ity of Vermont Transportation Research Center

ng)ipe Emissions and En-

gine Performance of a Light

-Duty Diesel

Engine Operating on Petro-
and Bio-diesel Fuel Blends

TRC Report 14-008 | Holmen, Feralio, Dunshee, Sentoff | June 2014




DISCLAIMER

The contents of this report reflect the views of the authors, who
are responsible for the facts and the accuracy of the information
presented herein. This document is disseminated under the
sponsorship of the Department of Transportation University
Transportation Centers Program, in the interest of information
exchange. The U.S. Government assumes no liability for the con-
tents or use thereof.



UVM TRC Report # 14-008

Tailpipe Emissions and Engine Performance of a Light-Duty Diesel
Engine Operating on Petro- and Bio-diesel Fuel Blends

University of Vermont Transportation Research Center

June 30, 2014

Prepared by:

Britt A. Holmén, Professor, Civil & Environmental Engineering
Tyler Feralio, Graduate Research Assistant

James Dunshee, Graduate Research Assistant

Karen Sentoff, Research Specialist

Transportation Research Center
Farrell Hall

210 Colchester Avenue
Burlington, VT 05405

Phone: (802) 656-1312
Website: www.uvm.edu/trc



http://www.uvm.edu/trc

UVM TRC Report # 14-008

Acknowledgements

The Project Team would like to acknowledge the efforts of the following members of the UVM
Transportation Air Quality (TAQ) Laboratory who assisted in collection of emissions data upon which
the results of this report are based: Vaishali Sharma, Brad Haire, as well as undergraduate research
assistants Scott Quinn, Michael Kreigh, Joseph Marri, David Wheeler, Daryl Deprey, Justin Jannone,
John Nummy, Kristin Darby and Rose Long. U.S. DOT support under Project #025668 via the UVM
TRC is gratefully acknowledged.

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the facts and the
accuracy of the data presented herein. The contents do not necessarily reflect the official view or
policies of the UVM Transportation Research Center. This report does not constitute a standard,
specification, or regulation.



UVM TRC Report # 14-008

Table of Contents

Tailpipe Emissions and Engine Performance of a Light-Duty Diesel Engine Operating on Petro- and Bio-

diesel Fuels
Acknowledgements
Disclaimer

TABLE OF CONTENTS ...oitiuuiiiiiitmniiiiinnniiiiiieniiiieensiiiiiensiiiiessssiesssssesssssneees

List of Tables

List of Figures

1. INTRODUCTION .....coteuiiiimnirinnnirinniiiennireneiininsisteesistsssineassstssseresssssessssssnssseanse

1.0 Overview and Introduction

1.1 Study Motivation

1.2 Effect of Biodiesel Properties on Engine Operation
1.2.1 Fuel Consumption
1.2.2 Start of Combustion
1.2.3 Low Temperature Properties

1.3 Effect of Biodiesel use on Tailpipe Emissions
1.3.1 Particulate Emissions measured by Mass (PM)
1.3.2 Particulate Emissions Measured by Number (PN)
1.3.3 Regulated Gas-Phase Emissions from Diesel and Biodiesel Fueled Engines
1.3.4 Mobile Source Air Toxic (MSAT) Emissions
1.3.5 Summary

2. RESEARCH METHODOLOGY ....cccctttuuirinniiennireneirenisiensiniansnensinesesenesssrsnsenees

2.1 Experimental Setup Overview
2.2 CM-12 Light-duty Diesel Engine Dynamometer
2.2.1 Armfield Software Control of CM-12 Engine and Dynamometer
2.2.2 Exhaust Sampling and Dilution
Ejector Diluter Mechanics.
Dilution Air Supply.
Raw Exhaust Sample Probe.
Dilution System Tuning.
Flow Measurement and Temperature Control.
2.2.3 Data Acquisition System
Armfield Engine and Dynamometer Parameters.
Scantool Engine Parameters
Labview Data Acquisition for Temperature, Flow and Pressure Sensors
2.2.4 Tailpipe Emissions Test Sequence
Fuel Purging
Drive Cycles.
0il and Fuel Filter Changes.
2.3 (Bio)diesel Fuel Supply and Monitoring
2.3.1 Fuel Composition And Biodiesel Fuel Blending
2.4 Gas and Particle Emissions Measurement

i
i
i

iv

NO UL DWW =

13
13
14
14
15
16
17
17
19
19
20
20
21
24
25
26
27
28
28
28



4. CONCLUSIONS

REFERENCES CITED

UVM TRC Report # 14-008

2.4.1 Particle Mass & Number Measurement
Filters
EEPS
UCPC
EAD
2.4.2 Exhaust Gas Measurement
FTIR
5-Gas Analyzer
2.5 Data Processing
2.5.1 Data Pre-Processing: Temporal Alignment.
2.5.2 Engine Load Calculation.
2.5.3 Fuel Consumption.
2.5.4 Blank Corrections
2.6 System Validation Procedures
2.6.1 Logsheets and Checklists
2.6.2 Data Quality Control and Instrument Verification

B 1 1 U N

3.1 Summary Of Data Collected
Ambient Air Conditions
3.2 Fuel Composition by IROX-D
3.3. Engine Operation: Run-to-Run Reproducibility
Engine Parameters
Fuel Consumption
3.4 Gravimetric Total Particulate Matter (PM) Emissions
3.5 Mean Particle Number Distributions by Biodiesel Blend
3.6 Particle Diameter Measurement
3.7 Gas-Phase Emissions

Appendices
Appendix A. Experimental Sampling Setup Instrumentation Detail

Appendix B. Biodiesel Fuel Blending & Analysis Procedures
Appendix C. Sampling Checklists and Logsheets
Appendix D. Raw Data Tables

29
29
29
29
30
30
30
30
30
30
31
32
33
34
34
35

36
37
37
38
38
40
42
42
45
45

53
54
56
65
71



UVM TRC Report # 14-008

List of Tables
Table 1-1. Properties of No. 2 Diesel and BiodieSel FUEIS (4)..........ooovveiiiiiiiiiie et 3
Table 1-2. Low temperature properties for No. 2 diesel fuel and B100 from various feedstocks (4) ............. 5
Table 1-3. Mobile source contribution to 1999 National-Scale Air Toxics Assessment (NATA)................ 12
Table 2-1. Armfield CM-12 Component SPECITICAtIONS. ..........cciviiiiiieiie e 14
Table 2-2 Computers used for each sampling INSIFUMENT.............coeiiiiiie i 20
Table 2-3 Armfield Sensors on CM-12 TeSt Cell .........oviiiiiiiiii e 20
Table 2-4. Rosstech Scantool Sensors and Calibration EQUatioNS™ ............cccvoiiiiiiiiieiicn e 21
Table 2-5. Data ACQUISITION COMPONENTS......cviiiiieiiiie it sir et s et e e srbe e s stbe e s b e e srbe e e staeeereas 21
Table 2-6. Labview Parameters and Calibration Equations for SENSOrs...........cccccveviieiie e, 22
Table 2-7. Diluted Samples and Flows by Port Identifier. Minimum dilution system flow is 80 LPM
resulting in a minimum of 5 LPM eXCeSS FIOW. .......c.ccoviiiiiiiciiiiiiec e 28
Table 2-8. PM Filter Specifications used for PM mass and chemical composition .............ccccccveeviiiveennen. 29
Table 2-9. Test runs completed at 40% and 80% load and the instruments that successfully logged........... 34
Table 3-1. Individual RUN TeSt CONAILIONS........civiiiieiiie ittt 36
Table 3-2. Mean IROX results for fuel biodiesel CONENT............covvviiiiiii i 38
Table 3-3. Mean (= 1 sd) Gas-phase Concentrations for SS40 Tests: Total Run and SS portion of run only.
............................................................................................................................................... 47
Table A.1. CM-12 Light-Duty Diesel Engine Dynamometer Test EQUIPMENT...........ccooveviiiiieiieiieeiene 54
Table A.2. Scantool 8-bit Interpretation Table ..o 54
Table A.3. Labview Channel SEIUD..........ooiiiiiiii e 55
Table B.1 Fuel Purchase and DElIVENY LOQ .......coiuiiiiiiiiiii sttt ettt tae s st 64
Table D.1. DILUTION RATIO AND TEST CONDITIONS TABLE........cccccciiiiiei e 71
Table D.2. Steady-State Test Run Mean Engine Parameters...........ccoooveiiiiiiiiieiie e 72
Table D.3. Particulate Matter Filter Mass CONCENLratiONS. .........cueiueeriieiieiieesee e 73
Table D.4. Ambient conditions recorded from ExTech Temperature and Humidity Logger at beginning of
ENQINE RUNS. ...ttt ettt ettt et 74
Table D.5. IROX RESULTS FOR 2012 CM-12 TEST FUELS......ccoiiiiiiiiieiee e 75
Table D.6. Steady-State 40% Load Engine Tests from Winter-Spring 2012 ...........cccoceevieeviieevineecvivec e 77
Table D.7. Steady-State 80% Load Engine Tests from Winter-Spring 2012 ...........cccceviveviiiiienieninenieenn 78
Table D.8. EEPS Channel Means for SS40 and SS80 TeSS.......cuviuveriieiieiiieriee e siee e 79
Table D.9. Particle Number Distribution Diameter Modes and Corresponding DR-Corrected
ConcentrationS DY BIENG .........oouiiiiiiiii e 82
Table D.10. FTIR Gas-Phase Concentrations for SS40 Biodiesel RUNS .........ccccovveviieiiie e 83



UVM TRC Report # 14-008

List of Figures

Figure 1-1. Biodiesel Production, Exports and Consumption in the United States, 2001 to 2011. (Source:
EIA Annual Energy Review, 2011 Table 10.4 from the U.S. Energy Information Administration

() ) T TP R PP OPRUPPPPRN 2
Figure 1-2. Depiction of crank angle (CA) for different piston positions in engine cylinder. ....................... 4
Figure 1-3. Cloud point, pour point, and cold filter plug point (CFPP) measurements for different blends of
soy biodiesel in Iow SUlfur NO. 2 di€SEl (4) ..vvveivieiiiei e 6
Figure 1-4. EPA’s criteria pollutant emissions data for biodiesel blends. ..............ccceevvviviviiiiie e, 7
Figure 1-5. Typical engine exhaust mass (dotted line) and number (solid black line) weighted size
distributions (left axis) with alveolar deposition fraction (green line, right axis)(14)................... 9
Figure 1-6. Particle number distributions from Aakko et al. (35) highlighting the effect of reformulating
QLT L= =] PSP 10
Figure 2-1. Block diagram of emissions test systems configuration. ..........cccccoceeivieeiiiic e 13
Figure 2-2. Schematic of Dekati ejector diluter flows to dilute raw exhaust for particle sampling. ............. 15
Figure 2-3. Engine Exhaust Dilution System Configuration ............cccocveiieiiiiiiiiieiie e 16
Figure 2-4. Locations of orifices (A, B) and orifice meters (C, D) on dilution System. ............cccocvevveninne 18
Figure 2-5. Calibration curves for exhaust sample transfer line and dilution air magnehelics.. .................. 23
Figure 2-6. Calibration setup for push-through flow of exhaust Pitot tube (a) and pull-through flow for MAF
SENSON ([0). 1tttk E et 23
Figure 2-7. MAF Sensor Calibration: (left) Raw voltage; (right) calibration curve based on Sierra flow
MELEr FIOWIALE JALA.... ... ieiieieie e 24
Figure 2-8. Pitot MAG Calibration: (left) Raw voltage; (right) calibration curve based on Sierra flow meter
FIOWFALE TALA ..ottt b e et et e aneeenbaenree s 24
Figure 2-9. Fuel Switching System with the valves in the ‘Biodiesel” POSItion ...........ccccovvveeviiveeiinnessineenne, 26
Figure 2-10. Second-by-Second drivVe CYCIES. .......coviiiiiiieii e 27
Figure 2-11. Volkswagen 1.9L SDi Torque Curve with Polynomial Trendlines..........c.ccccovvvviiiniiinninnns 32
Figure 2-12. Fuel consumption data COMPAriSON .........cciuviiiieiiiieesie e sie e tre et re e bre e srae e srae e 33
Figure 2-13. EEPS PN distribution verification against SMPS with standard aerosol...............c.ccccoevennne 35
Figure 3-1. Ambient air temperature and relative humidity at start of SStest runs. ..........cccccoeeevieiiinenne, 37
Figure 3-2. IROX Mid-FTIR Absorbance Spectra for raw B0 and B20 fuel samples (left) and B50 and B100
samples diluted to 25% with n-hexanes (fght)..........cccoeiii 38
Figure 3-3. IROX results for fuel biodiesel CONTENT ..........coiiiiiiii e 38
Figure 3-4. Mean CM-12 engine operating parameters for SS40 testS.......ccccoviviiiiieeiiiii e 39
Figure 3-5. Mean CM-12 engine operating parameters for SS80 teSTS.........cccuviiuvrrierieeiiieiieree e 40
Figure 3-6. Mean CM-12 exhaust manifold temperature for SS40 (left) and SS80 (right) tests.................. 40
Figure 3-7. Fuel consumption for SS80 tests determined by weight of fuel tank during test cycle. ............ 41
Figure 3-8. Gravimetric PM mass concentration (ug/m?®) results and laboratory test conditions.................. 42
Figure 3-9. EEPS Particle Number Distributions for SS40 and SS80 tests. Data were corrected for
measured dilution ratio. Log-Log PIOt.........cooiiiiiiiiieee e 43
Figure 3-10. Relationship between ambient temperature and mean total particle number over SS40 and
SSBO TESE CYCIL. .ttt 44
Figure 3-11. Electrical Aerosol Detector (EAD) Full Run Time Series Data for BO, B20, B50 and B100
0] =100 SR PRTR 45
Figure 3-12. MultiGas FTIR Instrument Check Parameter Mean Values for SS40 RUNS...........c.cccoeveninene 46
Figure 3-13. Pre- vs. Post Tunnel Blank Gas Concentration Comparison for BO and B20 SS40 Runs........ 46
Figure 3-14. Selected Gas Concentrations for SS40 Runs (linear y-axis Scale) ........ccccccovvvveeiiiiineniiinneens 48
Figure 3-15. Selected Gas Concentrations for SS40 Runs (log y-axis Scale).. .....cc.ocvvvveviiiieeiviinee e 48



UVM TRC Report # 14-008

List of Figures (continued)

FIQUIE C.1. RUN LOGSNEET .......eeeieiitii ettt ettt et ennee s 65
Figure C.2. Labels sheet for PM Filter Petri diShesS..........ccoviiiiiiiii e 65
Figure C.3. EEPS and FTIR InStrument LOGSNEEL ..........coiiiiiiie e 66
Figure C.4. 5-Gas, EAD and SMPS Instrument LOGSNEET .........ccoveiiiiiiiiiiie e 67
Figure C.5. Aggressive Drive Cycle WOIKShEEL .........ccciiiiii it 68
FIgUrE C.6. RUN CRECKIIST........eiiiiii ettt e b e e s e e st e e s te e e srae e e nraeeenes 69
Figure D.1. IROX-Diesel Fuel Properties for fuel samples collected from the fuel tanks, before and after
(001 I (2 £ T PP PP OP PR TPRTO 76
Figure D.2. SS40 and SS80 Average Tailpipe PM Mass Concentrations. n = number of replicate samples.
Error bars are one standard deViation. ............ccooieeiiei i 78
Figure D.3. Uncorrected EEPS mean number distributions By run...........cccccoviiiii e, 80
Figure D.4. EEPS Particle Number Distributions for SS40 and SS80 tests. Data were corrected for
MEASUrEd dilULION FALI0. ..eoiiie e e e nrae e ees 80
Figure D.5. Average Particle Number Distributions for replicate steady —state emissions tests at each
biodiesel blend ratio. EEPS data are not corrected for tunnel blank and dilution ratio here. ...... 81
Figure D.6. Mean Exhaust Gas Species Concentrations for (a) B0, (b) B20, (c) B50 and (d) B100 fuel
blends. Error bars are one standard deViation. ............cceviieeiiresiiee e 84



UVM TRC Report # 14-008

1. Introduction

1.0 Overview and Introduction

This report summarizes the experimental apparatus developed in the Transportation Air Quality
Laboratory (TAQ Lab) at the University of Vermont to compare light-duty diesel engine
performance and exhaust emissions when operating on petroleum diesel (henceforth referred to as
petrodiesel) and biodiesel fuel blends. This work was conducted between July 2008, when the
Armfield, Ltd. Light-Duty Diesel (LDD) Engine Dynamometer Test System (Model CM-12) was
received, and June 2013. The engine housed in the CM-12 unit is a Volkswagen (VW) SDi 1.9
liter industrial engine, similar to those used in on-road vehicles similar to the VW Jetta or Golf, but
without a turbocharger or exhaust aftertreatment. The objective of the research was to evaluate
how the alternative fuel, biodiesel, would affect emissions and engine performance (fuel economy
and torque) relative to the baseline petrodiesel. In this preliminary report, the experimental
apparatus is described in detail and emissions results are presented for a series of steady-state tests
with petrodiesel and soybean biodiesel blends.

1.1 Study Motivation

The diesel engine is a well-established and widely used technology that is a vital component of
modern day transportation networks. Emissions produced by diesel engines, however, have been
linked to climate change, air pollution and adverse human health effects. The composition of diesel
exhaust depends on several factors, including engine operating conditions and fuel composition.
Hazardous products of diesel fuel combustion include particulate matter (measured by both particle
mass (PM) and particle number (PN)) and gas phase substances such as carbon monoxide (CO),
carbon dioxide (CO, , a greenhouse gas), oxides of nitrogen (NO + NO; = NOy), and various
hydrocarbons (HCs). Of particular concern to public health are air toxics, including polycyclic
aromatic hydrocarbons (PAHS), and particles with diameters less than 0.1um, ultrafine particles
(UFP), which can deeply penetrate the human respiratory system due to their small size .
Advancements in diesel engine technology and the emergence of alternative biofuels are promising
means of reducing several harmful combustion products formed during diesel engine operation.
Federal legislation mandating the use of renewable fuels that can be produced domestically such
as the 2007 Energy Independence and Security Act (EISA) led to a surge in the production and use
of biodiesel (Figure 1-1), despite the fact that relatively little was known about how the transition
from conventional petroleum-based fuels to renewable biofuels would affect vehicle emissions
profiles and, therefore, ambient air quality and human health.
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U.S. Biodiesel Production, Exports, and Consumption

-®- Production
Net Exports
@ Consumption

Millions of gallons

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Figure 1-1. Biodiesel Production, Exports and Consumption in the United States, 2001 to
2011. (Source: EIA Annual Energy Review, 2011 Table 10.4 from the U.S. Energy
Information Administration (1))

Vehicle emissions regulations have become more stringent over time in order to address air quality
concerns. Currently, emissions of light-duty vehicles (LDV; i.e., passenger cars and trucks) in the
U.S. are regulated by the Tier 2 emissions regulation. This regulation limits the emissions (on a
g/mile basis) of non-methane hydrocarbons (NMHC), CO, NOy, PM, and formaldehyde (HCHO)
measured while the vehicle follows the Federal Test Procedure (FTP) 75 drive cycle on a chassis
dynamometer. The Tier 2 vehicle emission regulation went into full effect in 2009 (2). In March
of 2013, the U.S. Environmental Protection Agency (EPA) signed a proposed rule that introduced
Tier 3 emissions standards for LDVs. Tier 3 reduces the acceptable emissions levels from the Tier
2 and is slated to be phased in between 2017 and 2025 (3).

Because vegetable oils and animal fats are lipids that can be used as feedstocks for biodiesel fuel
production through the transesterification process, biodiesel is a potential renewable energy source
with a net benefit life-cycle greenhouse gas emissions profile (4). During the transesterification
process, lipids react with alcohol in the presence of a catalyst to form mono-alkyl esters and
glycerin. Current mass production of biodiesel commonly reacts methanol with the feedstock oil
(typically soybean oil in the U.S. and rapeseed oil in Europe) resulting in a mixture of fatty acid
methyl esters (FAMESs). The regulations controlling the quality of biodiesel (EN14214 in Europe
and ASTM D6751-12 in the U.S.), therefore, focus on the use of methanol as the alcohol reactant
although ethanol could also be used which would result in a mixture of fatty acid ethyl esters
(FAEE) (4). Table 1-1 compares the properties of typical number 2 petrodiesel and 100% soybean
biodiesel (B100) fuel. Biodiesel has a lower energy density, higher viscosity, higher cloud and
pour point temperatures, higher cetane number, and higher oxygen content than petrodiesel. These
properties affect fuel consumption, start of combustion, fuel handling under cold weather
conditions as well as tailpipe emissions. The effect of each of these factors on tailpipe emissions
is described in more detail below. Increasingly, biodiesel has been produced and used in on-road
vehicles as blends with petrodiesel; typical in-use blends contain 5 to 20 percent biodiesel (B5 to
B20), computed on a volumetric basis. The low blend percentage reflects the disadvantages of
biodiesel use in cold weather relative to petrodiesel.
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Table 1-1. Properties of No. 2 Diesel and Biodiesel Fuels (4)

Fuel Property Diesel Biodiesel

Fuel Standard ASTM D975 ASTM D6751
Higher Heating Value, Btu/gal ~137,640 ~127,042
Lower Heating Value, Btu/gal ~129,050 ~118,170
Kinematic Viscosity, @ 40°C (104°F) 1.3-4.1 4.0-6.0
Specific Gravity kg/l @ 15.5°C (60°F) 0.85 0.88
Density, Ib/gal @ 15.5°C (60°F) 71 7.3

Carbon, wt % 87 77
Hydrogen, wt % 13 12

Oxygen, by dif. wt % 0 11

Sulfur, wt % 0.0015 max 0.0-0.0024
Boiling Point, °C (°F) 180-340 (356-644) 315-350 (599-662)
Flash Poaint, °C (°F) 60-80 (140-176) 100-170 (212-338)
Cloud Point, °C (°F) -35t0 5 (-31 to 41) -3 to 15 (26 to 59)
Pour Point, °C (°F) -35to0 -15 (-31 to 5) -510 10 (23 to 50)
Cetane Number 40-55 48-65

1.2 Effect of Biodiesel Properties on Engine Operation

1.2.1 Fuel Consumption

Biodiesel has a lower energy density than petrodiesel that suggests a larger volume of biodiesel is
required to generate the same load as petrodiesel. The increase in fuel delivery needed is described
by three separate mechanisms (5, 6): (1) operator compensation, (2) fuel viscosity, and (3) fuel
density.

