	0.6884	±	0.008956	

	 	

B020	Total	 	1.265	±	0.2351	

	
B020	SS	 	4.763	±	0.1843	

	
	

B020	SS	 	0.7449	±	0.0009089	

	
	

B020	SS	 	0.6646	±	0.1591	

	
B050	Total	 3.755	±	0.2842	

	
	

B050	Total	 0.5990	±	0.09176	

	
	

B050	Total	 0.5764	±		1.051	

	
B050	SS	 4.651	±	0.2491	

	
	

B050	SS	 0.6340	±	0.08320	

	
	

B050	SS	 0.9510	±		0.1220	

	
B100	Total	 4.115	±	0.1916	

	
	

B100	Total	 0.6534	±	0.03582		

	
	

B100	Total	 1.040	±		0.5305	

		 B100	SS	 4.712	±	0.3518	

	

		 B100	SS	 0.6612	±	0.04275	

	

		 B100	SS	 1.127	±		0.3134	

Diesel	 B000	Total	 	202.9	±	19.74	

	

NH3	 B000	Total	 0.1321	±	0.05015	

	

Urea		 B000	Total	 	-0.02533	±	0.004947	

(ppm)	 B000	SS	 128.5	±	11.55	

	

(ppm)	 B000	SS	 0.4702	±	0.05394	

	

by-
product	

B000	SS	 -0.02211	±	0.0007208	

	

B020	Total	 	93.98	±	6.825	

	 	

B020	Total	 	0.1853±	0.06539	

	

(ppm)	 B020	Total	 -0.01111	±	0.005215	

	
B020	SS	 	93.72	±	5.162	

	
	

B020	SS	 0.2284	±	0.1025	
	

	
B020	SS	 	-0.004286	±	0.009627	

	
B050	Total	 116.5	±	66.95	

	
	

B050	Total	 0.4358	±	0.7504	

	
	

B050	Total	 -0.02032	±		0.002876	

	
B050	SS	 81.87	±	15.97	

	
	

B050	SS	 0.8205	±	1.017	
	

	
B050	SS	 -0.01427	±		0.005106	

	
B100	Total	 105.8	±	53.95	

	
	

B100	Total	 0.4229	±	0.3009	

	
	

B100	Total	 -0.02222	±		0.005904	

		 B100	SS	 131.2	±	74.52	

	

		 B100	SS	 0.6564	±	0.4158	

	

		 B100	SS	 -0.01272	±		0.007969	

Ethane	 B000	Total	 1.737	±	0.1338	

	

NO	 B000	Total	 	301.3	±	4.758	
	

	 	 	

(ppm)	 B000	SS	 0.3618	±	0.01526	
	

(ppm)	 B000	SS	 392.5	±	12.62	
	

	 	 	

	

B020	Total	 	-0.2177	±	0.2345	
	 	

B020	Total	 	283.9	±	15.76	
	

	 	 	

	
B020	SS	 	-0.6296	±	0.1591	

	
	

B020	SS	 	390.3	±	11.93	
	

	 	 	

	
B050	Total	 0.9860	±	0.3098	

	
	

B050	Total	 279.7	±	29.40	
	

	 	 	

	
B050	SS	 -0.8162	±	0.3806	

	
	

B050	SS	 371.8	±	31.02	
	

	 	 	

	
B100	Total	 -0.5688	±	0.3806	

	
	

B100	Total	 283.7	±	23.25	
	

	 	 	

		 B100	SS	 -1.346	±	0.2478	

	

		 B100	SS	 352.4	±	34.40	

	

	 	 	

	

B000:	Feb	7,	Feb	8	

B020:	Feb	9,	Feb	10	

B050:	Mar	2,	Mar	7,	Mar	13	

B100:	Mar	20,	Mar	22,	Mar	26	

	

Total:	entire	run	

SS:	2000-5000	sec	after	engine	start	
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Figure D.6.   Mean Exhaust Gas Species Concentrations for (a) B0, (b) B20, (c) B50 and (d) B100 

fuel blends.  Error bars are one standard deviation. 

 