Operator compensation refers to the unconscious act of a driver increasing throttle when
the vehicle is fueled with biodiesel to evoke the same power response from the engine compared
to when it is fueled with petrodiesel (5). Although increasing the quantity of fuel injected in this
way may seem innocuous, it may have associated engine control implications. Depending on
engine control strategy, the engine control unit (ECU) may modify other engine parameters such
as start of injection (SOI) and exhaust gas recirculation (EGR) duty cycles in response to a different
throttle position sensor (TPS) signal. In such a case, these parameters may also have an effect on
tailpipe emissions.

It has also been shown that pump-line-nozzle fuel injection systems actually inject more
biodiesel than petrodiesel given the same throttle position (5, 6). This phenomenon occurs due to
the higher viscosity of biodiesel relative to petrodiesel; the result is less leakage between internal
components of the fuel injector pump, allowing a higher percentage of allocated fuel to reach the
combustion chamber.

Biodiesel also has a higher density than petrodiesel and therefore mechanical fuel injectors,
which operate on a volumetric basis, will inject a higher mass of biodiesel fuel even when injecting
the same fuel volume as petrodiesel (6). Unlike operator compensation, the ECU, in many cases,
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would not be ‘aware’ of the increased fuel injection, resulting in a reduced air-to-fuel ratio (fuel
enrichment) assuming no other adjustments are made by the ECU. Fuel enrichment is of concern
because it is typically associated with elevated tailpipe emission events.

1.2.2 Start of Combustion

In its simplest form, engine “tuning” refers to the adjustment of two factors: (a) the time combustion
of the fuel starts in the cylinder relative to engine speed (revolutions per minute; RPM) and (b) the
mass of fuel injected into the cylinder relative to the mass of air in the cylinder. Recent advances
in diesel engine control have resulted in superior process control with respect to (a). A generational
shift in fuel injection technology occurred around 2008: changing from pump-line-nozzle to

common rail fuel injection systems.

Common rail systems utilize electronically-controlled

injectors rather than mechanically-controlled injectors, enable increased control of start of injection
(SOI), and provide the ability to divide what used to be one large injection event into smaller,
precisely-controlled multiple injection events. Manufacturers have also started using in-cylinder
pressure sensors to accurately measure start of combustion (SOC) (7). Given how recent this
generational technology shift occurred, however, the majority of the diesel vehicles on the road still
utilize the older pump-line-nozzle fuel injection technology. On these vehicles, SOC is not
measured, but SOI is, providing feedback to the ECU. Both SOI and SOC are measured in terms
of crank angle (CA) relative to the top dead center (TDC) piston position (Figure 1-2). Biodiesel
fuel can affect both of these events due to differences in fuel properties compared to the petrodiesel

fuel for which the diesel engines were designed (8).

TDC=0°CA

45° ATDC = 45° CA

BDC = 180° CA

A

45° BTDC = 315° CA

Figure 1-2. Depiction of crank angle (CA) for different piston positions in engine cylinder.
Other acronyms: TDC = Top Dead Center; ATDC = After TDC; BDC = Bottom Dead Center; BIDC = Before TDC.

Vehicles equipped with engines that have pump-line-nozzle fuel injection systems are
susceptible to an advance in SOI when using biodiesel due to its higher viscosity and higher bulk
modulus relative to petrodiesel (5, 6, 8). The differences in these fluid properties result is quicker
pressurization of the fuel line between the fuel pump and the injector and faster transmission of the
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pressure pulse (8). These, in turn, advance the opening the mechanical fuel injector in relation to
crank angle (CA) when using biodiesel. Thus, SOI occurs early when operating on biodiesel fuel.

Biodiesel also has a higher cetane number than petrodiesel (see Table 1-1). Cetane number
is a measure of a diesel fuel’s combustion quality and affects ignition delay: the higher the cetane
number, the shorter the ignition delay of the fuel. Thus, for biodiesel the time delay between SOI
and SOC is shorter than for petrodiesel. This means that, even if the ECU is capable of adjusting
the injection timing to maintain the same SOI with different fuels, biodiesel combustion can still
be advanced relative to petrodiesel combustion, resulting in fuel enrichment. This ignition advance
is apparent on both pump-line-nozzle and common rail fuel injection systems without in-cylinder
pressure sensors (5). This phenomenon, however, can be accounted for when the ECU utilizes in-
cylinder pressure sensor feedback because SOC can then be directly measured.

1.2.3 Low Temperature Properties

One hurdle facing the widespread use of biodiesel is its low temperature behavior relative to
petrodiesel. In cold weather, both petrodiesel and biodiesel can coagulate and freeze into a solid
making it impossible for the fuel to be pumped and injected. The ambient temperatures at which
the fuel “gels” for biodiesel is typically higher than for petrodiesel. The two metrics used to
characterize a fuel’s low temperature performance are cloud point and pour point. Cloud point is
the temperature at which solids start to crystallize in the fuel as it is being cooled while pour point
is the temperature at which the fuel has solidified to a point that it will no longer flow. Cloud point
is typically considered the low temperature operability limit (4) of the fuel. Table 1-2 summarizes
typical cloud point and pour point values for petrodiesel and pure biodiesel (B100) produced from
various lipid feedstocks.

Table 1-2. Low temperature properties for No. 2 diesel fuel and B100 from various
feedstocks (4)

Sl Cloud Point Pour Point

(°F) (°c) (°F) (°c)
Typical No. 2 Diesel -31to 41 -35to 5 -31to5 -35to-15
Soy Methyl Ester (SME) 32 0 25 -4
Rapeseed (Canola) Methyl Ester (RME) 26 -3 25 -4
Lard Methyl Ester 56 13 55 13
Edible Tallow Methyl Ester 66 19 60 16
Inedible Tallow Methyl Ester 61 16 59 15
Yellow Grease 1 Methyl Ester - - 48 9
Yellow Grease 1 Methyl Ester 46 8 43 6

According to the data presented in Table 1-2, rapeseed methyl ester has the best low temperature
properties relative to petrodiesel, however, its pour point is still 11°C higher than the highest
petrodiesel pour point (i.e., the biodiesel will solidify in warmer weather conditions than
petrodiesel). Pure biodiesel, however, is not typically used in on-road diesel engines. When
biodiesel is blended with petrodiesel, the resulting low temperature properties lie between those of
the neat fuels shown in Table 1-2 as shown in Figure 1-3.
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Figure 1-3. Cloud point, pour point, and cold filter plug point (CFPP) measurements for
different blends of soy biodiesel in low sulfur No. 2 diesel (4)

1.3 Effect of Biodiesel use on Tailpipe Emissions

There have now been numerous studies on the effect biodiesel fuel has on the emissions from diesel
engines compared to petrodiesel. Research is typically performed with direct injection,
turbocharged, four cylinder, four stroke diesel engines or vehicles (5). Further, the majority of
previous studies have examined emissions from heavy-duty diesel (HDD) engines, with fewer
studies on light-duty diesel (LDD) emissions. The majority of these studies have shown that fueling
with biodiesel typically reduces emissions of PM, HC, and CO while slightly increasing NOy
emissions (4-6). Changes in these emission rates have been linked to different properties of
biodiesel. One significant difference is that biodiesel, unlike petrodiesel, is an oxygenated fuel
containing approximately 11% oxygen by weight [see Table 1-1]. Higher fuel oxygen content is
thought to improve combustion quality, therefore, releasing fewer unburned and partially burned
constituents (4, 5, 9). Additionally, advances of SOl and SOC relative to CA as discussed in
Section 1.2, alter in-cylinder flame propagation and have a effect on combustion emissions.

The 2002 U.S. EPA report, A Comprehensive Analysis of Biodiesel Impacts on Exhaust
Emissions (10), correlated the change in CO, HC, NOy, and PM mass emissions relative to
biodiesel blend percentage using the results of numerous prior studies that utilized HDD engines
with no EGR or aftertreatment systems. These relationships are depicted in Figure 1-4 as solid red
lines that overlay the individual data points used to generate the best-fit lines. It should be noted
that the data are plotted in Figure 1-4 as a percent change in pollutant emission rate for tests
conducted with petroleum diesel, but the composition of this diesel fuel varied between studies as
did the engine type and model year.

Figure 1-4 not only depicts the general trends of the EPA findings but also the variability
of the data found in the literature. This variability stems from the use of different engines with
different control technologies, different loading scenarios used for testing, and different test fuels.
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Figure 1-4. EPA'’s criteria pollutant emissions data for biodiesel blends. A) PM; B) NOx; C)
CO; D) HC (10)

Beyond criteria pollutants PM, NOy, CO, and HC emissions, another area of concern is
the emission of gas-phase mobile source air toxics (MSATS) as well as particle number
emissions. MSATSs include carbonyls and polycyclic aromatic hydrocarbons (PAHS). Many
MSATS are known carcinogens for which a considerable amount of their emission inventory is
attributed to mobile sources and are constituents of the broader hydrocarbons (HC) emissions
category (10).

1.3.1 Particulate Emissions measured by Mass (PM)

Inthe U.S., exhaust particle emissions are currently regulated on the basis of gravimetric mass
of particulate matter (PM). LDV PM emissions are measured while the vehicle is driven
through the FTP-75 drive cycle on a chassis dynamometer. The tailpipe emissions are fed
into a dilution system and samples of the diluted exhaust are pulled through pre-conditioned,
pre-weighed filters during the entirety of the dynamometer test. Once the test is complete,
the filters are post-conditioned and post-weighed. The difference between the post-weight
and the pre-weight is the amount, by mass, of particulate collected. The emissions rate is then
calculated by multiplying the measured particle mass by the dilution ratio (DR) and dividing
it by the number of miles ‘driven’ during the dynamometer test cycle, resulting in an emissions
factor in grams/mile. This value is then used to determine whether or not the LDV meets the
emission standard criteria set forth by the current emission regulation.

The fuel and test engines used in PM emissions research for biodiesel fuel vary from
study to study resulting in variation of the reported findings. In some cases, no significant
change in PM was found, as in Durbin et al. (11), for which B20 and B100 were used. Yet,
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Graboski et al. (12) reported a 66% reduction in PM while fueling with B100 derived from
soybean oil. Although the literature reports considerable variability, the majority of
previous studies reported reductions in PM emissions when fueling with biodiesel rather
than petrodiesel (4, 6, 9-13), confirming the pattern shown in Figure 1-4.

Multiple reasons for decreased PM emissions from engines fueled with biodiesel have
been put forth. Neat biodiesel has little to no sulfur, resulting in a reduction in sulfate
formation when fueling with biodiesel blends (4-6, 8, 9). Biodiesel is also an oxygenated fuel
(approximately 11% by weight) which promotes improved combustion in the fuel-rich zones
of the combustion chamber (6, 9). Similarly, combustion is also improved during transient
fuel-rich operating events associated with turbocharger lag due to the increased oxygen
content of the fuel (6). It has also been suggested that the advance in SOC (due to both
advanced SOI and higher cetane number) while using biodiesel provides more time for
diffusion combustion which increases the oxidation of soot in the high temperature
environment of the cylinder, effectively reducing the amount of soot emitted (6). Lastly, when
operator compensation occurs to make up for the lower heating value of biodiesel (operator
depresses throttle pedal further), the engine’s ECU may also decrease the exhaust gas
recirculation (EGR) duty cycle which increases cylinder temperature, promoting soot
oxidation, and therefore reduces PM emissions (6).

1.3.2 Particulate Emissions Measured by Number (PN)

Figure 1-5 depicts typical diesel engine exhaust mass- and number-weighted particle size
distributions along with lung alveolar deposition fraction (14). The alveolar region is a sensitive
area of the human lung that may have few natural defenses against large numbers of potentially
harmful particles (15-19). As shown in Figure 1-5, ultrafine particles (UFP; diameter < 100 nm)
account for the majority of the alveolar deposition in the human lung, but are not as well represented
by the mass-weighted (PM) particle distribution as they are by the number weighting (PN) (14, 20—
23). Because of they are readily deposited in the alveolar region of the lung, UFPs have a higher
potential to cause adverse human health effects compared to the larger particles typically found in
diesel exhaust (14, 15, 21, 24, 25). Recognizing that UFPs are better represented by the PN metric,
the European Union’s EURO 5b vehicle emissions standard, which came into effect in 2011,
contained regulations for both PM and PN. The EURO 6 regulation, due to take effect in 2014,
also addresses PN emissions (5, 26).
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Figure 1-5. Typical engine exhaust mass (dotted line) and number (solid black line)
weighted size distributions (left axis) with alveolar deposition fraction (green line, right
axis)(14)

Many researchers have studied both the change in total PN emissions and in the PN size
distributions during diesel engine operation on biodiesel fuel. The majority of these tests were
performed with HHD engines running steady-state drive cycles. In general, the use of biodiesel
relative to petrodiesel increases total particle number (TPN) and shifts the particle number
distribution to smaller size bins (27-32), typically increasing the number of nuclei mode particles
while decreasing the number of accumulation mode particles (28, 29, 33-35). These research
results, however, are quite variable because of the many factors can affect particle formation and
growth. These factors include: particle sizing and counting equipment (27, 36); the age and
characteristics of the engine (5, 6, 8 37); test cycle (high or low load) (28, 31, 38), and fuel
composition (30, 34). Biodiesel’s low sulfur content relative to pre-2006 petrodiesel (after July 1,
2006, petrodiesel sulfur content was regulated to be < 15ppm in the U.S.) provided reductions in
nuclei mode particles, however, as regulations regarding sulfur content in petrodiesel have become
more stringent, this benefit has faded. This shift over time is highlighted by the particle number
distribution data presented in Aakko et al. (35) for four fuels: (1) EN590 petrodiesel (similar to low
sulfur diesel (LSD); sulfur <500ppm); (2) RFD - Reformulated petrodiesel (similar to ultra-low
sulfur diesel (ULSD); sulfur <15ppm); (3) RME30 — 30% v/v Rapeseed methyl ester biodiesel,
70% EN590 petrodiesel; and (4) RME100 — 100% Rapeseed methyl ester biodiesel as shown in
Figure 1-6.

These data shows that, relative to EN590 particulate emissions, neat RME and
RME/EN590 blends result in an overall decrease in PN, presumably due to the reduction in sulfur
content when introducing biodiesel into the fuel. The data for the RFD, however, suggests that
reformulated petrodiesel fuel with sulfur content less than 15ppm (i.e., ULSD) may reduce nuclei
mode particles to a higher degree than RME, resulting in less of a biodiesel emissions benefit.
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Figure 1-6. Particle number distributions from Aakko et al. (35) highlighting the effect of
reformulating petrodiesel.

Explanations for why biodiesel generally increases total particle number (TPN) emissions relative
to ULSD have been suggested:

e Biodiesel emissions increase the particle phase soluble organic fraction (SOF) and the
effect of increased injection pressure and advanced injection timing as the percentage of
biodiesel increases in the fuel have been proposed as possible causes of increased TPN (6,
39).

e The general reduction in accumulation mode particles reduces the availability of surface
area for the nuclei mode particle precursor gases to adsorb to while traveling through the
exhaust system, resulting in higher nuclei mode particles (28, 40).

Thus, while some studies have been found that diverge from the general trend (38, 40-42), most
studies report an increase in the number of nuclei mode particles when fueling with biodiesel,
resulting in higher TPN for biodiesel than for petrodiesel.

1.3.3 Regulated Gas-Phase Emissions from Diesel and Biodiesel
Fueled Engines

Oxides of Nitrogen (NOXx)

NO emissions (NO and NO>) are associated with ground-level ozone (6, 43) and secondary organic
aerosol (SOA) formation (44). Ground-level ozone presents significant human health risks, can be
harmful to vegetation, and is one of the main components in urban smog (45). Diesel engines emit
appreciable NOy and research has generally shown that NO, emissions from diesel engines running
on biodiesel range from not significantly different from those for petrodiesel to slightly higher —up
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to roughly a 23% increase for B100 in heavy-duty diesel engines (see Figure 1-4) (4-6, 28, 30, 31,
35, 41, 46). Although the general trend shows an increase in NOx emissions with biodiesel blend
percentage, some researchers have reported reductions (47-49). A variety of mechanisms have
been suggested to explain this phenomenon. Advanced SOI results in fuel entering the combustion
chamber earlier and residing in elevated temperature and pressure conditions which are more
favorable for NOy formation (6, 46). Also, in-cylinder temperatures increase due to the increased
amount of biodiesel injected to produce an equivalent power output to that of petrodiesel (6).
Furthermore, if the increase in biodiesel injected is due to operator compensation as described
previously, differences in SOI and EGR control by the ECU could promote NOy production (6).

Recent data, however, has been presented suggesting that fuel injection and EGR control
strategies that are designed specifically for the in-use fuel’s properties can reduce biodiesel NOx
emissions to levels at or below those of petrodiesel (46, 50).

Carbon Monoxide (CO)

CO is emitted from all combustion processes and mobile sources contribute substantially to ambient
CO inurban areas (51). Elevated CO levels can be harmful to human health because, when inhaled,
oxygen that would normally go into the blood stream can be replaced by CO, blocking oxygen’s
pathway into the body and causing tissue damage and, possibly, death (52). When running on
biodiesel, diesel engines generally produce less CO [Error! Reference source not found.C](4-6, 30,
33, 35,47, 53), although some studies have reported increases in CO (28, 42). The range found in
the literature is +95% (28) to -50% (10) CO emissions relative to petrodiesel. The reduction of
CO emissions has primarily been explained by the increased oxygen content of biodiesel fuel
leading to more complete combustion (4-6, 54).

Hydrocarbons (HC)

Some HCs typically emitted by diesel engines are toxic or carcinogenic (4). When biodiesel is
used to fuel diesel engines HC emissions generally decrease as shown in Error! Reference source
not found.D (4-6, 30, 33, 35, 53, 54) although, again, some studies have shown the opposite trend
with biodiesel blend percentage (28, 54). The range found in the literature is +58% (55) to -70%
(10) HC emissions relative to petrodiesel. Again, the increased oxygen content of biodiesel has
been credited with improved HC emissions (4-6, 54).

1.3.4 Mobile Source Air Toxic (MSAT) Emissions

MSATSs are air toxic compounds, defined by the U.S. EPA as known or suspected carcinogens (20),
found in mobile source (vehicles) exhaust (10). Seven of the individual MSAT compounds focused
on in the 2006 EPA report ‘Control of Hazardous Air Pollutants From Mobile Sources’ are listed
in Table 1-3 with their percent contributions from mobile sources and on-road mobile sources (56).

The effect of biodiesel on MSAT emissions is under studied, but the majority of studies
where MSATS have been measured show reductions in MSAT emissions with biodiesel compared
to petrodiesel. The EPA (10) found a total MSAT reduction of approximately 15% when using
B100.

Polycyclic aromatic hydrocarbons (PAHS), a subset of MSATSs which are primarily from
the soluble organic fraction (SOF) of diesel exhaust, are more widely studied because many of them
are known or suspected carcinogens (20). Similar to the data found in the literature for regulated
emissions, the reported effects of biodiesel on PAH emissions are variable, however, PAH
emissions are generally reduced with biodiesel fuel (13, 41, 57, 58). Karavalakis et al. (57)
reported both increases and decreases in PAH emissions which appeared to be dependent on drive
cycle while Hensen and Jensen (41) reported total PAH reductions of more than 90% when using
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rapeseed B100. An interesting note reported by Karavalakis et al. (57) is that the use of oxidized
biodiesel increases PAH emissions relative to fresh biodiesel.

Table 1-3. Mobile source contribution to 1999 National-Scale Air Toxics Assessment (NATA)

. . Percent contribution from all Percent contribution from on-
1999 NATA risk drivers ) _
mobile sources(percent) road mobile sources(percent)

Benzene 68 49
1,3-Butadiene 58 41
Formaldehyde 47 27
Acrolein 25 14
Polycyclic organic matter * 6 3
Naphthalene 27 21
Diesel PM and Diesel exhaust organic gases 100 38
* This POM inventory includes the 15 POM compounds: benzo[b]fluoranthene, benz[alanthracene, indeno(1,2,3-c,d)pyrene,
benzo[k]fluoranthene, chrysene, benzo[a]pyrene, dibenz(a,hjanthracene, anthracene, pyrene, benzo(g,h,i)perylene, fluoranthene,
acenaphthylene, phenanthrene, fluorene, and acenaphthene.

1.3.5 Summary

In summary, many studies report a decrease in emissions of harmful combustion products from use
of biodiesel compared to diesel fuel. These include reductions in regulated pollutants (HCs and
PM) as well as hazardous unregulated emissions (PAHS) in biodiesel exhaust (41). In general, the
abundance of these compounds in exhaust decreases as biodiesel is used in greater blend
proportions (Figure 1-2). However, these results are not widely conclusive as some studies have
reported results which do not follow the general trend (13). Furthermore, other compounds of
concern are reported to increase with higher biodiesel blend ratios, including NOx and polar
oxygenated compounds (POCs), which are linked to cellular oxidative stress (42).

The majority of literature on biodiesel emissions pertains to experiments conducted with older
model, heavy-duty diesel (HDD) engines. Marked differences in particle and gas emissions have
been demonstrated between exhaust from pre-2007 diesel engines and New Technology Diesel
Exhaust (NTDE) (37). Considering increased use of both biodiesel and light-duty diesel (LDD)
engines in the United States and globally, it is important to understand how these factors interact
to impact air quality, the environment, and public health under various conditions.

Bio-fuels have increased in popularity in the last ten years. For diesel vehicles, biodiesel is the bio-
fuel of choice. As far as combustion is concerned, biodiesel is a ‘drop in’ fuel for compression
ignition (diesel) engines (4), meaning that the compression ignition engine can run on both
petrodiesel and biodiesel without any modification. This, however, does not mean that an engine
designed to run efficiently with petrodiesel will run just as efficiently with biodiesel. The goal of
this research is to better understand the factors that lead to UFP emissions from LDD vehicles,
while taking into account the fuel used, in order to develop advanced emissions control
technologies and improve ambient air quality.

12
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2. Research Methodology

2.1 Experimental Setup Overview

The experimental setup consists of five subsystems and processes, each described in detail below.
These systems are:

(i) CM-12 light-duty diesel engine dynamometer & exhaust dilution (Section 2.2);

(ii) Exhaust sampling and dilution (Section 2.2);

(iii) (Bio)diesel fuel supply and monitoring (Section 2.3);

(iv) Gas and particle emissions measurement (Section 2.4); and

(v) Data Acquisition and Timing (Section 2.2).
In addition, the protocols used in the UVM Transportation Air Quality Laboratory (TAQ Lab) to
ensure sample integrity and reproducibility in measurements are found in Sections 2.5 and 2.6.

Briefly, a Volkswagen light-duty diesel engine test stand with dynamometer is the central
component for emissions testing. Engine exhaust is sampled for gases directly with two instrument
(FTIR and 5-Gas), but must be diluted to obtain particle number measurements by a suite of time-
resolved particle instruments (EEPS, EAD, UCPC). Custom-built systems monitor dilution ratio,
temperatures, pressures and fuel consumption during the tests. Data acquisition at rates of 1Hz or
faster are achieved with dedicated computers and a custom PC clock synchronization system.
These systems are interconnected as shown in Figure 2-1. Detailed information on all instruments
and sensors can be found in Appendix A.

Fuel System P Exhaust i
(Figure 2-6) Exhaust Pipe | i —— Extraction ‘
i 3 — — | System :
j / / | CM-12 ;
i a1 Dilution Air 3
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Figure 2-1. Block diagram of emissions test systems configuration.

2.2 CM-12 Light-duty Diesel Engine Dynamometer

An Armfield, Ltd. model CM-12 “Automotive Diesel Engine Test Cell” was used to generate light-
duty diesel (LDD) engine exhaust in the University of Vermont’s Transportation Air Quality
Laboratory (TAQLab). A 1.9 Liter Volkswagen SDi engine (similar to the engine found in the
Volkswagen Bora, a European market sedan), a four cylinder, naturally aspirated engine with

13



UVM TRC Report # 14-008

pump-line-nozzle type fuel injection (Bosch VE injection pump) is coupled to a Zelu K-40 (air
cooled; 145Nm max braking torque) eddy current dynamometer. Engine and dynamometer
specifications can be found in Table 2-1. The CM-12 engine emissions certification falls under the
European Union directive EC 97/68, Stage IIIA. These emission limits are 5.0 g/kWh for carbon
monoxide (CO), 4.7 g/kWh for combined hydrocarbon and oxides of nitrogen emissions (HC +
NOx) and 0.4 g/kWh for particulate matter (PM).

2.2.1 Armfield Software Control of CM-12 Engine and Dynamometer

Both engine and dynamometer are controlled with software supplied by Armfield that allows both
‘manual’ and ‘automatic’ control. In ‘manual’ mode, the operator can change % brake (power to
the dynamometer which loads the engine) and % throttle (equivalent to pressing the accelerator
pedal in a car). When in ‘automatic’ mode, a set point RPM can be specified and a proportional—
integral-derivative (PID) controller adjusts the % brake setting to achieve the RPM set point while
the operator continues to control the throttle. Experiments were conducted to evaluate the beta
version of Armfield ‘scheduler’ control software that allows the user to pre-define a drive cycle
that the software will then follow as the engine is running. Use of the scheduler ensures that the
engine is cycled through the same ‘driving conditions’ for each replicate test. Armfield
implemented the scheduler software in March of 2011 and it was first utilized in the TAQLab in
June 2011. All data reported here were collected by operating with ‘automatic’ control (steady-
state test cycles).
Table 2-1. Armfield CM-12 Component Specifications

Engine

Manufacturer Volkswagen
Identification Code ARD
Charge Air Naturally Aspirated
Capacity 1896¢m’
Cylinders 4
Bore 79.5mm
Stroke 95.5mm
Compression Ratio 19.5:1
Nominal Output 44 kW @ 3600 RPM
Max Torque 130Nm @ 2000 - 2400 RPM
Fuel Diesel DIN EN590
Control System Bosch EDC
Exhaust Gas Recirculation  [NO

Power Absorption Unit/ Eddy Current Dynamometer
Manufacturer Zelu/ Klam
Model Number K-40 PAU
Max Power 60kW
Max Torque 145Nm

2.2.2 Exhaust Sampling and Dilution

The exhaust sampling and dilution system consists of: (A) a dilution air source and conditioning
system, (B) exhaust and dilution air transfer lines, (C) ejector diluter, (D) flow measuring system,
and (E) sample ports manifold. A custom-built mini-dilution system provided clean, dry dilution
air for mixing with a subsample of raw engine exhaust from the CM-12 tailpipe. A Dekati Diluter
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(Dekati, LTD, Finland) served to both sample the tailpipe exhaust and mix the raw exhaust with
dilution air without the need for an additional sampling pump.

Ejector Diluter Mechanics.

Raw exhaust temperature and particle concentrations are too high for current instruments to
quantify particulate emissions in diesel engine exhaust without dilution. For this research, a single-
stage mini-diluter setup based on a Dekati ejector diluter was employed to mix clean, dry dilution
air with a raw exhaust subsample from the tailpipe, at a fixed temperature. Ejector diluters utilize
the Bernoulli principal to draw sample flow into the diluter without the use of a mechanical pump.
Clean, dry air is fed into the side port of the diluter under pressure (32 psi) and passes through an
annular opening which surrounds the ejector nozzle through which the raw exhaust sample enters
(Figure 2-2). As the dilution air passes the annular opening, ejector geometry widens substantially
allowing the air to expand which creates a low pressure zone at the tip of the ejector nozzle. The
pressure difference between the tip of the ejector nozzle and the sample inlet induces the raw
exhaust sample to flow from the exhaust pipe and into the mixing chamber of the Dekati ejector
diluter (Figure 2-2, inset). Subsequently, the well-mixed dilute exhaust exits the diluter and is
sampled by a variety of particle instruments (EEPS, PM Filters, EAD, UCPC; See Section 2.4
below). The total dilute exhaust volumetric flow is determined by the sum of dilution air flow and
exhaust sample flow entering the diluter. The dilution air flow of this particular system is between
80 and 85 L/min. With a dilution air flow of 80 L/min, if a dilution ratio (DR) of 50 is required,
an exhaust sample inlet flow of 1.63 L/min is necessary to give a final total dilute exhaust flow of
81.63 L/min. The total flow of all the instruments sampling this dilute exhaust should not exceed
90-95% of this total flow (or 73.5- 77.5 L/min) to ensure sufficient excess flow exists in the sample
setup.

Sample Out
. (Diluted Exhaust)

* Low Pressure caused by
dilutionair flow in the nozzle
sucks the sample from the
exhaust

* Mixingin the mixing chamber

* Coaxial dilution, low losses

Dilution Air In

Sample In
(Raw Exhaust)

1

Figure 2-2. Schematic of Dekati ejector diluter flows to dilute raw exhaust for particle
sampling.
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Dilution Air Supply.

A low-cost compressed air system was developed to provide clean, dry air to the Dekati diluter
(Figure 2-3). To compress room air and supply sufficient total air flow to the diluter, two oil-less
air compressors (1 and 2 in Figure 2-3), one with a pump flow rating of 6.4 SCFM (181.2 LPM)
at 90 psi and a 22 gallon tank and the other with a pump flow rating of 6.2 SCFM (175.6 LPM) at
90 psi and a 33 gallon tank, both of which have a maximum duty cycle of 50%, were connected in
parallel. In order for both compressors to consistently turn on at a specified ‘kick on’ pressure,
they were both wired and plumbed to a Condor MDR3 (31GC3FXX) pressure switch (3 in Figure
2-3). This switch closes, turning the compressor on, when the pressure in the system drops below
100 psi and opens, turning the compressors off, when the pressure in the system reaches 125 psi.
This pressure range is staggered from the 120/150 psi kick on/ kick off pressures of the pressure
switches on the individual compressors resulting in full control by the Condor MDR3 pressure
switch. The compressors are both run on 120V and have a max amperage rating of 15A. In order
to run two compressors from a common pressure switch, the power for both compressors came
from one 30-amp, 120V circuit breaker. Because the compressors both drew more than 15A for a
split second at start up, if started simultaneously, they would trip the breaker. To get around this,
a normally open Schneider Electric contactor (199AX-9) in series with an Artisan delay-on-make
relay (438USA) was installed on the power feed between the pressure switch and one of the
compressors. These components provide a delay in power delivery to the second compressor
allowing the current spike that occurs during start of the first compressor to occur in advance of the
current draw from the second compressor start.

1o [
%

19

21

Flgure 2-3. Englne Exhaust Dilution Sysiem Conflg uration: 1. Compressor One; 2. Compressor Two; 3. Pressure
Switch; 4. Coarse Dilution Air Pressure Regulator; 5. Condensation Drain Valve; 6. Condenser/ Expansion Tank in Ice Bath; 7. Precision Air Pressure
Regulator; 8. Desiccant Tube (Silica Gel and Activated Carbon); 9. HEPA Filter; 10. OMEGA Mass Air Flow Meter;11. Ice Bath; 12. Pressure Sensor; 13.
Orifice A/ Critical Orifice; 14. Dilution Air Orifice Flow Meter Utilizing Orifice C; 15. Dekati Diluter; 16. Dilution Air Thermocouple; 17. Raw Exhaust
Sample Orifice Flow Meter Utilizing Orifice D; 18. Raw Exhaust Sample Thermocouple; 19. Orifice B/ Pinhole Orifice; 20. Heat Cord (represented by red
dots); 21. Perforated Sampling Probe; 22. Exhaust Temperature Thermocouple; 23. Exhaust Pipe Pitot Tube Flow Meter

Beyond the electrical demands of the dilution air system, the air quality is maintained to ensure that
the dilution air is not introducing contaminants into the diluted exhaust sample prior to
measurement. In addition to purifying the air with silica gel (to remove moisture), activated carbon
(hydrocarbons) and HEPA filtration (particle removal), the dilution air pressure and temperature at
the side port of the Dekati diluter are precisely maintained to ensure a consistent mass flow rate of
air into the diluter. Once the air passes through the pressure switch (3), the air pressure is regulated
to 50 psi with a ‘coarse’ air pressure regulator (4). From here the air travels through 3/8” OD metal
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tubing coiled around an expansion tank. Both the metal coil and the expansion tank are submerged
in an ice bath (6), substantially dropping the air temperature resulting in condensation of the
majority of the moisture in the air into the expansion tank which is equipped with a drain valve (5).
After the expansion tank, the air passes through an Ingersoll Rand precision air pressure regulator
(PR4031-100) (7) which regulated the pressure down to 30psi with an accuracy of 0.1%. Utilizing
the ‘coarse’ air pressure regulator shields the precision air pressure regulator from the large pressure
changes in the compressor tanks, which result in finer overall pressure control. After the air passes
through the precision pressure regulator, it flows through a 4’ long x 2” diameter tube containing
silica gel desiccant beads and a small section of activated charcoal to remove any remaining
moisture and organic compounds (8). After the desiccant tube, the air flows through a Whatman
HEPA-CAP 150 (6702-9500) HEPA filter (9) to remove any particles from the air stream. The air
then flows through an OMEGA FMA 1700/1800 mass flow meter (10) which monitors the flow
through the dilution air system. The desired temperature of the dilution air at the diluter was 30°C,
however, room temperature often exceeded 30°C when the engine was running. Even though the
dilution air was cooled as it passed through the condenser/ expansion tank (6), there was sufficient
residence time in the dilution system after this point for the dilution air to warm back up to room
temperature. To ensure that the dilution air did not go above 30°C, the flow then passed through
another coil of 3/8” OD metal tubing submerged in an ice bath (11). After this ice bath, the flow
entered the side arm of the Dekati diluter. Because the mass flow rate of the dilution air entering
the diluter was critical to the overall Dilution Ratio, multiple parameters were measured/ controlled
in this location. First, an OMEGA pressure transducer (PX319-100Gl) (12) logged and displayed
dilution air pressure. This pressure display was used to set dilution air pressure with the precision
air pressure regulator. Then, the volumetric flow rate was metered with a critical orifice (13).
Another orifice, in conjunction with a magnehelic gage, (14) was used as an orifice flow meter to
measure volumetric flow. Finally, a thermocouple (16) logged dilution air temperature and served
as feedback to the temperature controller that maintain a set point dilution air temperature of 30°C
by modulating the power going to a BriskHeat heat cord (20) wrapped around the entirety of the
diluter side arm which was also insulated with fiberglass insulation tape.

Raw Exhaust Sample Probe.

Because an exhaust sample collected close to the wall of an exhaust pipe has the potential to be
different than that collected at the center, a perforated sample probe (21) was fabricated and
installed that spans the diameter of the exhaust pipe. This ensured that the sample was
representative of the exhaust leaving the tailpipe. The probe was connected to a 3/8” OD, 17-inch
long stainless steel transfer line that transported the exhaust sample to the inlet port of the Dekati
diluter. A pinhole orifice (19) installed in the transfer line 7.5 inches from the exhaust sample
probe controlled the amount of raw exhaust sample entering the Dekati diluter and downstream
orifice, in conjunction with a magnehelic gage (17), located 6 inches from the pinhole orifice was
used as an orifice flow meter to measure raw exhaust sample flow. A thermocouple (18) measured
temperature within the transfer line and provided temperature feedback to a heat cord controller
that maintained a raw exhaust sample temperature set point of 110°C by modulating the power
going to the Briskheat heat cord (20) wrapped around the entirety of the transfer line. The transfer
line was also insulated with fiberglass insulation tape.

Dilution System Tuning.

The Dekati diluter was originally designed to provide a dilution ratio (DR) of ~8. This research,
however, demanded a minimum DR of 50. From the factory, the diluter came with a 1.3mm
(0.0512”) diameter critical orifice at the dilution air inlet and was calibrated while maintaining a
dilution air pressure of 2 bar (29.0psi) on this orifice. In order to increase the DR, the original
critical orifice was removed and replaced with a new critical orifice (Orifice A) drilled with a #50
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(1.778mm / 0.0700” dia.) drill bit (Figure 2-4). A ‘pinhole’ orifice (Orifice B) which was drilled
with a #76 (0.508mm / 0.020” dia.) drill bit, was then installed in the raw exhaust sample transfer
line to reduce the flow of exhaust sample and increase the DR. The dilution air pressure was set at
2.068Bar (30.0PSI). The combination of these modifications resulted in a new DR of ~80,
measured as the ratio of total diluted exhaust outflow (Qutalout, L/mMin) to raw exhaust sample flow
entering the Dekati diluter (Qin, EQuation 2-1).

t Sample Out
(Diluted Exhaust)

I i | Orifice A
7‘: 1 — -

Orifice C Dilution Air In

OrificeD =8 =

Orifice B shim

= High Pressure MAG Tap
—— Low Pressure MAG Tap

Sample In
t (Raw Exhaust)

Figure 2-4. Locations of orifices (A, B) and orifice meters (C, D) on dilution system.

O + 0
Dil A Sampl.
DR = Qtotal,out — ilutionAir ample (2_1)

Qi QSample

Rather than assuming a constant DR, both ‘Exhaust Sample Inflow’ and ‘Dilution Air Inflow’ were
logged at a rate of 1 Hz using calibrated transmitting magnehelics (MAGS) to measure the pressure
difference across orifice meters in both the dilution air line and the raw exhaust transfer line.
Specific magnehelic model numbers are found in Appendix A. The largest pressure difference that
can be measured by a MAG sold by Dywer is 50 inches of water (inH,0) (~1.81 psi). Considering
that the pressure difference across Orifice A is essentially 30 psi, a MAG could not be used in
conjunction with this orifice to measure dilution air flow; instead, an additional orifice was installed
downstream of Orifice A, on the low pressure side, for dilution air flow measurement. This orifice,
Orifice C, was drilled with a letter H (6.756mm / 0.2660” dia.) drill bit, and a 0-1.0 inH.O
transmitting MAG (Dwyer Inc., Model 605-1) measured the differential pressure across it. In the
raw exhaust sample transfer line, Orifice B could not be used to reliably measure flow due to the
pressure pulses from the engine’s exhaust. To measure transfer line flow, Orifice D, drilled with
a #43 (2.261mm / 0.0890 dia.) drill bit, was installed on the low pressure side/ downstream of
Orifice B and a 0-0.5 inH20 transmitting MAG(Dwyer Inc., Model 605-0) measured differential
pressure across this orifice. With the transfer line orifices in this orientation, Orifice B isolated
Orifice D from the engine exhaust pressure pulses, resulting in a relatively stable measurement of
differential pressure (flowrate is ~ 1.04 L/min) in this location.
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Flow Measurement and Temperature Control.

Orifice flow meters measure volumetric flow rate, not mass flow rate. Because the density of a gas
IS sensitive to temperature, mass flow will change as a function of temperature while volumetric
flow remains constant. Temperature variation also affects particle evolution — as the exhaust gases
cool, gas phase constituents can nucleate as new particles or condense onto existing larger particles.
To ensure that flow rates and particle nucleation/condensation rates were consistent during each
run and from run to run, both the raw exhaust transfer line and the dilution air line were temperature
controlled. The set point temperatures for the gases in the raw exhaust transfer line and in the
dilution air line were 110 °C and 30 °C, respectively. To tightly control and monitor these gas
temperatures, two 1/16” ungrounded, dual element J-type thermocouples (16 and 18 in Figure 2-
3 above) fed back gas temperature data to custom-built heat cord controllers (Fuji Electronics
Controller - PXR3-TEY1-4VO0A1 and Carlo Gavazzi solid state relay - RM1E23AA25) which, in
turn, modulated the temperature of the BriskHeat HWC1060 heat cords wrapped around each line.
The average gas temperatures measured during the most recent transient run
(1_06AUG2013_B000) were 107.25°C (StDev = 0.375) and 25.78°C (StDev = 0.340) for the
transfer line and the dilution air line, respectively. These measurements are slightly offset from the
set point temperatures due to thermocouple calibration differences between the heat cord
controllers and the Labview system.

2.2.3 Data Acquisition System

The experimental apparatus was instrumented to acquire real-time system operation and emissions
data. Up to eight instruments were used to measure different parameters simultaneously. Two of
the instruments, Armfield and Scantool, shared a computer while all of the other instruments
utilized a dedicated computer. The computers used for data acquisition from various instruments
are listed in Table 2-2.

Computer Clock Synchronization. There are four possible sources of time misalignment between
data collected from different instruments/computers. The first is clock synchronization error — a
simple time shift from one data set to another — for example, the clock on one PC could be 30
seconds behind that of another PC. The second is a misalignment due to sensor response — the time
necessary for a sensor to ‘see’ a change in the parameter it is measuring. The third is a real, physical
lag — for example, the time it takes combustion gases to travel from the combustion chamber to the
sampling location in the exhaust system. The fourth source of time misalignment is that of
sampling residence time — the time it takes for a sample to flow from the sample port to the
instrument where it is measured. To minimize the amount of time alignment necessary after data
collection, procedures were developed to improve instrument clock synchronization.

Initially, in order to minimize temporal misalignment, a large clock was displayed on a
computer screen that could be seen from all of the other computers used for data acquisition. The
clocks on the other computers were then manually synchronized to that clock before each data
collection event. In September 2012, all of the computers were linked through a local area network
(LAN) and one of the computers was designated as a time server. This allowed automatic
synchronization of all LAN-connected computers prior to each collection event using the ‘Date and
Time’ application embedded in the Windows operating system. Even with this synchronization,
the clocks on some of the computers would desynchronize in less than 10 minutes. To address this
issue, Automachron simple network time protocol (SNTP) software was installed on the computers
in May 2013. This software automatically synchronized the clock of the computer to the time
server every 16 seconds, minimizing the chances of the computers becoming asynchronous over
the 2 plus hour experiment duration.
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Table 2-2 Computers used for each sampling instrument

Instrument Computer Processor (GHz) | Core | RAM (GB) 0s

System Armfield/ Scantool DELL Optiplex 755 2.66 Dual 2.00 Windows XP Pro
Operation Labview DELL Latitude D630 2.20 Dual 2.00 Windows XP Pro
Particle EEPS DELL Optiplex GX620 3.60 Single 3.50 Windows XP Pro
Emissions UCPC DELL Latitude C400 1.20 Single 0.25 Windows XP Pro
EAD DELL Latitude D505 1.60 Single 0.50 Windows XP Pro

Gas Phase FTIR DELL Latitude D630 2.40 Dual 1.00 Windows XP Pro
Emissions 5-Gas DELL Latitude E6400 2.40 Dual 3.50 Windows XP Pro

Armfield Engine and Dynamometer Parameters.

The CM-12 came from Armfield with a rudimentary data acquisition system read through the
Armfield software using sensors that Armfield had installed. The parameters that were acquired
through the Armfield software are listed in Table 2-3. Initially, the Armfield software was set to
log data at a frequency of 1Hz but the logging frequency was increased to 2Hz in April of 2013
while developing a transient drive cycle.

Armfield Sensor Calibration. The majority of the parameters logged through the Armfield
software were assumed to be factory calibrated. The only adjustment made was in Febuary of 2012
when the ‘zero’ and ‘span’ potentiometers associated with the Armfield throttle position were
adjusted so that the throttle position reported Armfield and Scantool were the same.

Table 2-3 Armfield Sensors on CM-12 Test Cell
Type Signal Conditioning

Throttle Position (%) Measured from control N/A NIA
portion of software

Brake Setting (%) Measured from control N/A NIA
portion of software

Sensor Sensor Manufacturer

Heat Exchanger Water Flow
(LPM)

Manifold Air Pressure (kPa)

Paddle wheel flowmeter Buffer Amplifier/attenuator GEMS RFA 3/4

Differential Pressure Sensor

o Amplifier
across orifice

Honeywell, 26PC

Manifold Air Temp (°C) ‘K’ type thermocouple Compensated Amplifier Armfield
?:;tpE():(c::r;anger Water Inlst ‘K’ type thermocouple Compensated Amplifier Armfield
Heat Exchanger Water Outlet |..., Lo .
Temp (°C) K’ type thermocouple Compensated Amplifier Armfield
Exhaust Manifold Temp (°C) | ‘K’ type thermocouple Compensated Amplifier Armfield
Engine Speed (RPM) Magnetic pick-up Firmware counter RS

Torque (Nm) Load Cell Differential Amplifier Strain Measurement Devices, S200

Cylinder Pressure piezo Proprietary Charge amplifier | Kistler

Scantool Engine Parameters

Engine operating parameters were also acquired from the On Board Diagnostics (OBD-I11) system
embedded in the Volkswagen engine control unit (ECU). The OBD-II system was accessed with
Rosstech VCDS Scantool software through which specific engine operating parameters were
selected for acquisition. The Scantool software does not allow the user to specify an acquisition
frequency, therefore, these parameters were acquired at a variable ‘as fast as possible’ rate.
Initially, multiple engine parameters from different measuring blocks were accessed through
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‘Advanced Measuring Blocks’ in the VCDS software. Selecting the parameters logged in this
manner resulted in a data collection frequency of ~0.5Hz. After further investigation, it was found
that all desired parameters could be read through measuring block ‘000’. Switching from data
collection through multiple measuring blocks to data collection through one measuring block
increased the sampling rate to ~3Hz. Measuring block ‘000, however, did not output measurement
physical units. Instead, because the ECU is an 8-bit system, this measuring block reports raw byte
values in the form of decimal numbers between 0 and 255 (Table A-3 in Appendix A).

Scantool Sensor Calibration. In order to assign physical units to each measuring block ‘000’
parameter, a series of engine tests were performed while logging measuring block ‘000’ and other
measuring blocks that output the desired parameters with physical units. These data were then used
to calibrate measuring block ‘000’ data to physical units. The parameters read by the Scantool and
their calibration equations can be found in TABLE 2.4.

Table 2-4. Rosstech Scantool Sensors and Calibration Equations*

Measuring@lockPBO00'@®Parameters@ndialibration
Position Parameters Calibration@quation
000-1 Engine@peeddRPM) =R1*(byte)
000-2 Start@®fAnjectiond’°BTDC) =[.08*(byte)-3.12
000-3 Throttle@ositiond%) =Hbyte)/2.55
000-4 InjectionMuantity@mg/stroke) =[.2*(byte)
000-5 Not@sedEoZensor@ata N/A
000-6 Atmospheric@Pressuredmbar) =#.914*(byte)+7.3506
000-7 Enginefoolant@empd°C) =[{-0.68878)*(byte)+135.983
000-8 IntakeET'emp°C) =[{-0.68182)*(byte)+135.191
000-9 FuelfTemp(d°C) =.5625*(byte)-30.4875
000-10 NotsedEEoZensor@ata N/A

* byte indicates the 0-255 value logged from the ECU measuring block ‘000°.

Labview Data Acquisition for Temperature, Flow and Pressure Sensors

A Labview (v. 8.6; National Instruments) data acquisition system specifically built for this research
acquired data pertaining to both engine operation and exhaust dilution conditions at a rate of 1Hz.
The data collection system was comprised of five components (Table 2-5). The Labview data
acquisition system was configured to log sixteen single-ended signals through a single PCMCIA
data acquisition card. In total, 14 of these channels were used (Appendix A, Table A-##). All of
the sensors were connected to the connector enclosure with BNC cables which are intrinsically
electrically shielded. The enclosure itself electrically shielded the connector block and the cable
that connected the connector block to the PCMCIA card was electrically shielded as well. This
shielding minimized the noise in the signals and helped ensure that the data collected was of the
highest quality. In addition to the data logged through the PCMCIA card, the labview virtual
instrument (vi) also logged fuel tank weight through the laptop’s RS-232 port which was connected
to the fuel tank scale.

Table 2-5. Data Acquisition Components
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Number Component Description Model Number
1 Dell Laptop (2.20GHz Processor, 2GB RAM) Latitude D630
2 PCMCIA Data Acquisition Card NI DAQCard 6024A
3 Shielded Cable (DAQ card to Connector Block) NI SH68-C68-S
4 Connector Accessory Enclosure CA-1000
5 Unshielded 68-pin I/O Connector Block NI CB-68LPR

Labview Sensor Calibration. Factory calibration equations were used for all of the sensors logged
through Labview except for the three differential pressure sensors that were connected to the Dwyer
MAGs and the VW/BOSCH mass flow meter (MAF). Table 2.6 lists the 15 parameters logged at
1 Hz by Labview and their calibration equations. Calibration procedures are described below.

Table 2-4. Labview Parameters and Calibration Equations for Sensors

Parameter Sensor Range Model Calibration Equation

1|Fuel Weight (Ibs) Adam Equipment Co. Scale 701b/32kg x 0.0021b/0.001kg GBK 70a RS-232 Direct Read

2|Dilution Air Flow (SLPM) Dwyer Magnehelic 0-1inH,0 605-1 25.523%(V)-7.0439

3|Aerosol Inlet Flow (SLPM) Dwyer Magnehelic 0-0.5 inH20 605-0 0.3032*(v)+0.2982

4 [Pitot Ex Flow (SLPM) Dwyer Magnehelic 0-10inH20 605-10 sqrt(6888000*((V)-0.995))

5[Ambient Temp (°C) OMEGA RH/ TEMP Transmitter Temp: -15 to 60 °C EWS-RH 18.863%(V)-34.457

6 |Ambient RH (%) OMEGA RH/ TEMP Transmitter RH: 5 to 95% EWS-RH 25%(V)-25

7{Dil Air P (PSIG) OMEGA Pressure Transducer 0-100PsIG PX313-100G] 25.0193*(V)-25.167

8{Dil Air Temp (°C) OMEGA Dual Element I-Type Thermocouple 0-750°C SICSS-062U-3-DUAL _ |94.753*(V)+1.8464 (AD594CDZ Calibration)

9|Fuel Temp (°C) Grounded J-Type Thermocouple (1/8" Dia) 0-750°C N/A 94.753*%(V)+1.8464 (AD594CDZ Calibration)
10 | Downstream Ex Temp (°C) Exposed J-Type Thermocouple (1/8" Dia) 0-750°C N/A 94.753*(V)+1.8464 (AD594CDZ Calibration)
11 | Diluted Sample Temp (°C) Ungrounded J-Type Thermocouple (1/8" Dia) 0-750°C N/A 94.753*(V)+1.8464 (AD594CDZ Calibration)
12|OMEGA Dil Air Flow (SLPM) OMEGA Mass Flow Meter 2-100 LPM FMA 1742 20%(V)
13 | MAF (SLPM) W/ BOSCH Mass Flow Meter Calibrated to 4000LPM VW 037 906 461 C 53.135%(V)*3 + 104.38*(V)"2 + 56.724*(V) - 13.702
14| Transfer line Temp (°C) OMEGA Dual Element J-Type Thermocouple 0-750°C SICSS-062U-3-DUAL 94.753*(V)+1.8464 (AD594CDZ Calibration)
15 |Flow Totalizer Pressure (PSIA) Dwyer Pressure Transducer 0-30PSIA/ (-14.7)-15.3PSIG 626-01-GH-P1-E1-51  |7.5%(V)-22.2

***Note: All J-Type thermocouples amplified with Analog Devices AD594CDZ Monolithic Thermocouple Amplifier***

Magnehelics. Calibration of the dilution air and exhaust sample transfer line MAGs was performed
with the heat cords at the 30 and 100°C set point temperatures. With the temperatures held constant,
the magnehelic calibrations are effectively mass flow rate calibrations. To perform calibration, the
dilution air pressure was adjusted with the precision regulator to affect both dilution air flow rate
and transfer line flow rate. Calibration was performed with all components in the dilution system
connected, with one exception - to calibrate the aerosol inlet transfer line flow, the dilution system
was disconnected from the tailpipe probe so a bubble flow meter could be used to measure transfer
line flow. The air source was the dilution air system as described above. Dilution air pressure was
adjusted in steps around the 30 psi pressure set point used during engine tests to generate different
flow rates for both the transfer line and dilution air magnehelics. The calibration dilution air
pressures were (in psi) 15, 20, 25, 27, 28, 29, 30, 31, 32, 33 and calibration proceeded from high
pressure to low pressure. Altering this pressure changed the amount of dilution air forced through
Orifice A and into the Dekati diluter which, in turn, altered the inlet flow in the raw exhaust transfer
line. The dilution air flow (~82 LPM) was measured with an OMEGA mass flow meter (FMA
1700/1800) with a range of 0-100 LPM. A 200 mL bubble flow meter was used to calibrate the
raw exhaust transfer line flow (~1 LPM) because this type of flow meter introduces minimal
pressure drop to the system, resulting in little to no effect on the flow measurement. During
calibration, the dilution air pressure was adjusted to various settings around the standard 30psi set
point while MAG data, OMEGA flow meter, dilution air pressure, and temperature data were
logged continuously and 10 manual replicate measurements of the time necessary for the soap film
in the bubble flow meter to travel through the 200mL volume were measured at each setting. At
least 7.45 minutes were spent at each pressure setting to obtain the manual bubble flow meter
measurements while the 1Hz data used to determine average MAG readings for each pressure
setting was collected simultaneously. The calibration curve relationships between measured flow
rate and the transmitting magnehelic voltage readings are shown in Figure 2-5 and best-fit curves
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are found in Table 2-aaa. The dilution ratios determined for each engine run are shown in Table
2-bbb and ranged from 50 to 92.
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Figure 2-5. Cadlibration curves for exhaust sample transfer line and dilution air
magnehelics. MAGs were calibrated while the dilution system was at the heat cord
temperature setpoints (100°C and 30°C, respectively). The transfer line flow data (top
plot) were collected with the bubble flow meter and dilution air flow rate (bottom plot)
was measured by an Omega 0-100Lpm mass air flow meter.

Pitot Tube and Mass Air Flow Sensor. Calibration of both the pitot tube exhaust flow meter and
the MAF sensor on the air intake of the engine were performed using an Ametek Nautilair 12.3”
Variable Speed Blower and a Sierra Instrument mass flow meter (model number: 620S-L04-M1-
EN2-V1-DD-0) with a calibrated 0 to 4000 sLPM range. To calibrate these sensors, they were
attached to the blower with the Sierra flow meter inline (upstream for the pitot tube (Figure 2-6a),
downstream for the MAF Sensor (Figure 2-6b)).

Mass Flow
Meter (MAF)

a Ametek Throttling Pitot Tube Sierra Flow
Blower Valves Meter

Ametek
Blower

Exhaust Pipe

Figure 2-6. Calibration setup for push-through flow of exhaust Pitot tube (a) and pull-
through flow for MAF sensor (b).
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Flow was pushed past the pitot tube and pulled through the MAF sensor to simulate their actual
use. Once connected, data for the Sierra flow meter, the MAF sensor and the pitot tube transmitting
MAG (Dwyer, 605-10) were logged at 1Hz with Labview software. The blower was set to various
flow rates between 0 and 4000 LPM (maximum calculated pumping rate of the 1.9L engine with a
maximum RPM of 4000 is ~3800LPM). For each flow setting, flow was allowed to stabilize and
then approximately one minute of data were collected for calibration. The factory calibration
equation was applied to the logged Sierra flow meter voltage. The resulting Sierra flow rates and
sensor voltages were then averaged for each flow position and used to compute the calibration
equations for the sensor. The raw voltage data collected for the MAF sensor and its calibration

curve can be seen in Figure 2-7 and Figure 2-8 shows the calibration data for the pitot tube exhaust
flow sensor.
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Figure 2-7. MAF Sensor Calibration: (left) Raw voltage; (right) calibration curve based on
Sierra flow meter flowrate data
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Figure 2-8. Pitot MAG Calibration: (left) Raw voltage; (right) calibration curve based on
Sierra flow meter flowrate data

2.2.4 Tailpipe Emissions Test Sequence

Emissions tests for a certain biodiesel fuel blend involved the following sequence of steps: (a)if
using a different fuel then what is currently in the fuel system, purge engine fuel system of
previous fuel (1 day prior to test); (b) warm-up all instrumentation and data acquisition systems
(minimum of 1 hr); (c) collect instrument blank (IB) data on all real-time instruments; (d) collect
tunnel blank (TB) data on all real-time instruments; (e) Start CM-12 diesel engine; (f) run engine
Warm-Up cycle until the engine coolant thermostat opens [92+1°C]; (g) conduct emissions test
run with gas, particle number and PM filter sampling trains; (h) cool down engine (idle for 3-5
minutes); (i) CM-12 engine off; (j) collect post-run TB; (k) collect post-run IB with real-time
instruments. Copies of run logsheets and SOPs for all test procedures are found in Appendix C.
Periodically, “Engine Blank” runs were performed where the entire test sequence was
replicated except that the CM-12 engine was not started. During all tests, log sheets were filled out
by TAQ Lab personnel to ensure test-to-test reproducibility and keep track of ambient sampling
conditions, deviations from standard operating procedures (SOPs) and electronic data filenames.
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Every CM-12 engine emissions test was given a unique TestID indicating the test replicate number
for that date — sample date — fuel blend. For example, a B20 blend run as the first test on February
9, 2012 would have a TestID of 1 — 09FEB2012 — B020. All electronic data were immediately
copied to the HolmenGroup server after every engine test run and all data files collected during a
specific TestID were stored in a separate folder.

Fuel Purging

The CM-12 was equipped with a fuel purging system to minimize the chance of fuel crossover
between tests with different fuel types. To further minimize the possibility of fuel contamination,
each fuel blend had a designated 6-gallon plastic fuel tank. These fuel tanks were connected to the
fuel system by self-sealing quick connect fittings. Because this engine has both a fuel feed line and
a fuel return line, two valves were used to switch the fuel system from biodiesel to petrodiesel. As
shown in Figure 2-9, the valve on the feed line switched between the biodiesel fuel tank and the
petrodiesel fuel tank while the valve for the return line switched between the biodiesel fuel tank, a
waste fuel storage tank, and the petrodiesel fuel tank. The procedure to purge the fuel system from
petrodiesel to biodiesel is as follows:
1. Start engine and allow idle to stabilize (both valves initially on petrodiesel).

2. Simultaneously, switch the feed line valve to biodiesel and the return line valve to waste.

3. Allow the engine to idle for 5 minutes to completely clear the fuel system (fuel lines, fuel
filter, and fuel pump) of petrodiesel.

4. Switch the return line valve to biodiesel.

One might think that when purging from one biodiesel blend to another, the fuel tank for the new
biodiesel blend could just replace the petrodiesel fuel tank in Figure 2-9, however, because the
engine is equipped with just one dedicated petrodiesel fuel filter, this is not the case. To avoid
contaminating the petrodiesel fuel filter with any biodiesel, the procedure used to purge the fuel
system from one biodiesel blend to another was as follows:

1. With the engine off, remove the feed and return fuel lines from the original biodiesel fuel

tank.

2. Replace the original biodiesel fuel tank with the new biodiesel fuel tank without
connecting the fuel lines.

3. Connect the return line that typically connects to the biodiesel tank to the waste tank.

4. Start the engine — as soon as the engine is running, connect the biodiesel feed line to the
new biodiesel tank. This ensures that there is suction on the line and that any remnant of
the original biodiesel in the line will not drip into the new tank.

5. Run the engine for 5 minutes to allow the system to purge to the new fuel.

Shut the engine off.

7. Disconnect the biodiesel return line from the waste tank and connect it to the new
biodiesel tank.

S
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Figure 2-9. Fuel Switching System with the valves in the ‘Biodiesel’ Position

The 5-minute purge duration used in both procedures was determined by collecting fuel samples
from the return line every minute after the feed line was switched to the new fuel. These samples
were then analyzed for FAME content with the IROX-D; the fuel sample collected at 5 minutes
was consistently found to have the same FAME content as the new fuel.

Drive Cycles.

Multiple drive cycles were developed for collecting emissions data. The drive cycle primarily used
from July 2010 to October 2011 was the “semi-transient” cycle depicted in Figure 2-10. From
October 2011 to December 2012, a series of steady-state operating cycles were run at 40% load
(2000RPM 40% Throttle) and 80% load (2200RPM, 67% Throttle). Development of a real-world
transient drive cycle (Figure 2-10) began in December 2012 and was finalized in May 2013. A
‘burn out’ cycle was also developed to burn FAMEs residue out of the exhaust system after B100
runs. This cycle was a steady-state, extremely high load, hot exhaust run at 85% throttle and 3300
RPM. It is run for about 10 minutes; longer operation at these conditions result in excessive
dynamometer temperatures indicated by incandescence of the dynamometer rotors.
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lResulling %Load 0 19.2 2.0 44 8.0 126 19.2 289 40.1 8.5 0

Figure 2-10. Second-by-second drive cycles. Measured RPM (squares) on left scale;
throttle position (diamonds) on right scale A. Transient drive cycle. MAX Throttle position
72%; MAX measured RPM ~3500. B. Semi-transient drive cycle. MAX Throttle position
40%; MAX measured RPM ~3500.

Oil and Fuel Filter Changes.

Engine oil was changed between different sets of tests to minimize lubrication oil contamination
from fuel type to fuel type. Since receiving the CM-12, Castrol ‘EDGE with STP’ SAE 5W-40
engine oil has exclusively been used. This is a full synthetic motor oil that meets VVolkswagen oil
specifications 501 01, 502 00, and 505 00. Small quantities have been purchased from the local
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auto parts store and, when controlling for production lot, large quantities have been purchased from
a regional distributer, Windward Petroleum, Rutland, VT. Oil filters have also typically been
purchased from the local auto parts store, however, when controlling for production lot, multiple
filters were purchased from idparts.com (Pembroke, MA) along with fuel filters.

2.3 (Bio)diesel Fuel Supply and Monitoring

2.3.1 Fuel Composition And Biodiesel Fuel Blending

Neat ultra-low sulfur on-road petro-diesel, used as a baseline fuel, and neat soybean oil based
biodiesel were obtained for this testing and blended when necessary (petro-diesel - Trono Fuels,
Burlington, VT, biodiesel - Denis K. Burke, Inc., Chelsea, MA). The results for four different
biodiesel/petrodiesel blends, denoted as BXXX, where XXX is the percentage (by volume) of
biodiesel in the blend are reported here. These blends were BO0O (petro-diesel), B020, B050, and
B100 for the steady-state tests conducted at 40% load (SS40) and BO and B100 for the steady-state
80% load (SS80) tests. All biodiesel blends were prepared as small volumes using a splash blending
procedure (See SOP in Appendix B). Future emissions testing will utilize biodiesel fuels made
from feedstocks of both waste vegetable oil (WVO) and soybean oil that was processed specifically
for the UVM TAQIlab at the University of Connecticut’s Biofuel Consortium.

An IROX-Diesel mid-infrared instrument was used to characterize the fuel composition
and physical properties. The IROX-Diesel instrument uses Fourier transform infrared (FTIR)
spectroscopy to determine characteristics of fuel. The instrument determines the mid-range
infrared absorption spectrum over the 650cm™ to 3100cm* wavenumber analysis range. The IROX-
D sample data are compared to the instrument’s database on well-characterized petroleum diesel
and biodiesel blends to interpolate the fuel sample blend volume (FAME content), density, and
distillation temperatures (T90 and T95) based on the FTIR spectrum. The instrument is capable of
measuring biodiesel content up 40% by volume. Above this content, samples must be diluted to
within the measureable range (0-40%) by dilution with n-Hexane. Hexanes were used as the blanks
for all IROX-D measurements. Fuel samples were collected from the fuel tank before and after
emissions testing and stored in clean, amber glass vials at -4°C until IROX-D analysis.

2.4 Gas and Particle Emissions Measurement

Multiple samples were collected from the diluted flow, one of which had to be forced to
instrumentation in an adjacent laboratory. To force the flow necessary for this sample, the port on
the Dekati diluter typically used to exhaust the excess sample flow was plugged and a ‘T fitting
followed by a ball valve were connected to the outlet of the diluter. The ball valve was then used
as a throttling valve to pressurize the diluted sample below it just enough to push flow through the
‘T’ fitting, denoted as port ‘DL-A’, and into the other room. In addition to pushing sample flow
into the other room, the pressure induced by the valve also slightly decreased the transfer line flow,
increasing the DR. The remainder of the flow went through the ball valve and into an 8-port
stainless steel manifold (SMARTFLOW, 8SS-8-3-A) which enable additional sampling in the same
room as the engine (ports labeled DL-B through DL-1). Table 2-7 summarizes the final
arrangement of emissions sampling instruments on each manifold port.

Table 2-7. Diluted Samples and Flows by Port Identifier. Minimum dilution system flow is
80 LPM resulting in a minimum of 5 LPM excess flow.
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Port |Use Max Flow (LPM)
DL-A |Pushed flow to alternate room - UCPC (1.5LPM), EAD (2.5LPM) 15
DL-B |Fiber Film 47mm Filter 20
DL-C |Denuded Quartz Fiber Film 47mm Filter 15
DL-D |Quartz Fiber Film 47mm Filter 15
DL-E |- -
DL-F |Engine Exhaust Particle Sizer (EEPS) 10
DL-G |- -
DL-H |- -
DL-1 |Diluted Sample Thermocouple -
Total Sample Flow Required = 75

2.4.1 Particle Mass & Number Measurement

Filters

Particle mass measurements were made using stainless steel filter holders containing pre-
conditioned and pre-weighed 47mm diameter Teflo or Fiberfilm filters (Pall Gelman see Table 2-
8). In various engine emissions tests, PM filters were located either on a separate raw exhaust
sample line or at one of the dilution system manifold ports. PM was sampled at a flowrate of 20
L/min. In addition, quartz fiber filters (QFFs, Tissuquartz, Pall 2500QA0-UP) were collected from
the manifold to enable chemical analysis as discussed in a separate report (TRC 14-009).

Table 2-8. PM Filter Specifications used for PM mass and chemical composition

Filter Pore
Paliflex Manufa |Product |Model Diameter |Size Lot Storage Pre-sampling Post-sampling
TAQLab Name | Material Name cturer |Number |Number (mm) (um) b Condition Conditioni Conditioning
1) Combusted in
muffle furnace >8hrs
at 450°C
Quartz Fiber Filters 2) 24hrs in Coy 24hrs in Coy
QFF Binder-free pure quartz Tissuquartz Pall 7194 | 2500QA0-UP 47 57249 | Desiccant Chamber |Chamber Chamber
Quartz Fiber with Teflon membrane
Pure borosilicate glass fibers with
fluorocarbon (tetrofluoroethylene, TFE) 24hrs in Coy 24hrs in Coy
FF coating Fiberfilm Pall 7212 TE0A20 47 T8713C Coy Chamber Chamber Chamber
Teflon (PTFE) membrane with PMP 24hrs in Coy 24hrs in Coy
Teflo (polymethylpentene) support ring Teflo Pall R2PIOAT7 47 2 T02298 Coy Chamber Chamber Chamber
EEPS

A TSI, Inc. Model 3090 Engine Exhaust Particle Sizer (EEPS) was used to measure the particle
number (PN) concentration (#/cc) in the diluted exhaust simultaneously for 32 different particle
diameter channels from 5.6nm to 560nm. The EEPS data was logged at 10Hz using proprietary
EEPS software (TSI Engine Exhaust Particle Sizer Software, Release Version 3.1.0.0).

Diluted engine-out particle number emissions were measured with a TSI 3090 Engine Exhaust
Particle Sizer (EEPS) (32 channels, 5.6 - 560nm) at a frequency of 1Hz. The bio-diesel blends used
were soy-based B0, B20, B50, and B100. The engine was operated at 45% throttle and loaded to
maintain 2000 RPM for all tests (approximately 40% load for this RPM). During the steady state
operation the average calculated dilution ratio was 55 with a standard deviation of 2.4.

uceC

To verify the EEPS data, a TSI Model 3025A Ultrafine Condensation Particle Counter (UCPC)
also counted total particle number concentration with a particle diameter detection range of 3-3000
nm. Because the total PN concentration from the entire particle distribution routinely surpassed
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the maximum detection limit of the UCPC, a TSI Model 3080 Electrostatic Classifier was used to
select a specific particle size range with a midpoint of 10.75nm for the UCPC to measure. The
total concentration measured by the UCPC is then compared to the data collected for the
corresponding EEPS bin.

EAD

A TSI Model 3070A Electrical Aerosol Detector (EAD) was used to measure aerosol diameter
concentration (mm/cc) in the diluted exhaust. The EAD measures a particle diameter range of 10-
1000nm at 3.75Hz resolution with a one second averaging interval.

2.4.2 Exhaust Gas Measurement

FTIR

Raw exhaust sampled from the tailpipe probe was transported via heated line (191°C) into the
sampling cell of the MKS MultiGas 2030 high-speed FTIR at a flowrate between 12 and 16LPM
and sampled at a rate of 1 Hz. The FTIR simultaneously quantified the concentrations of 31 gas-
phase pollutants based on manufacturer calibration curves using select absorbance regions. Before
and after each sampling run, an instrument blank was acquired while the sample cell was purged
with dry nitrogen gas to verify proper signal alignment and maximal signal-to-noise instrument
response across the 500 to 5000 cm™ wavenumber region. In addition, a ten-minute tunnel blank
(TB) was collected immediately before and after each run to obtain background gas concentrations
in the exhaust system. These values were used to compute the daily quantitation limits of the FTIR
instrument. For the 2012 steady-state emissions tests reported here, the FTIR gas-phase
concentrations for the following compounds were averaged over the steady-state portion of the test
cycle: Acetylene (ppm), CH4 (ppm), CO (%)CO (ppm) CO2 (%), Diesel (ppm), Ethane (ppm),
Ethylene (ppm), Formaldehyde (ppm), H20 (%), HNCO (ppm), N2O (ppm), NHz (ppm), NO (ppm),
NO- High (ppm), NO2 Low (ppm), Os (ppm), Propane (ppm), Propylene (ppm), Urea ByProduct
(ppm). These compounds were recommended by the instrument manufacturer for testing of diesel
and biodiesel exhaust.

5-Gas Analyzer

In addition to the FTIR an Applus+ AutoLogic Inc. 5-Gas analyzer was used to collect gas data
for CO, COz, NOx, HC and 0. In some instances, the 5-gas sampled raw exhaust along with
the FTIR to determine the relationship between what the instruments were reporting. In
other instances the 5-gas analyzer sampled diluted exhaust to allow DR calculation via gas
data to corroborate the DR calculation based on measured volumetric flow data.

2.5 Data Processing

2.5.1 Data Pre-Processing: Temporal Alignment.

Although the clocks on the computers used for data collection were synchronized, the time stamps
associated with each instrument were not aligned perfectly. The exhaust emissions (EEPS, CPC,
FTIR) data were also subject to a time lag associated with the time necessary for the exhaust sample
to travel from the sample port in the exhaust pipe to the instrument. The raw data from Scantool,
Armfield, Labview, and EEPS were aligned as follows.
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First, because Scantool data were logged at a variable ‘as fast as possible’ rate, they were
interpolated to the same frequency as the Armfield data using the Matlab function ‘Interp1’ and the
‘linear’ method. Then, Armfield output file record numbers were translated to Armfield
timestamps (hh:mm:ss:ddd) using the manually recorded start time and the known data collection
sampling rate. Because of the error associated with generating the Armfield timestamps, the
Armfield data were aligned to the Scantool data collected for the same parameter measurement.
The Pearson’s correlation method was then used to determine the time lag to be assigned to each
data set. The Armfield data set was shifted in intervals of one time step from -t seconds to +t seconds
(where t is large enough to obtain a maximum correlation coefficient). The shifted Armfield
parameters (throttle position, RPM, intake air pressure, and torque) were correlated to
corresponding Scantool parameters (throttle position, RPM, RPM, and injection quantity
respectively) and the lag with the highest correlation coefficient was recorded for each parameter
being compared. The average of the four recorded lags was then applied as the Armfield instrument
offset. Once the time offset was applied to the Armfield data, it and the Scantool data were
interpolated to the frequency of the remaining instruments (1Hz). Next, the Labview data were
aligned with the Armfield/ Scantool data by correlating multiple time shifts of the Labview mass
air flow (MAF) parameter to the Armfield intake air pressure; both are measures of intake air flow.
Again, the time offset associated with the highest correlation coefficient was selected and applied
to time-align the Labview data set with Armfield/Scantool. To align particle and gas emissions
instrument (EEPS, CPC, FTIR) to the engine operating data, the Scantool fuel injection quantity
parameter was correlated to EEPS total particle number (TPN) to determine the lag based on the
highest correlation coefficient.

2.5.2 Engine Load Calculation.

The CM-12 dynamometer is instrumented to measure engine torque in real time. In order to
evaluate the data collected here in a broader context, it was necessary to calculate percent load, the
amount of torque currently being generated divided by the maximum torque that could be generated
at a given engine speed. To facilitate this calculation, the torque curve provided by Volkswagen
for the 1.9L SDi engine (Figure 2-11) was interpolated into a piecewise function so that ‘maximum
torque’ could be calculated across the RPM range. The maximum torque was calculated for every
time step using the associated engine speed. Percent load was then calculated with the following
equation:
% Load = ((Measured Torque)/(Maximum Calculated Torque))*100 2-2
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Volkswagen 1.9L SDi Torque Curve
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Figure 2-11. Volkswagen 1.9L SDi Torque Curve with Polynomial Trendlines

2.5.3 Fuel Consumption.

Fuel injection quantity (mass of fuel per engine stroke) is logged by the scantool. It is reported in
units of mg/stroke. To calculate fuel consumption, the following equation was used:

min
m 2 b Dr(sec) x 50
Fuel Consumption (gal) = —2 x = x RPM x X SeC
Stroke  rev 453592mg 1, (Iblgal) 2-3

Equation 2-3 was used to calculate the volume of fuel used for every time step in the data set and
these instantaneous values were summed to give the overall fuel consumption during the test period.
In April 2012, after the SS40 data was collected, an ADAM Equipment GBK 70a scale (0-70Ib/0-
32kg x 0.0021b/ 0.001kg) was added to the Labview system which logged the weight of the fuel
tank at a frequency of 1 Hz. The fuel weight measured with this scale, in conjunction with the fuel
density measured with the IROX-D, provide another measure of fuel consumption. To compare
these two measures of fuel consumption the data collected during SS80 testing were analyzed.
Because the duration of these tests were not all the same, steady state fuel consumption was
normalized to gallons per hour. First, fuel consumption was calculated from the scantool data with
the equation above and compared to the scale data (labeled ‘Uncorrected Injection Quantity’ and
‘Scale Data’ in Figure 2-12).
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Figure 2-12. Fuel consumption data comparison

Fuel consumption calculated from the scantool data overestimated BOOO fuel consumption and
underestimated B100 fuel consumption as compared to scale data. Realizing that the scantool
measure is based on average B00O fuel properties, and that fuel density was used in the fuel
consumption calculation, a density ratio was applied to the scantool calculation which yielded the
‘Corrected Injection QTY’ data shown in Figure 2-12. The ‘Corrected Injection QTY” scantool
data shows a statistically insignificant difference between B0O0O fuel consumption and B100 fuel
consumption according to the scantool data. This suggests that the scantool Injection QTY data is,
in actuality, merely a crudely estimated volumetric flow measurement even though it is reported in
units of mass flow. For this reason, fuel consumption calculated via fuel tank weight is considered
to be more accurate.

2.5.4 Blank Corrections

To ensure that particle and gas phase data reported were not influenced by background levels,
each instrument collected 5 data files - a pre-instrument blank, a pre-tunnel blank, run data, a
post-tunnel blank, and a post instrument blank. The instrument blanks were used to verify that
the instruments were operating similarly before and after the run as well as from run to run. The
tunnel blank data were used to correct the gas and particle concentration data collected during the
run for changes in ambient conditions. All data were blank corrected based on Equation 2-4

Corrected Data® RawData - (CTB +3S, ) 2-4

pre-run
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2.6 System Validation Procedures

A total of 10 test runs were completed at 40% steady-state load (SS40) and 6 runs were completed
at 80% load (SS80). The engine and dilution system electronic data successfully logged for each
test is summarized in Table 2-9. Lists of the complete test runs can be found in Appendix D.

Table 2-9. Test runs completed at 40% and 80% load and the instruments that successfully

logged

40 % Laod Tests Fuel |Armfield Data [Scantool Data |Labview Data
1_07FEB2012_B000 [BOOO | v v v" (No Scale)
1 _08FEB2012_B000 [BOOO | v 4 v (No Scale)
1 _09FEB2012_B020 [B020 (v v" (No Scale)
1 _10FEB2012_B020 [B020 (v 4 v" (No Scale)
1 02MAR2012_B050 |B050 | v ¥" (No Scale)
1_07MAR2012_B050 |B0O50 [ v v (No Scale)
1_13MAR2012_B050 |B050 [+ v v (No Scale)
1_20MAR2012_B100 |[B100 | v v v" (No Scale)
1_22MAR2012_B100 |B100 |v v v (No Scale)
1 26MAR2012_B1000 |B100 |v 4 ¥" (No Scale)
80 % Load Tests

1_14MAY2012_B100 |B100 |V v v
1_16MAY2012_B100 |B100 |+ v v
1_17MAY2012_B100 |B10O|v v v
1_28AUG2012_B000 |B00O | v v 4
1_12SEP2012_B000 [B0OOO | v v 4
1_240CT2012_B000 [B0OOO | v v 4

2.6.1 Logsheets and Checklists

Over the course of this project, multiple log sheets and check lists were developed to ensure
adequate test run records are collected daily and that the experimental procedure was as repeatable
as possible from run to run. Example log sheets used during this study can be found in Appendix
C. There were a total of 5 logsheets (Run, EEPS, MultiGas, 5-Gas, Cycle) recorded for each
emissions test. In addition, each emissions instrument and the CM-12 engine has its own
hardbound logbook where information on instrument use, calibration and maintenance activities
are recorded.

Beyond the real time monitoring of the equipment that is captured on the log sheets, Matlab code
was written to quickly process the raw data collected during an experiment. The data from an
experiment is typically processed with this code within 24 hours to generate plots of key parameters
such as engine speed and torque, dilution system temperatures, ambient conditions, the calculated
dilution ratio, exhaust temperature, and EEPS total particle number. These plots are then compared
to those of previously collected data to make sure there are not any unexplained deviations. If
deviations occurred or instruments malfunctioned, an additional replicate test was performed.
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2.6.2 Data Quality Control and Instrument Verification

Procedures are also in place to ensure data quality. Particle number (PN) distributions measured by
the EEPS were verified against an SMPS system, which is considered to be the “gold standard” for
PN distribution measurement. For this purpose, a 100ppm emery oil in isopropanol solution was
prepared in order to generate a standard aerosol of emery oil spheres. The aerosol was generated
with a TSI Constant Output Atomizer (Model 3076), which produces an aerosol by pressurizing a
given solution. The aerosol flowed through silica gel and activated carbon to remove moisture and
organic contaminants from the sample before simultaneous measurement from the EEPS and SMPS
on a “tee” fitting. Average results from the EEPS measuring a second-by-second distribution for
seven minutes and the SMPS measuring the distribution three times (3 scans, 150 sec each) over
the same time-frame are presented in Figure 2-13. The results indicate that the two instruments
were able to measure the same distribution mode within this test, although the SMPS total particle
number (TPN) measurement was almost twice that of the EEPS. This result has been reported by
other studies, with the two instruments often displaying a difference in TPN between 25-38% due
to their slightly different particle measurement methodologies (Zimmerman et al., 2013 REF 36).
Because our experimental procedure are comparative in nature, utilizing baselines to determine
percent differences between conditions (e.g., biodiesel percentage), accurate time-resolved PN
distribution measurements are more important than absolute TPN values.

17N0OV2013 EEPS vs SMPS Verfication

Emery Oil Solution Aerosol - Blank Corrected Data

5.0E+06
45E+06 | —¢EEPS

4.0E+06 | =====SMPS
3.5E+06
3.0E+06

2.5E+06 ;
2.0E+06
1.5E+06
1.0E+06
5.0E+05

0.0E+00 T )
1 10 100 1000

Dp (nm)

dN/dlogDp (#/cm?3)

Figure 2-13. EEPS PN distribution verification against SMPS with standard aerosol

For the MKS MultiGas, measurement of gas-phase emissions, the quality assurance/quality
control procedures described in detail by Sentoff (2013) were employed. These procedures
include daily instrument zero checks using dry nitrogen gas, calibration using a certified
emissions mix and a daily startup sequence based on manufacturer guidelines to ensure
instrumentation was operating within specifications.

35



UVM TRC Report # 14-008

3. Resulis

3.1 Summary Of Data Collected

Between January — December 2012, a total of 45 engine tests were performed to evaluate a number of
research questions related to the Armfield CM-12 light-duty diesel engine and the sampling system design

as well as the effect of fuel composition on CM-12 emissions and engine performance.

Table 3-1

summarizes the test information. These 2012 tests represent the first series of runs with the near-final CM-
12 testing apparatus described previously in Section 2. Emissions from the tailpipe were sampled for gases
and particles simultaneously and soybean biodiesel fuel from Burke Oil was mixed with petrodiesel from a
single local commercial supplier (Trono Fuels). Thus, this dataset represents that for which the research team
could evaluate the quality of the test procedures and collect preliminary emissions data for comparison to the

literature.

Table 3-1.

Individual Run Test Conditions

Number
Fuel Biodiesel Test Cycle of
Blend | Petrodiesel Feedstock | (Test, Purge, | False Notes/lssues
Date (Biodies Feedstock (Distributor, Oil | Aggressive, Steady | Start/ | Engine | Engine | Run |Engine | Engine | Ignition | Clog in | Calculated
(dd-Mon- @l%by | (Distributor, Fuel) | Type, Purchase | State, Transient, | cutout | stare off | Duration | Hours | Hours [Timeon | ©il | Dilution
vy [vestw| vol | purchase vean) Year) Hot Cleanout] | Events | Time | Time | (min) | Start | End | (min) | sys? | Ratio
Changed Dilution System Orifice setup Changed Dilution System Orifice setup Changed Dilution System Orifice setup
23-Jan-2012 | NJA BO Trono Petro 2010 None Purge 0 17:48:50| 17:59:00 10.2 105:33 | 105:44 11 N Purge to BO
4132012 | WA | 80| Trono Petro 2010 None Test 0 [155520[ 160230 72 |1054 [10552| & N Testing Mags
261an2012 | WA |80 | Tronopetro 2010 None Test [ T05:52 (10555 |3 N [Testing Aerosol niet
30dan2012 | 1 B0 | Trono Petro 2010 None Steady State 40% | 0 |14.2057] 154530 | 846 |10555)|107.20| 85 N "QnD" - Only collecting P
31Jan2012 | 1 _| B0 | TronoPetro 2010 None | SteadyState 40% | 0 |150247| 16:27.15| 845 |107.20 [10846| 86 | N "QnD" - Only collecting P
Greb2012 | WA | 80| Tronopetro 2010 None Test [ Tosas 10858 12| N [Testing Disys changes
Greb2012 | N/ | B0 | TronoPetro 2010 None Test o 10858 [109:04| 6 N [Testing Dilsys changes
7Feb2012 | 1 | 80| TronoPewo 2010 None | SteadyStawe40% | 0 |15:1305| 165330 | 100.4_|109:04 110446 | 102 | W 54__|5-Gas did not deteat CO2
EEPS - "Concentration Gverrange” message Briskteat SOC Heat Tape Controllers with
8-Feb-2012 1 BO Trono Petro 2010 None Steady State 40% Q 15:47:00| 17:25:00 98.0 |110:46 | 112:32 106 N 50-51 . but was greunded dual element thermecouple in the gas flow.
9Feb2012 | 1 | 820 | TronoPewo 2010 | Burke Soy 2010 SteadyState 40% | 0 | 16:21:00] 17:50:00| 980 11232 [114ii1] 99 | W 50| Scontal disconnected . mo:f;s;;i:mgi e
10 reb2012 | 1| 820 | TronoPetro 2010_| Burke Say 2010 Steady State 0% | _1__|12:1100[ 135000| 9.0 |11aa1 1550 % | N 5
1-Mar-2012 | N/A Bs0 Trono Petro 2010 | Burke Soy 2010 Purge o 11:55:00 12:00:00 50 116:17 | 116:24 7 N Purged to BS0
Heat tape malfunction
- £6ps - “Concentration Overrange* message
- Adjusted Armiield Thrattle pasition to match 08D-I
2ms2012 | 1 | 850 | TronoPewo2010 |Burke Soy 2010 steadystateaoss | o |114500| 132000 [ ss0 [1162a [1103| s | | spse [Mromiepositon since lastrun. Malntained the same 080-
1 throttie position throughout runs -Using BriskHeat SOC Heat Tape Controllers with open
- Scantool disconnected thermocouple between heat tape and tubing. Does not
Bulding water left on for the night prior - cylinder head  |fcllow a regular pattern, (rewrapped on 20FEB2012)
colder then usual
Heat tape only on Asrosal Inlet
7ans2012 | 1| 850 | Tronoretro2010 |BurkeSoy 2010 | steadystatedvss [ 1 |aaasoo|1ssis0| ses |usos|usaz| s | no | ssse | e
13Mar2012| 1| 850 | Trone Petro #0 2012 | Burke Soy 2010 | Steady State 40% | 1 |142230| 16:0000| 975 |119.42 [12120| 98 | N ~Heat tape only on Aerosal Inet
19-Mar-2012 | N/A B100 Burke Soy 2010 Burke Soy 2010 Purge Q 17:36:00 17:41:00 5.0 121:20 | 121:26 & N Purge to B100
TEEPS wrned off between pre 1B & 16
20-Mar-2012 1 8100 Burke Soy 2010 Burke Soy 2010 | Steady State 40% o 13:58:00| 15:35:30 97.5 121:26 (123:04 98 N 56-57 ) Bﬂ.‘h heat tapes operational again
-Adjusted both heat tape controllers to try to maintain
correct temperature
~Engine turned off carly due 1o low fuel
22Mar2012| 1 | B100 | BurkeSoy2010 |BurkeSoy2010| Stesdystatedos [ 1 |13:13.00|142630| 735 [123:04 [12407| 73 N E I - mossage - Heat tapes re-wrapped with thermocouple on the
22-Mar-2012| N/A | BI0O | Burke Soy 2010 | Burke Say 2010 Test 1 [181500 12417 | 12433] 16 N ‘Making sure engine Starts back up of the tape.
~Adjusted heal tape setpoint to achieve correct gas temp JomAROL2)
Much calder Ambient temp then previous B100 runs
26-Mar2012 1 | 8100 | BurkeSoy2010 |BurkeSoy2010 | SteadyStateans | o |15:2430|17.0230| 980 [124:33 |126:12| 99 N 55 |iatseq)
- Grounded thermocouple used to collect dilution air and
transferiine gas temperatures are reporting erroneously
SApr2012 | WA | 80| TronoPevo#OZ012]  None Purge [ 1268 |17627| 9 N Purge t0 80
20Apr2012 | N/A | B0 | TronoPetroH02012]  Mone Test 0 18533 145363 N Testing new fuel system
2May-2012 | 1 80 | Trone Petro O 2012 None SteadyStates0s | 0  |15:21:30|17:2131| 1200 [145.48 (14749 121 N S8 |sucoessfully (went back o idle momentarily sRer war-ug
to reconnecy
Moy 2012 | N/A_| 6100 | Burke Soy 2010 _| Burke Soy 2010 Purge o N 56 [Purge to 6100
] Tried Armfields 2 contraller project work' control, It did
ot work with the setting changes | made. Had to shut
¢own and restart with control typlcally used ~New PID Heat tape controllers used to maintain dilution
3-May-2012 1 B100 Burke Soy 2010 Burke Soy 2010 | Steady State 80% L] 15:29:00) 17:24:30 | 115.5 |147:49 | 149:50 121 N Forgot to reinitiate Armfield data collection after restart aie andl transfarting tmperatires
No Armfield data. Torque toggled between 103 and 104
N during S5 (Installed 18APR2012)
- Put box fan under engine blowing air towards the
Manually logged fuel tank weight i to prowie o With Cooler it
7-May-2012 | 1 80 | Trono Petro 10 2012 None SteadyState80% | 0 [13:12:00[ 15000 1180 |140:50 |151:48 | 118 N Purged to B0 during warm up - opened cooling water flow all the way for 80% load
[Acrosol ntet orfice clogged
11-May-2012| N/A B100 Burke Soy 2012 Burke Soy 2012 Purge Q 16:15:00| 16:22:30 7.5 151:48 | 151:56 g N Purge to B100
Day L of 3 day exposures - 10 mice
14-May-2012 1 8100 Burke Soy 2012 Burke Soy 2012 | Steady State 80% [ 10:03:15| 12:00:00 | 116.8 |[151:56 | 153:53 17 N 86.33
|sMPs data - many scans, one sample
15May2012| 1| B100 | BurkeSoy 2012 | Burke Soy 2012 | SieadyStaie80% | 0 | 02800 | 112330 1155 [15353 |155:82| 119 | ¥ | 12859 |Doy2 " - Aerosol Iniet orifice clogged
Redo day 2 of 3 day exposures - 10 mice
16-May-2012 1 8100 Burke Soy 2012 Burke Soy 2012 | Steady State 80% 1] 5:18:00 | 11:13:30 | 1155 |155:52 | 157:48 116 N 88
5-Gas missed engine start & warm-up
17-May2012| 1| B100 | BurkeSoy 2012 | Burke Soy 2012 | SiwadyStae80% | 0 | 5:34.00 | 10:2930 | 1155 |157:48 |159:44| 116 | N | 8511 |Doy3of3 day exposures - 10 mice
24-M3y-2012| WA | BI00 | BurkeSoy2012 | BurkeSoy 2012 _Stesdy State 0 [10:2630| 104900 | 225 |159.4a [16006] 22 | N o odor
8In2012 | 1 | B0 |TromoPewo#02013|  None | SteadyStated0% | 0  |13.42,00] 1534:00| 620 |160:06[16139] 95 | N 82| Dilution System Manifold Test
27un2012| 1| B0 |TonoPewo#02012|  None | SteadyStatedo% | 0 |11:18:00 140052 | 1625 |16139 |164:21] 162 | N | 8295 |Dilution System Manifold Test
28Ag2012| 1 | B0 |TonoPewowo2012|  None | SteadyStateso | o [132830(145000| 855 16421 [1esa7| ss | v | ssaa
Ienpinger Redesign Test - Tall Impinger
6Sep2012 | 1 80 |TronoPetro#02012|  None SteadyState80% | 0 |11:0343|122830| sas [165:56|167.22| 86 ¥ gg07 | mpinger Redesign Test - Vortex Impinger
Clog in Aerosal Injet Flow Totalizer on Pump B2
105ep-2012 | NjA | B0 | Trone Petro HD 2012 None Teat 0 |1057.20| 050.40] 23 [GET] N §3.37 |Testing Scantonl menturing block
New Condensate Traps
105ep-2012 | N/A | B0 | TronoPewro#02012 | None Test 1 [12800] 17335 58 16732 [1eras| | W Testing Scantool measuring block
T25ep2012 | 1 | B0 | TromoPewoW02012| _ None | StesdyState®o% | 0 103030122600 1155 |tesaz |17038| 16 | N Impinger Redesign Test - Vortex Impinger
Wopinger Redesign Tast- Diffused Impinger
2.5ep2012| 1 | 80 |TonoPewowo2012|  None | SteadyStateson | 0 [114830[124730| so0 |17r0a|wv23a| s | v | sses
Clog In Aerosol Inlet
5-0ct-2012 NJA BO Trono Petro #0 2012 None Test 0 172:34 (172:44 10 N | Testing cold air intake
8-Oct-2012 N/A BO Trone Petro #0 2012 None Test 172:44 | 172:50 [ N engine operation
16002012 | NjA | 80| TronoPewo#02012] _ None Transient [ 172012522 N [Testing Transient Cycle schedule
24-0ct-2012 1 BO Trone Petro #0 2012 None Steady State 80% Q 15:04:30| 16:58:00 | 113.5 |[172:52 174:46 114 Y 91.57 " HE?"E’(("VBN!EV 0 1250m 3/ 25 bubs or
Wnpinger Redesian Tkt - SWiting Impinger impinger sample line
8-Nov-2012 1 BO Trone Petro #0 2012 None Steady State 80% 1 10:13:00) 12:20:00 | 127.0 |174:46 | 176:53 127 Y 85.73
12Nov2012| 1 | B0 |TronoPewo#02012|  None | SteadyState80% | 0 |10:09:00 120400 | 115.0 |17654 |178:49| 135 | N | 6487 |impinger Test- Heat Exchanger, Swirling Imp Heat Tape burned out
2Nov-2012| N/A | 80| TronoPetroH02012] _ MNone Transient 0 [131630] 132230 60 178541901 7 N Developing Transient Cycle
27-Now-2012 | N/A BO Trone Petro #0 2012 None Transient Q 14:50:30 14:57:00 65 17901 | 175:09 &8 N Developing Transient Cycle
11Dec2012| 1 | BO | TromoPewoH02012|  None | SteadyState80% | 0 [14:15:00[16:10:00 | 1150 [179:23 [181:18] 135 | N | 8381 [impinger Test Heat Exchanger w] catch-can
17-Dec-2012 | N/A | B0 | Trono Petro RO 2012 None Transient 0 [15:5000] 160500 150 [181.38 N 'W
17-Dec-2012 [ N/A BO ‘Trone Petro #0 2012 None Transient Q 16:15:30 16:30:00 14.5 181:34 | 18149 15 N IDEVE\GBI"E Transient Cycle
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Steady-state 40% load (SS40) tests were conducted at four biodiesel blend ratios: B0, B20, B50
and B100. Steady-state 80% load (SS80) tests were conducted at just two blend ratios: BO and
B100. Replicate tests were collected for each fuel blend and results are reported below both by
individual test and as averages of the combined replicate runs on a single fuel blend.

Ambient Air Conditions

The mean ambient air temperature and relative humidity (RH) at the beginning of each test are
plotted in Figure 3-1. For the SS40 tests conducted between January 30, 2012 — March 26, 2012
the average temperature was 18.4°C and average RH was 28.4%. The temperature and humidity
were higher for the SS80 tests that were conducted between May 2-17, 2012: 20.6°C and 46.6%
RH, respectively. These differences reflect the fact that the TAQ Lab air is unconditioned and
seasonal changes in ambient air properties will be incorporated into the experimental conditions.
This test condition mimics real-world seasonal vehicle operation, but demands careful assessment
of how ambient conditions might influence experimental procedures and emission results.
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Figure 3-1. Ambient air temperature and relative humidity at start of SS test runs.
3.2 Fuel Composition by IROX-D

Figure 3-2 below shows the mid-FTIR absorbance spectra for fuel samples measured by the
IROX-D instrument. Fuel samples of the same biodiesel blend content are plotted as the same
color, which may not be immediately visible due to the high similarity of the spectra measured
within each blend. As the biodiesel content increased, the intensity of the signal response at the
1195cm wavenumber region also increased, as expected. This ester (C-O) peak is used by the
IROX to measure biodiesel (FAME) concentrations between 7-30% by volume. The measured
biodiesel content for fuel sample is presented in Figure 3-3, and average results are shown in
Table 3-2. Although results were consistent, B50 and B100 biodiesel content was likely
underestimated due to the need to dilute samples with n-Hexane. Despite this, the results indicate
that biodiesel content for all samples of fuels used in testing were within an acceptable range of
target biodiesel blend composition values.
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IROX 2012 - Raw Fuel Samples Spectra
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Figure 3-2. IROX Mid-FTIR Absorbance Specira for raw BO and B20 fuel samples (left) and
B50 and B100 samples diluted to 25% with n-hexanes (right)
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Figure 3-3. IROX results for fuel biodiesel content
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Table 3-2. Mean IROX results for fuel biodiesel content

Expected Mean Actual Mean % Diff
Fuel Value Value from
Type (% Bio) (% Bio) Expected StDev %CV
BO 0 0.08 0.08 0.12 1.55
B20 20 20.83 4.17 0.35 1.69
B50 12.5 11.39 8.98 0.59 5.21
B100 25 23.71 5.16 0.58 2.44

3.3. Engine Operation: Run-to-Run Reproducibility

Engine Parameters

The test-to-test performance of the CM-12 engine and dynamometer was evaluated by comparing

engine load, torque, engine speed (RPM) and throttle position (Figure 3-4 and Figure 3-5) as
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well as exhaust manifold temperature (Figure 3-6). RPM and throttle position were programmed
by the operator and therefore were expected to show much less variability than the response
parameters, engine torque and engine load.

For the SS40 tests, there was good reproducibility in the engine load and torque data for
tests conducted with the same biodiesel fuel blend. Notably, the SS40 B20 and BO fuel
performance metrics were similar to each other and both engine torque and load were
significantly lower for the BO and B20 tests compared to B50 and B100 tests (Figure 3-4). Load
and torque showed a pattern of increasing values with increasing biodiesel content in the fuel for
blends greater than B20.

For the SS80 tests (Figure 3-5), both engine torque and percent load were higher for
operation on B100 than BO, following the pattern observed for SS40 tests. The data for both
SS40 and SS80 operation suggest that engine operating variability was highest for the petrodiesel
(BO) fuel. The reason for this result is unknown because ambient conditions were not very
different between replicate BO tests on a given fuel blend.
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Figure 3-4. Mean CM-12 engine operating parameters for S840 tests: Torque, % Load,
Engine Speed and Throttle Position.
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Figure 3-5. Mean CM-12 engine operating parameters for SS80 tests: Torque, % Load,

Engine Speed and Throttle Position.

Measured exhaust manifold temperatures were much higher for operation at 80% load compared
to 40% load, as one would expect (Figure 3-6, note y-axis ranges are different). Exhaust
temperature also increased with increasing volume fraction of biodiesel in the fuel, but there was
also high variability between replicate tests on a single fuel blend. For example, the B50 tests
show an increasing trend. The low temperature measured on the SS40 B100 test on March 26,
2012 was likely due to a 10 degree lower ambient air temperature on that test date. (See
Appendix D for table of test T and RH conditions).
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Figure 3-6. Mean CM-12 exhaust manifold temperature for $S40 (left) and S$S80 (right)

Fuel Consumption

tests.

The real-time gravimetric measurements of fuel remaining in the fuel tank were available for the
SS80 tests only. As the data in Figure 3-7 show, there was one test, 28AUG12, using petrodiesel
fuel, that was of shorter duration because the engine ran out of fuel partway through the SS80
test. Thus, to compare the data, the average cumulative fuel consumption rates (gal/hr) were
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compared by run and averaged over fuel type. Significantly higher fuel consumption rate was
observed for the B100 soy biodiesel fuel compared to Trono petroleum diesel (B0). This is
expected due to the approximately 10% lower volumetric energy content of biodiesel compared to
petrodiesel (see Table 1-1). It should be noted that the CM-12 engine fuel injectors do not adjust
for changes in fuel properties, thus the lack of adjustment may have resulted in the observed 15%
(computed as percent difference) higher fuel consumption for B100 compared to BO because of
the density and viscosity properties of biodiesel fuel.
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Figure 3-7. Fuel consumption for $S80 tests determined by weight of fuel tank during test
cycle. Data are averages over steady-state portion of test only.
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3.4 Gravimetric Total Particulate Matter (PM) Emissions

PM mass concentrations ranged from 358 for the engine blank run to over 20,000 ug/m? for the
March 26, 2012 B100 test. The filter PM results (Figure 3-8) show distinct differences in the
mass of particles emitted with engine operating cycle and fuel blend. First, the SS40 data show
an increase in PM mass concentration with increasing percentage of soy biodiesel in the fuel.
This increase with Bxx did not correlate with ambient temperature or RH (Figure 3-8.c/d), both
factors can affect engine operation and particle emissions. The highest PM mass concentration
was measured for B100 for both steady-state test cycles. Interestingly, the B100 mass
concentration was lower for operation at 80% load compared to 40% load (Figure 3-8.a/b). A
side-by-side comparison of the SS40 and SS80 runs is shown in Appendix D.
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Figure 3-8. (a and b) Gravimetric PM mass concentration (ug/m?) results and (¢ and d)
laboratory test conditions (T and RH) for Teflo and FiberFilm filters collected directly from
tailpipe without dilution for $5§40 and $S80 runs with all biodiesel blends. Blends on left
hand side of each plot are for $540 runs and SS80 runs are on the right hand side.

3.5 Mean Particle Number Distributions by Biodiesel Blend

Mean EEPS particle number data for each biodiesel blend during the SS40 tests are plotted as a
function of particle diameter (Dy) on a log-log basis in Figure 3-9. The EEPS distributions
showed very good reproducibility for petrodiesel runs (red symbols in Figure 3-9). There were
two distinct particle modes — an accumulation mode near 50 nm diameter and a nanoparticle
mode at ~10 nm. This is consistent with diesel engine PN emissions reported in the literature (see
Section 1.3). Surprisingly, the B20 number distributions at SS40 were practically identical to
those measured for B0 fuel over the entire EEPS particle diameter range (5.6 — 560 nm). This
result may reflect the characteristics of the CM-12 engine during steady-state test cycles
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compared to heavy-duty diesel engine and vehicle test results reported in the literature where
differences have been seen between B0 and B20 emissions (see Section 1.3).
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Figure 3-9. EEPS Particle Number Distributions for $S40 and S$S80 tests. Data were
corrected for measured dilution ratio. Log-Log plot.

As observed for the PM filters, the EEPS particle number distribution data (Figure 3-aaa) show an
increase in particle emissions with increasing biodiesel content in the fuel for steady-state operation
at 40% load. In contrast, at 80% load, where only the two fuel end member compositions were
tested (B100 and BO), there was little difference between the BO and B100 particle number
emissions.  Also at SS80, the nanoparticle mode at ~ 10nm diameter was less pronounced
compared to SS40 operation on B100. This indicates that, for B100 fuel, the higher operating load
(SS80) particle emissions are less likely to be comprised of the semi-volatile material that nucleates
to form the smallest particles during exhaust dilution and cooling. Previous studies have shown
that high engine load conditions produce more elemental carbon-rich particles compared to idle
conditions where the organic carbon (OC) fraction is enhanced. It is this OC fraction generated
during low-load operation that is likely to be comprised of hydrocarbons and other materials that
partition easily between the gas and particle phases and lead to a pronounced nanoparticle mode.
Also notable is the high variability in B100 emissions during SS40 tests. There was a
significant increase in particle number emissions (and corresponding surface area and mass) as the
biodiesel content of the fuel increased, with B100 particle number concentrations up to an order of
magnitude higher than B50 at some particle diameters. The shape of the B50 and B100
distributions deviated from the nearly mono-modal shape of the BO and B20 distributions with
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significantly higher emissions for particle diameters less than ~25nm. Thus, B50 and B100 fuels
produced elevated nanoparticle emissions compared to B20 and BO fuel.

The average dilution ratio for the ten 40% load steady-state tests was 55 with a standard deviation
of 2.4 (CV = 4.4%). The particle number distributions measured with this system demonstrated
similar trends to those found in the literature. The petrodiesel particle number distribution was
unimodal (modal diameter 52.3nm) with an average peak concentration of 2.74 x 107 particles/cc
(Figure 3-9). As the concentration of biodiesel was increased, the PN distribution developed
additional particle diameter modes. The B100 distribution showed three distinct modes centered
at 10.8, 17.8, and 31.7nm particle diameters with peak concentrations averaging 1.38 x 108, 1.27 x
108, and 1.34 x 108 particles/cc, respectively.

The duplicate BOO and B20 data demonstrate consistent particle distributions while the B50
and B100 triplicate data show more variability. The factors that could explain this are variability
in ambient conditions (temperature and relative humidity) and aerosol transfer line temperature.
Both the BOO and B20 data sets were measured on consecutive days (little change in ambient
conditions) while the transfer line temperature was relatively well controlled (95-115°C;
sinusoidal). In contrast, both the B50 and B100 data sets were collected over several days resulting
in more variable ambient conditions (as much as 15°C; 25%RH difference between the cold and
dry 26MAR2012 data set and the other two B100 data sets). Temperature control of the aerosol
transfer line was also more variable from day to day, ranging from ~25°C during 02MAR2012 the
B50 data set to ~100°C during the 07MAR2012 data set. This variability affects particle formation,
particularly through the condensation mechanism (gases condensing onto solid particles resulting
in an increase in particle diameter). Figure 3-10 shows the relationship between total particle
number concentration (dN, #/cc) and ambient temperature. The “outlier” at 11°C was the B100 test
conducted on March 26, 2012.
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Figure 3-10. Relationship between ambient temperature and mean total particle number
over $$40 and SS80 test cycle.
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3.6 Particle Diameter Measurement

Representative “particle length” ( or “particle diameter”) concentration time-series results for EAD
measurements from each fuel blend are shown in Figures 3-11 for the entire test cycle duration.
Particle diameter (PD) concentration measurements from the EAD closely tracked total particle
number (TPN) concentration measurements from the EEPS over the course of each test cycle, with
similar patterns of peaks in concentrations. Two trends emerge when examining the real-time
particle diameter plots for tests conducted with different percentages of biodiesel. As biodiesel
content increased, PD peaks associated with transient engine events, such as engine start and the
transition into the warm-up phase at the beginning of the cycle, decreased in magnitude. However,
while the amplitude of these peaks in BO were almost twice that compared to B100, the PD
concentration decreased more quickly after the transient event was over for lower biodiesel blends.
Also, as biodiesel concentration increased in the fuel, it took much longer for the EAD signal to
reach a stable level during the steady-state portion of the run. For example, PD reached a stable
level after a few minutes of steady-state operation for BO and B20 blends, after approximately 15
minutes for B50 blends, and after more than 30 minutes for B100 blends. The reason for these
delays is unknown, but deserves more detailed examination of the fuel effects on engine and/or
exhaust system behavior and performance.
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Figure 3-11. Electrical Aerosol Detector (EAD) Full Run Time Series Data for BO, B20, B50
and B100 blends.

3.7 Gas-Phase Emissions

In this preliminary work with the MKS FTIR instrument and biodiesel fuel blends, the
manufacturer’s suggested analysis method was used for data collection. Figure 3-12 compares the
instrument check parameters for each set of biodiesel blend runs. Only for he B100 blend were
any FTIR instrument parameters quite different from other tests. The B100 phase angle and
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interferogram peak-to-peak ratio were much smaller than for other blends and the laser PP and laser
DC voltage data were off-scale. These deviations were due to the 20MAR12 run where data were
apparently not recorded properly to the stored file.

A comparison of tunnel blank data collected before and after the BO and B20 runs in
February 201 (Figure 3-13) for each of the 20 gases shows that there were some tests where there
were extreme percent differences between the ambient air gas concentrations before and after the
test. A positive percent difference in Figure 3-13 means that the pre-TB concentration exceeded
that for the post-TB. These extreme differences can occur either because the TAQLab is located
near a parking lot that is busy at different times of day with vehicles arriving and leaving or are
related to gases with extremely low concentrations that show high variability near the instrument
detection limit. The latter is likely for the high percent differences measured for ozone, an analyte
not expected in the exhaust.

The mean gas-phase concentrations (ppm or % depending on gas) are listed in Table 3-3
for the full run and for the steady-state portion of the run separately in order to evaluate how the
cold-start and engine warm-up concentrations differ from that for steady operation. The 40%
steady-state/total run gas concentration ratio varied from about 0.5 to 2.5 and was different between
gases, but did not vary much between biodiesel blends for a given gas compound.
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Figure 3-12. MultiGas FTIR Instrument Check Parameter Mean Values for $$40 Runs

Figure 3-13. Pre- vs. Post Tunnel Blank Gas Concentration Comparison (as Percent
Difference) for BO and B20 $S40 Runs
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Table 3-3. Mean (* 1 sd) Gas-phase Concentrations for $$40 Tests: Total Run and S$
portion of run only.

Mean and Standard Deviation Gas Concentrations for Different Fuel Blends Tested on SS40 Cycle

Petrodiesel (B0) B20 Blend B50 Blend Soy B100 Biodi

Total Run SS Portion Total Run SS Portion Total Run SS Portion Total Run SS Portion
Acetylene (ppm) 1S9 &) (S ) ') HRE) %+ &, ) - &4 S8& Y- - 1), &&" 15, ), FR&" 906 %) *(&&", % 1SRG,
CH, (ppm) &' $1&&" $%% %BHR &) ) #- 865-IRE", , ++ & SHREY%H( , & %) ! %1 99&&") | *) , %, (&&$H#% %+, (&&'% %
CO (%) ((S(1- & ((#oS (198 *&&T((S(, &TI+S(&&(()--, &1, (L &&(((-A+ (15, #&&(()%A  ("(1)* &&'(())% ("(1#1+&&((,9)) ("], #&&((%1%
CO (ppm) &*+) 24, "- L($58.861-, &) %188%15 [ T 1- (&8s 1,) H&&! % 94 %) &&*"*( 1 %R %A
CO, (%) & -- &1 % JHS*R&(H(1# 8- HREM % - &R #, % %HSSREH, | ,™*S) &&™, -) L) $&&N-)* L) L RES) #
Diesel (ppm) &(1™&&-", ) 1#$8.8) '$$ &% #R&"MIS &%+ &&" "1 ))*S&&*S #) &GS+ ) ($H&&%-$ )% " &&, "$!
Ethane (ppm) ) "9+ & &) 908t (%) #&&')S!I* &) ++&&"%S & ™1-*&&NS-) (" (RE& - # () *1 & * ("SRR * )% *&&", +#
Ethylene (ppm) 88" +&&™, ) + *OREM A # &™- S& &SS9 &'SS5&&) (#( HHIRE& S, ) ((&&" ++% ))H) &&™t,* -0, &&'$!S
Formaldehyde (ppm) )-"#HRE 1S #(*RE™1$$ &SI & #% &'(--&&"+% #¥,) &&'S),, $') % &&'% +# )) - &8 *- Y% -
H20 (%) &6H(S' &% -) J ) HHR& 98 ( B #if! &% *-&&", % % (*&&" H+* S - B &N ) * ,'S((&&™A (S A &ES 1S
HNCO (ppm) &'(#*SR&M)) (143, (&89 &%) S&&M, ! &SI +&E (! 1) - (&E"*$% (1% (! &&"- % ) SBHORE™ 1 #, L (-4
N20 (ppm) & 1-RE 4% (MST-RE(-S, & RE(#-5F &M, REN((-(# ("S- (&EN) (™% (&M ("% RE(BHI& (M) 1&&Y, 146
NH; (ppm) (%) &&'(3()$ (% +H1 &&($%, &) #5% &'(*$% ("1, && (1S (7, AHRE™S(, ("#1(S&&) + (5 10- &8 (- (5%, &&") $#
NO (ppm) 8) Y& "+SH % 1"5&&! ™! &H%- &S & ("R&) "% 14" &&-" %) &84 (! 1 H%H &% S %", &8 ", (
NO; High (ppm) #H*SRE(% -, "% &&'S, RGN+ &%H &&'SS, ) 128&1) *) V8% - $%+S2&N % %" (&8 ($
NO; Low (ppm) &("1&&!S-1( SR REM + # Z+U5R 8" *$ 4, ( Q&% AR~ *$1 QB #) *9%6, | Q&S SR
03 (ppm) 8065, S& &™), # -1, S&a&(#! &1, 1281 %% &), - &&") %! 1) &&(" S ) ") HR&M, -$ S, SR &HS* )" H& &
Propane (ppm) ) ", &&™S) S ("+$BRE", S+ &')) - Q& 1B &%) &8M (+ (&S, (-G %1 H) &', .) %! - & &' #%
Propylene (ppm) 86H($&&'A (( ) '(#) & &S &1 *S&&" %) &, *28&") %) ("$+*, &&'(9) ("$) (&&11( ) (&&SSAH S )1 +& &' %

Urea ByProduct (ppm)  8('(!S%W@&"((, -, + .("(!1)) &&(((+1(# .("0)))) & (1S & '((, #*&E(-*1+ ("L (SA&&((1#+* (")), ! +&&((S) (* .(LIII&&((S(, (1) I+ &&((+*

Replicate runs on the same biodiesel fuel blend showed very good reproducibility, with comparable
spectra between replicate runs on a given biodiesel blend. Individual gas concentration coefficient
of variation ranged from 0-65%, but most gases had CVV<20% with a general increase in variability
with increasing biodiesel content. Further work is needed to ensure accurate individual gas species
guantitation in biodiesel exhaust, especially for carbonyl compounds like formaldehyde, a MSAT
compound.

The gas-phase emissions of CO- did not vary with biodiesel blend for SS40 operation. This
is surprising given that CO, emissions are tied to fuel consumption; the low 40% load operation
may explain this result. The CO concentration in BO was higher than for the biodiesel blends.
Surprisingly, the NOx concentrations decreased with increasing biodiesel in the fuel blend (Figure
3-14). Total hydrocarbons (THC) decreased with increasing biodiesel, but ammonia increased
(Figure 3-15).

The MKS parameter identified as “diesel” decreased in concentration from B0 to B50, but
then increased to the BO concentration when the engine operated on B100. The “diesel” analyte is
based on manufacturer measurements of the volatile gas-phase compounds produced when diesel
fuel was heated. Apparently, the B100 exhaust contained compounds with similar infrared
absorbance bands to these “diesel” components. Further investigation of the “diesel” analyte’s
characteristics is warranted to better understand the information provided by the MKS MultiGas
instrument.
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Figure 3-14. Selected Gas Concentrations for $840 Runs (linear y-axis scale)
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represent one standard deviation.
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4. Conclusions

The steady-state emission test experiments enable us to make the following preliminary
conclusions on (1) the capabilities of the CM-12 exhaust sampling system and (2) how biodiesel
tailpipe emissions vary with blend ratio for a light-duty diesel engine.

Experimental Setup Quality and Reproducibility of Cycle and DR. The data collected thus far are
promising. Dilution ratio was consistent with a 4.4% variability over a 6 month sampling period.
The initial results have indicated a need for better transfer line temperature control, as the
temperature in this line affects both particle evolution and flow measurement accuracy. The
temperature control system was upgraded for data collection in 2013 and 2014. Now that the
dilution system exhibits a consistent dilution ratio from day to day during steady-state engine
operation, more realistic transient engine operation will be investigated in future emissions tests.

Fuel consumption by Bxx. Initial results determined that scantool fuel injection quantity is not an
accurate measure of fuel consumption when operating on biodiesel fuels with fuel properties that
deviate from those of petrodiesel. Testing of a gravimetric method for fuel consumption
demonstrated the usefulness of this approach for biodiesel studies.

Fuel Bxx Composition by Mid-IR. The IROX-D instrument was determined to give reliable
biodiesel blend volume % data for BO to B100 blends as long as fuels with Bxx > 30% were
carefully diluted in n-hexanes prior to analysis.

PN Distributions and Total Particle Number. The elevated 10nm particle mode observed in the
B50 and B100 distributions indicates a distinct primary nanoparticle formation process occurs for
these fuel blends at 40% load, but not at 80% load. In contrast, the accumulation mode (50 nm
and greater) particle concentrations did not increase as much with increasing percent biodiesel or
percent load.

FTIR Analyzer’s Capabilities. Replicate runs on the same biodiesel fuel blend showed very good
reproducibility, with comparable spectra between blends and individual gas concentrations
varying up to 65% over the steady-state portion of the run for most gases. Further work is needed
to ensure that quantitation of individual gases for biodiesel exhaust is reliable and calibrations
should be independently verified for complex gas mixtures using GC-MS. Especially important
for biodiesel exhaust will be development of FTIR methods to accurately quantify gas-phase
carbonyls. Further, a FTIR data analysis method should be developed to identify a surrogate
measure for Total HC that meets EPA emission test compliance.
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Appendices

Information on instrument setup details, standard operating procedures for fuel blending
and tables of raw experimental results are provided in the following 5 appendices.
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Appendix A. Experimental Sampling Setup Instrumentation Detail
Table A.1. CM-12 Light-Duty Diesel Engine Dynamometer Test Equipment

EquipmentAist?

| Description [use [ QTY [ModelmNumber
PMXollection?
1|GastPump FilterBampling 3 714645-V114-D303X
2| Gast@Pumpl Impinger/filter@ampling 1 0523-101Q-G588DX
3| Pall/@elmanE7mmFiltertholders Filter@ampling 8 2220
Gas®PhasePollutantXollection?
4 MKSETIR GasphaseBollutant@ollection 1 Multigas2030@HS
5| Cole-ParmerBample@ump FTIRBample@ump 1 L-79200-00
6 [Applus+RutolLogicAnc.lGasBnalyzer Gasphaseiollutant@ollection 1 310-0120®REV.B
7 |URGEDenuders Gashaseollutant@ollection 6 URG-2000-30B4-242
PN®ollection
8| TSIENgine@Exhaust®ParticleBizer Real@imePNm&istribution@ollection 1 3090
9| TSIAItrafineondensation@articleounter Real@imeIPN&ollection 1 3025A
10 [TSI@lectrostaticlassifier ParticleBizeBelector 1 3080
11 [TSIElectricalBerosol@etector Real@ime PNRollection 1 3070A
DilutionBAirBystem
12 | Craftsman@ir@Compressortl Pressurize@ndBtore@oomBir 1 919.167340
13 | Craftsman@ir@ompressor2 Pressurize@ndBtore@oomBir 1 919.167220
14| Condor@IDR3@ressure@witch Compressorontrol 1 31GC3FXX
15 | Schneiderlectric®ontactor Compressorontrol 1 199AX-9
16 | Artisan@elay-on-makef@elayR Compressorontrol 1 438USA
17 | CourseBbressureegulator Airlpressureontrol 1 N/A
18 [ Condenser/@xpansion@ank AirDrying 1 Custom@Built
19 | Ingersoll®RandirecisionGirressure@egulator Airlpressureontrol 1 PR4031-100
20| 4'x2"Miameter@esiccant/Bctivated@®harcoaltube AirDryingBnd@urification 1 CustomBuilt
21| WhatmanBHEPA-CAPAS0Filter AirfPurification 1 6702-9500
22 [Icefbaththeat@xchanger Temperature@ontrol 1 CustomBuilt
23 | OMEGAEass#lowdneter Flow@easurement® 1 FMARL742
24 | OMEGA®ressuretransducer Pressure@Measurementf 1 PX319-100GI
25 | FujiElectronicsBTemperaturefontroller Temperatureontrol 2 PXR3-TEY1-4VO0A1l
26 | Carlo@GavazziBolidBtate@elay Temperatureontrol 2 RM1E23AA25
27 | BriskHeattheat@ords Temperatureontrol 3 HWC1060
28 | DwyeriMagnehelic FlowiMeasurement@ 2 605-1R&HB05-0
Dataollection@ystem
29 | Agilent@owerBupply Sensorf@xcitation 1 E3631A
30 [ National@nstruments@lectronics@nclosure Datal&cquisition@lectronics 1 CA-1000
Table A.2. Scantool 8-bit Interpretation Table
8MBitBystem
bit@alue 1 2 4 8| 16| 32| 64| 128
bitosition 1 2 3 4 5 6 7 8| [byte@alues
0 0 0 0 0 0 0 0 0
Binar 1 0 0 0 0 0 0 0 1
Y 1l o] 1| o| 1| o 1| o 85
1 1 1 1 1 1 1 1 255
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Table A.3. Labview Channel Setup

Physical Channel Device Log Order [Sensor Output Signal Conditioning Labview Expected Signal Range
Analog Input 0 Raw Filter/ Flow Totalizer Pressure 13[4-20mA Receiver Resistor 1-5V
Analog Input 1 Dilution Air MAG 0[4-20mA Receiver Resistor 0-5V
Analog Input 2 Transfer Line MAG 1]14-20mA Receiver Resistor 0-5V
Analog Input 3 Pitot Tube MAG 2(4-20mA Receiver Resistor 0-5V
Analog Input 4 Ambient Temp 3]4-20mA Receiver Resistor 1-5v
Analog Input 5 Ambient RH 414-20mA Receiver Resistor 1-5v
Analog Input 6 Dilution Air Pressure 5|4-20mA Receiver Resistor 1-5vV
Analog Input 7 Dilution Air Temperature 6|J-Type Thermocouple AD594CDZ 0-1.022V
Analog Input 8 Fuel Temperature 7|J-Type Thermocouple AD594CDZ 0-1.022V
Analog Input 9 Exhaust Temp @ Pitot Tube 8|J-Type Thermocouple AD594CDZ 0-3.16V
Analog Input 10 Sample Manifold Temp 9|J-Type Thermocouple AD594CDZ 0-1.022v
Analog Input 11 OMEGA Dil Air Flow Meter 10|0-5V None 0-5V
Analog Input 12 Volkswagen MAF Sensor 11)0-5v None 0-5v
Analog Input 13 Transfer Line Temp 12 |J-Type Thermocouple AD594CDZ 0-2.087V
Analog Input 14 - - - - -

Analog Input 15 - - - - -

Note: Labview Logs the Fuel Scale through an RS232 connection to the PC, not through the DAQ Card

CONSTANTAN
(ALUMEL)

Wiring diagram for Monolithic Thermocouple Amplifiers with Cold
Junction Compensation — AD594CDZ

sV I 10mVrC
Ll J—m xS i O cx B e B

~

3

—

I IRON
CHROMEL
Lo

e

=T
COMMON

Figure 1. Basic Connection, Single Supply Operation
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Appendix B. Biodiesel Fuel Blending & Analysis Procedures
Standard Operating Procedures for Signature Project #2

Biodiesel Emissions and Performance Testing with the Armfield CM-12
Engine Testbed.

This document is a compilation of a number of standard operating
procedures.

Authors:
Daryl Deprey
Tyler Feralio
Brad Haire April 22, 2011
Table of contents

l. BXX Biodiesel Splash Blending Procedure

1.1 Abstract
1.2. Safety Precautions
1.3. Step by Step Procedure
1.4. Clean up
Il.  Fuel Purging Procedure
1.1. Abstract
11.2. Safety Precautions

11.3. Step by Step Procedure
[1l.  IROX Diesel Fuel Analysis Procedure

. BXX Biodiesel Splash Blending Procedure

1.1. Abstract:
Biodiesel (B100) is typically mixed with petrodiesel for use. The mixture is denoted as BXX where XX
is the percentage by volume of biodiesel to petrodiesel. For example, B85 is 85% biodiesel (B100), 15%
petrodiesel by volume. B100 is 100% biodiesel. Biodiesel generally has a higher specific gravity than
petrodiesel so a splash blending technique with inversion mixing will adequately blend the fuels. BXX
Blends will be prepared 24 hours before usage to ensure complete mixing.

I.2. Safety Precautions:
Safety goggles, gloves, and protective clothing (apron) shall be worn while mixing all fuels. The fuel
blends should be prepared in a laboratory fume hood or equally well-ventilated area.

I.3. Step by Step Procedure:
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1.3.1. With the desired BXX blend determined prior to mixing, appropriately label the
red 6 gallon plastic fuel storage container with the following information: BXX blend,;
Batch Number; Date; Biodiesel Feedstock, Supplier and Date Acquired; Petrodiesel
Source, and Date Acquired. Labels should be acquired for this information. the label,
after it is applied and filled out, should be covered with clear packing tape to prevent the
ink on the label from bleeding if it gets wet.

1.3.2. Determine the BXX blend desired for mixing. Refer to Table 1 below for
accurate volumes of biodiesel and petrodiesel for desired blend ratio.

Table 2: BXX Mixing Volumes to Prepare 10 Liters of Blended Biodiesel Fuel

10 L BXX Mixing Volumes
BXX . % _Vqlume %_ Vo!ume
Biodiesel | Biodiesel (L) | Petrodiesel Petrodiesel (L)
B2 2 0.2 98 9.8
B5 5 0.5 95 9.5
B15 15 15 85 8.5
B20 20 2 80 8
B100 100 10 0 0
1.3.3. Using the 1L glass graduated cylinder, measure and pour the appropriate volume
of petrodiesel into the designated BXX blend storage fuel tank.
1.3.4. Using the 1L glass graduated cylinder designated for B100 biodiesel and

appropriate feedstock, measure and pour the determined volume of biodiesel into the
designated BXX storage fuel tank. IMPORTANT: The biodiesel must be added to the
fuel tank after the petrodiesel to ensure complete splash blending.
e To further ensure complete blending, inversion mixing must be done. With the
storage container sealed shut, slowly invert the tank every taking 3 seconds to
complete the invertion15 times to further and completely blend the fuels

1.3.5. Place the BXX fuel mixture into the fire safety cabinet and store for 24 hours
prior to experimental use to finish blending.
1.3.6. To identify if complete blending has been achieved, remove one 30mL sample

each from at the top, middle and bottom of the fuel tank with a 30mL pipet. These
samples should then be placed in 30mL amber glass bottles and labeled appropriately.

1.3.7. Analyze these samples using the IROX-Diesel FTIR instrument. The technique
for testing will be done following the IROX-Diesel Analysis Procedure. Compare the
sample density results; if the density values for the three samples are within 0.5% of each
other then complete mixing has been achieved. Record the test name and number in both
the test log and on the fuel storage container.

1.4. Clean up:
1.4.1. Wash all glassware down with hot soapy water.
e After the glassware is clean it will no longer smell of fuel
1.4.2. Rinse glassware with Deionized water
1.4.3. Rinse glassware with Acetone for quick drying
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IlI. Fuel Purging Procedure

This is the procedure for purging from one fuel to another for the Armfield CM-12 engine. To ensure
consistent methodology and cleaning of system and to eliminate cross-contamination of fuels the fuels
lines must be purged of the previous run’s fuel.

Safety. Safety goggles, gloves, and protective clothing should be worn. Area should also be well
ventilated while swapping fuels and running the Armfield engine.

Procedure:

1. Make sure there is enough fuel in both the biodiesel and diesel fuel tanks to complete the purging
process. This will be a function of the volume of fuel contained in the fuel lines, filter, and
injection pump. At 0% throttle/ 0% brake the volumetric flow rate of the fuel flowing through the
return fuel line has been measured to be approximately 1 Liter/min. To determine the volume of
fuel and time necessary to purge the fuel system samples of fuel from the return fuel line should
be taken once every minute from the time that the ‘FEED’ valve is changed. These samples can
then be tested with the IROX-D to determine how long it takes for the fuel system to purge to the
new fuel.

2. Purging from Diesel to Biodiesel:

a. Start engine and warm up at 0% throttle/ 0% brake for 5 minutes.

b. Switch ‘FEED’ valve to ‘BIO’ and ‘RETURN?” valve to ‘WASTE’ as close to
simultaneously as possible.

c. Allow engine to run for 5 minutes or until the fuel in the fuel line is known to have fully
purged.

d. Switch ‘RETURN’ valve to ‘BIO’

3. Purging from Biodiesel to Diesel:

a. Start engine and warm up at 0% throttle/ 0% brake for 5 minutes.

b. Switch ‘FEED’ valve to ‘PETRO’ and ‘RETURN’ valve to “WASTE’ as close to
simultaneously as possible.

c. Allow engine to run for 5 minutes or until the fuel in the fuel line is known to have fully
purged.

d. Switch ‘RETURN’ valve to ‘PETRO’
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IROX Diesel Fuel Analysis Procedure

Abstract:

The IROX Diesel can be used to analyze properties of petrodiesel, biodiesel, and blends of both. The
IROX Diesel instrument uses Fourier transform infrared spectroscopy to determine characteristics of fuel.
The IROX diesel instrument determines the mid-range infrared absorption spectrum. The mid-infrared
wavenumber range analyzed is 650cm™ to 3100cm™. This is done by an infrared source emitting the
range of wavelengths through a sample. A detector then determines the absorption of the sample.
Organic compounds create distinct peaks in the mid-infrared spectrum. The IROX Diesel is used to
create the mid-infrared spectrum to determine the organic compounds that exist in the fuels. The purpose
of this procedure is to document how the IROX Diesel instrument and IROX MiniWin program are used
to analyze fuel samples.

Safety:
Safety goggles, gloves, and protective clothing should be worn. Area should also be well ventilated while
pouring fuels for IROX analysis.

Materials:
-30mL Amber Glass Bottles w/ Teflon Cap -Pipettor
-40mL Hexanes, HPLC, 98.5%, UN1208 -25mL Beaker
-IROX Diesel FTIR Instrument VV3.21; Serial # -30mL Pipet
21-520-0300

-MiniWin IROX Software V2.24

3.1 IROX Diesel Setup and Calibration
1. Switch on the instrument with the power switch above the power connector on the rear
panel.
2. Wait for the instrument to run through the initiation steps which include, “warming up
FTIR” and “adjusting FTIR” until the Hexane calibration menu appears as seen below
in Figure 1.

e —————

IROX DIESEL

ivesity Of Vermont 06/07/2010 10: 473
mlg&rwp

IROX
Hexane calibration

7 3

Figure 1: IROX Diesel Hexane Calibration Menu
a. ATTENTION: The Calibration of the FTIR spectrometer must be performed once
a day before the IROX is used for sample measurements. Make sure that the
machine is only completing one rinse cycle. Otherwise it will consume 5 ml extra
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per rinse. Also be sure that auto is selected (has thick border) under setup menu.
If it is not, move cursor to auto and press TASK. Auto should be highlighted
when the cursor is moved to another selection. Auto uses makes the IROX-D use
the auto sampler tube to acquire the sample instead of the operator using a
syringe.

b. To navigate to the calibration menu move the cursor to “calib.” and select TASK.
The cursor should then be moved to “FTIR” and TASK will be selected again.
This will bring you to the calibration menu as previously shown in Figure 1.

3. Add approximately 15mL of 98.5%, HPLC grade, Hexanes (GIVE manufacturer and
catalog # currently in use) to a clean, acid washed 25mL glass beaker. This will be used
for the calibration.

4. With the sample tube connected to the Luer inlet on the right side of the IROX, insert the
end of the tube into the beaker of n-Hexanes, as shown in Figure 2 below.

Figure 2: IROX Diesel Sampling Setup

5. Press RUN to start the calibration measurement and follow the instructions on the display
to remove the sampling tube when prompted.

6. When the measurement is finished, the display changes to back to the Hexane calibration
menu.

a. According to an email with the Grabner Support Team, the magnitudes of the
peaks on the calibration reference spectrum are not indicative of the quality of the
calibration. As long as no errors are reported by the instrument the calibration is
“acceptable”. Move the cursor to SAVE and press TASK. If an error occurs the
machine should be readjusted. This can be done by going selecting “setup” in the
main menu then selecting “adjust” and pressing TASK. The calibration will then
have to be repeated.

7. Shift the cursor to END and press TASK. The new reference spectrum is stored and used
for further calculation of concentrations.
8. The display will show the Start-up menu as shown below in Figure 3.
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ROX DIESEL

RUN

Figure 3: IROX Main Menu
3.2 Fuel Sampling:
Using a 30 mL pipet and pipette remove 30mL of sample fuel from the desired fuel tank. Place
this sample into a 30mL amber glass bottle and close with proper Teflon cap. The sample can
then be stored at room temperature or used for further testing.

3.3 Testing Fuel Samples Using IROX MiniWin V2.24.

1. Prepare the sample of fuel by filling a minimum of 15mL of fuel from the sample bottles
into a 25 mL beaker and place the sample tube in the sample as shown in Figure 2 above.

2. Open IROX MiniWin version 2.24 file path, C:\Program Files\Grabner Instruments\
Miniwin Irox the Dell Latitude E6400 companion laptop .

3. Verify that the IROX Diesel instrument is connected to IROX MiniWin by viewing the
COM status in the bottom right corner of the program as shown in Figure 4. “IROX-D V
3.21” should show up in the middle box as shown.

COM3  IROX-DV3.21 | 0 /4

Figure 4: IROX MiniWin COM Status

4. Select the “IROX Measurement” button on the toolbar, as shown by the red arrow in
Figure 5 below.
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® Grabner Instruments IROX
File Yiew Settings IROX Help

BEH IR )R ODBDM.E

IROX Measurement

Figure 5: IROX MiniWin V2.24, Measure Button

5. The measurement window that opens is shown in Figure 6. In this window, properly
name the test under “Sample-ID” and make sure “1” is selected under “Groups”. Select
“SET” in the window to upload the test name and group number to the IROX instrument.

a. “Group 17 selects the default characteristics that the instrument will analyze.
<<LIST THOSE CHARACTERISTICS HERE>>

b. The Sample-ID, test operator, type of fuel being testing, and date should also all
be recorded IROX Logbook found near the computer.

MiniWin IROX Measurement Dialog

Groups: Use
Unit: Use:  SampleD: 15253545 Dilution:

g8 [TEST NAME] [Prrrr [0 =2 [osdecene =

O I [Frrrr] | r [ =5 [oodeeane

s, e8| [FErrr] - [—j ¢ [Dadecane ~

Pl I [Frrrr r [P = [bodecane

s.- =5 | |FFrErr] IS [—j

5T R [Frrerer] | r P = [oodecan

st | [ se | Cancel |

i S l;tus: ready 'i:'os: N&V insia"eél ‘

Figure 6: IROX MiniWin Measurement Window

6. Select “Start” in the measurement window. The instrument will begin the analysis
procedure. Observe the IROX Diesel instrument display and remove the sample tube
when prompted.

Always download and save the IROX spectra after the instrument has completed its task under
the same name as the file name used in step 5. (Figure 7)
7. After the analysis another measurement can be performed by following these instructions.
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Co

— B30_7Apr11_dspe

Figure 7: IROX Specrum output

3.4 Viewing Results and Spectrum Using IROX MiniWin:

When the analysis is finished the WHAT KIND? (does this mean spectrum or the interpreted
parameters?) results should be downloaded in IROX MiniWin. Selecting the “Download Result”
button on the toolbar, as shown in Figure 8, downloads the result to the compiled result list. If

no list is opened it will start a new list.

mj|piy
File View Settings IROX Help

PEH SR 10

2B D

Figure 8: IROX MiniWin Download Result Button

BX wool 7

Spectrum
download
button

1. To view the individual sample results, select the measurement from the list. The results
will appear above the list. Scroll through the list to view desired characteristics. The
results list and results are shown below in Figure 9. If there was a specific warning

associated with the sample it would be displayed

& Grabner Instruments IROX - [IROX Results]
T File Edit View Settings IROX Window Help
DEEPER L EBBUB 8A we?

B20.BOT20HR

Location: University of Vermont

Operator: Holmen Group

Comment: Bottom of Fuel Tank; 20 hour seftling

time of measurement: 6/10/2010 10:11 AM
density: 0.828 [gicem] (24.1 [C])

warninas:

| Date+Time

[ Location [ operator

6{7/2010 11:08 AM
6/7/2010 11:41 AM
6/7/2010 11:47 AM
6/7/2010 11:55 AM
6/7/2010 12:00PM
6{7/2010 12:13PM
6/7/2010 12:17 P
6/7/2010 12:22PM
6/7/2010 12:26 PM
6/7/2010 12:29PM
6/9/2010 1:57 PM
6/9/2010 2:00 PM
6/9/2010 2:04 PM
6/10/2010 10:11 AM
6/10/2010 10:14 AM
6/10/2010 10:17 AM

BD20.85.WASTE
B021.820.WASTE

Grabner Instruments  DD.DW
Grabner Instruments

Grabner Instruments

Grabner Instruments

Grabner Instruments

Grabner Instruments.

Grabner Instruments

Grabrer Instruments

Grabner Instruments

Grabner Instruments

Grabner Instruments

Grabner Instruments

Grabner Instruments

University of Vermont  Holmen Group
University of Vermont  Holmen Group
University of Vermont  Holmen Group

COM3_ [IROX-DV 3.21

Figure 9: IROX MiniWin Results Window
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2. To download the FTIR spectrum produced by the instrument select “Download
Spectrum” on the toolbar as shown in Figure 9.
o Grabner Instruments IROX

File View Settings IROX Help
DH® SR Y BRE

BEREOB 8N woe ?

Figure 10: IROX MiniWin Download Spectrum Button
THIS FIGURE IS SAME AS FIG §... please FIX.

3. The spectrum should then be saved with the date in the folder C:\Documents and
Settings\Rose\My Documents\IROX Diesel Tests\ the companion laptop.

3.5 Shutting Down and Cleaning the IROX Diesel Instrument

1. When testing is complete for the day, fill the syringe supplied with the instrument with
5mL of n-Hexanes. With the sample tube removed, place the syringe in the Luer inlet
and slowly inject the 98.5%, HPLC grade, Hexanes into the instrument.

2. Using the empty syringe inject several pumps of air into the instrument. This is done to
clean the instrument and eliminate contamination of the instrument after usage.

3. To shut down the instrument make sure nothing is running and turn the switch located on
the back of the instrument off.

4. Dispose of waste fuel in a properly labeled waste container.

References:
- NREL: Biodiesel handing and use guide
- IROX MiniWin Manual
- IROX Quick Start Guide
- Skoog, Douglas A., and James J. Leary. Principles of Instrumental Analysis. Fort Worth:
Saunders College Pub., 1992. Print.

Table B.1 Fuel Purchase and Delivery Log

Distributor Fuel Delivery@ate |QuantitydGal) |Price/Gal |Federalfrax/Gal
Burke Soy®Biodiesel 20-Sep-2010 20 3.00
Trono Petrodiesel 22-0Oct-2010 54.5 2.68 0.244
Trono Petrodiesel 9-Mar-2012 51.2 3.86 0.244
Burke Soy®Biodiesel 9-May-2012 20 3.00 0.1875
Trono Petrodiesel 15-Jan-2013 104.8 3.82 0.244
UConn SoyBiodiesel 17-Jan-2013 50
UConn WVOmiodiesel 17-Jan-2013 158
Trono Petrodiesel 19-Mar-2013 53.8 3.65 0.244
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Appendix C. Sampling Checklists and Logsheets

Figure C.1. Run Logsheet

TAQ LAB
NIVERSITY Q
VERMONT ARMFIELD ENGINE: EMISSIONS SAMPLING LOGSHEET
NOTE: Please fill all relevant sections highlighted in yellow Test ID Code*: Fuel Type | Bend Date
Date: Engine Start Time:
Operators: Engine End Time:
Ambient Sampling Conditions Temp. (deg C) [ Mini-Diluter Time ON Notes
in the Lab Rel. Humidity (%) | Mini-Diluter Time OFF
Husky Compressor Outlet Pressure (psi): [ Impinger Solution: |
Driving cycle info:
Heat Tape ( % / Temperature Time ON: | | Temp: |
Heat Tape ( % / Temperature Time ON: | [ Temp: |
OMEGA FM -Approximate Rate ( L/min
SMPS [ Yes/No ELPI | Yes/No
Used Time ON: Time OFF: Used | Time ON: Time OFF: 8
Number of Filters & their locations g umber of impingers & their locations %
Flow Rate & | Impinger Flow Rate Total Vol. g
Filter ID: Location Pump ID (L/min) Time ON Time OFF T ID: Location Pump ID (L/min) Time ON Time OFF Sampled £
Time Exhaust Diluter Pitot Remarks SMPS ELPI
PCID
File Name
Run Scan No.
Issues Issues
Mean #DIV/O!
SD #DIV/O!
RSD (%) #DIV/O!
*Test ID Code Format: 1-09-26-10-B00
Run Fuel
number for - Month - Day - Year-  (goo=petroDiesel)
the day
Figure C.2. Labels sheet for PM Filter Petri dishes
ArmfieldEiIterEIQFFIZfefloEl ArmfieldlIiIterElQFFErero
FFO #6691 Fro #7000
Project:& Project:&
Preweight:@ Postweight:B |Test@:m@ Preweight:@  [Postweight:® |Test@:@
g giDate:® it g@Date:®
Date: By:__ BlDate: By:__ [ TP| DSE Date: By:__PF|Date: By:__ B TP| DS@
ArmfleldEuIterElQFFIZfefloEl ArmfleldlIlIterElQFFErero
i H710 i #7720
Project:i Project:@
Preweight:2 Postweight:B |Test@:@ Preweight:@  [Postweight:B [Test@:@
e giDate:® it g@Date:®
Date: By:__B|Date: By:__B| TPE| DSE] Date: By:__ [|Date: By:__B| TPE| DSE
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Figure C.3. EEPS and FTIR Instrument Logsheet

Diesel Engine Testing
Transportation Air Quality Laboratory

EEPS and FTIR Log Sheet Date:
Personnel: Ambient Conditions
In-Lab:
Outdoor:
Pre-Run O MHHHHHHR 25K
0 MRS
Y 0 RAISEIDWHED EXEEL10 -
Instrument o Start: 0 Start:
Blank E Stop: % Stop:
R g i 0 MHHHHHHRNETE
Notes:
Tunneh o Start: " Start:
Blank 2 Stop: & Stop:
"0 DR 0 mMHsNeE
Notes:
Sampling o Start: Start:
Run = Stop: Stop:
"0 DM RS D 0 DpNEED
Notes: m

Sampling Notes

Time

Observations

Tunnefr o Start:
Blank = Stop:
"0 DR
Notes:
Instrument o Start:
Blank E Stop:
0 MR
Notes:
Post-Run
0 MRMEXELDHNED &EXEEL0 A
Notes: B2 ai I CCREER oSN )
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Figure C.4. 5-Gas, EAD and SMPS Instrument Logsheet

Armifield Diesel Engine Testing
Transportation Air Quality Laboratory

5-Gas, EAD, and SMPS Log Sheet

Date:
Personnel: Rumn 1D
Pre-Run ] Synchronize Time [0 5-Gas fero
Instrument . Start: Start: Start:
Biank 5 Stop: 0 Stop: a Stop:
x D samples: = Samples:
[ Sgas_1 ] EAD_1 [0 SMPS_1
Tunne! Start: Start: Start:
Blank 2 Stap: a Stop: u Stop:
E 2 samples: E Samples:
[ Sgas 2 ] EAD_2 [ SWPE_2
Sampiing N Start: Start: Start:
Run o Stop: o Stop: ! Stop:
E 3 samples: E Samples:
[ Sgas_3 0 EAD_3 [ SWPE_3
Tunmel . Start: Start: Start:
Blank - Stap: o Stap: iy Stop:
E 3 samples: = Samples:
[ 5gas_4 1 EAD_4 1 SWPS_4
Instrument . Start: Start: Start:
Biank o Stop: a Stop: ! Stop:
E 3 samples: E Samples:
[ Sgas 5 CIEAD_5 [CISMPE_5
Post-Run 0 Export Data
Maokes:
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Figure C.5. Aggressive Drive Cycle Worksheet

Aggressive Cycle Worksheet

Your Name —
People Present —
Date -
Test ID Code -
Total Time @ Start — HR MIN
Fuel Type —
Solution Type —
Mode Time =
* Turn Cooling Water on to approximately 15 L/min
* Time at which ignition ‘radio” button selected — _
* Scan Tool Start Time —
*«  Armfield Start Time =
* Lahview Start Time —

* Start Engine (Remote, Ignition, Starter)
o Engine Starttime-
*  Warm up Mode (0% brake, 0% throttle)
o *Turn radio button for Brake on*
o Turn control to 'automatic’ and type in a set point RPM to ~100RPM lower then steady
state and select “apply’
o Time at end of warm up —
* Mode 1-RPM 3300; Throttle 40%
o Activate ‘Scheduler

* Mode 2 - throttle down to 30% @ time
* Mode 3 - RPM down to 3000 @ time
* Mode 4 - RPM down to 2700 @ time
* Mode5-RPM down to 2400 @ time
* Mode 6 - RPM down to 2000 @ time
* Mode 7 - Throttle up to 35% @ time
* Mode 8 - Throttle up to 40% @ time

* ModeS-RPM up to 2700; Throttle down to 30% @ time
* Cool Down Mode - Lower Throttle and Brake to 0% @ time
*  Turn engine off

o Engine off time =

o Total Time @ End -
* Time @ which data logging via Armfield stopped -
* Time @ which data logging via Labview stopped —

NOTES:

Aggressive Cycle Worksheet 215EP2011.doc Printed: 7/15/2014 4:56:49 PM
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Figure C.6. Run Checklist

CM12 Run Checklist:
Pre Run:

O

O

O d

O Oo0OoOono

Oo0Oo0OnO

If running a completely new setup, go through it with Dr. Holmen to make sure everything is in
place
If sampling equipment has been rearranged or added, perform calculation to make sure the sum of
the flow required by equipment is not greater than the sample flow
Start instrument blanks
o See logsheets for individual pieces of equipment (FTIR, EEPS, ELPI, EAD, SMPS, 5-
Gas, etc.)
Turn compressors on making sure that the drain valves are closed and that the hoses are attached
correctly
Turn the Agilent power supply on for the Labview instruments and set to 24V
When instrument blanks are complete and the compressors are full, open the valve to turn the
dilution system on; record dilution system on time
Turn the extraction system on
Make sure all ports are either plugged or going to sampling equipment and that back flow will not
occur.
Start logging Labview data. Record starting time.
Load the ‘blank’ impingers.
Turn Gillian pumps on
If using the FTIR, load new filter on the inlet and make sure its pump runs for the entirety of all
tunnel blanks. If FTIR is not being used make sure the line/port is plugged.
Start tunnel blanks
o See logsheets for individual pieces of equipment (FTIR, EEPS, ELPI, EAD, SMPS, 5-
Gas, etc.)
Once all tunnel blanks are complete turn Gillian pumps off and clear them
Remove and cap the ‘blank’ impingers and replace with ’test” impingers
Load filters
Check to make sure all pump connections are secure and that rotameter valves are fully open

Starting Engine & Equipment after tunnel blanks are complete

O

I [ I O I I R N

Make sure scantool wire is connected
Turn cooling water flow on
Start Gillian and Fasco pumps, setting flow rates; record start times (~30sec before engine start)
Select ‘Remote’ and ‘Ignition’ radio buttons in Armfield software
Start logging scantool and Armfield data; record start times
Start engine by clicking and holding the ‘Start’ radio button until the engine starts. Record start
time.
o Ifthere is a false start, turn the ‘Ignition’ radio button off and back on quickly and try to
start again.
Once engine is running, select the ‘Brake’ radio button
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O

O

Open ‘Control’ and select ‘Automatic’. Change the ‘Set point RPM’ to ~ 100RPM less than
steady state and click ‘Apply’.
o Make sure the ‘Brake %’ changes to something other than 0 within 1 min of selecting
‘Apply’
~7.5min after the engine was started, initiate the scheduler

During Run

O

O

Monitor equipment and take manual readings during each mode. These readings should be taken
after the engine has stabilized (between 1/2way through the mode and the end of the mode).
Record the time of the reading.

Make sure all information is filled out on logsheets

Shut Down

O

Oooooooood

Ood

Ooooooao

Turn ‘Ignition’ radio button off in Armfield software to stop engine
Stop logging through Armfield; record the stop time
Turn Gillian and Fasco pumps off; record time off (~30sec after engine off)
Record total volume pumped via Gillian pumps. Clear once recorded.
Remove ‘test’ impingers and install ‘blank’ impingers
Turn coolant water flow off
Save Armfield & scantool data to HolmenGroup Drive
Turn Gillian pumps back on
Start tunnel blanks
o See logsheets for individual pieces of equipment (FTIR, EEPS, ELPI, EAD, SMPS, 5-
Gas, etc.)
If using the FTIR, make sure FTIR pump runs to the completion of tunnel blanks for all
equipment.
Once tunnel blanks are complete, remove FTIR inlet filters, store for analysis.
Stop Labview from logging and save to the HolmenGroup drive
Start instrument blanks
o See logsheets for individual pieces of equipment (FTIR, EEPS, ELPI, EAD, SMPS, 5-
Gas, etc.)
Turn off extraction system
Turn off dilution system
Turn off compressors
Once instrument blanks are complete, drain compressor tanks.
Save all instrument data to :\HolmenGroup\SP2_ArmfieldEngine\Run Logs\(Date of run))
Photocopy and scan all instrument and run logsheets; copies go to Dr. Holmen, scans are saved
along with instrument files in a folder called LogSheets&Pics (:\SP2_ArmfieldEngine\Run
Logs\(Date of run)\LogSheets&Pic)
Collect fuel samples from fuel tanks once a week.
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Appendix D. Raw Data Tables
Table D.1. DILUTION RATIO AND TEST CONDITIONS TABLE.

Number
Fuel Blodiesel Test Cycle of
Blend | Petrodiesel Feedstock |  (Test, Purge, | False o —
Date (Biodies Feedstock (Distributor, Oil | Aggressive, Steady | Start/ | Engine | Engine | Run |Engine | Engine | Ignition | Clog in | Calculated
(dd-Mon- el%by | (Distributer, Fuel) | Type, Purchase | State, Transient, | Cutout | Start | O |Duration | Hours | Hours |Timeon| il | Dilution
vovn) [testa| vol) | Purchase vear) ear) Hot Cleanout) | Events | Time (min)_| start | End | (min) | Sys? | Ratio
Changed Dilution System Orifice setup. Changed Dilution System Orifice setup. Changed Dilution System Orifice setup.
23102012 | NjA | B0_| TronoPetro 2010 None Purge 0 [174850] 175900| 102 [10533 [10544] 1| N Purge (0 B0
24102012 | WA | B0 | TronoPetro 2010 None Test 0 [155520] 160230 72 |105.44|10552] 8 N Testing Mags
26-Jan-2012 | N/A B0 Trono Petro 2010 MNone Test Q 105:52 | 105:55 3 N Testing Aerosol Inlet
30-Jan-2012 1 B0 Trono Petre 2010 None Steady State 40% a 14:20:57 | 15:45:30 B4.6 105:55 | 107:20 85 N "QnD" - Only collecting PM
310an2012| 1 | B0 | TronoPetro2010 None | SteadyStated0% | 0 |15:0247] 16:27.15| 845 |10720 [108.46| 86 | W "QnD" Only collecting PM
6-Feb-2012 N/A BO Trono Petro 2010 None Test a 108:46 | 108:58 12 N Testing DilSys changes
6-Feb-2012 N/A B0 Trono Petro 2010 None Test a 108:58 | 109:04 6 N Testing DilSys changes
7Feb-2012 | 1| 80| TronoPewro 2010 None | Steady Sate 40% |0 |15:13.05] 16:53.30 | 1004 |109.:04 |110:46| 102 | N 54| 5-Gas did not detect COZ -

oo G e “Using Briskeat SOC Hest Tape Contralrs with
8-Feb-2012 1 B0 Trono Petro 2010 MNone Steady State 40% 1] 15:47:00| 17:25:00 98.0 110:46 | 112:32 106 N 50-51 - scantoal di but was grlnunﬂedldui\ element.lhermncnuplem I‘He g,asflw:u.
9Feb 2012 | 1 | B20 | Trono Peiro 2010 | Burke Soy 2010 Steady State 40% | 0 17:5900| 980 [1az|nam| s | N 50 |- Scantool disconnected g':s::n?:’ e ?fff;:’;’;f;g;;‘]"‘”g’ oraoe
10-Feb-2012 1 B20 Trono Petro 2010 | Burke Soy 2010 | Steady State 40% 1 13:50:00 99.0 114:11 | 115:50 99 N 53
1-Mar-2012 N/ B50 Trono Petro 2010 | Burke Soy 2010 Purge a 12:00:00 50 116:17 | 116:24 7 N Purged to BSO

~Heat tape malfunction

- EEPS - "Concentration Overrange” message

-Adjusted Armfield Thrattle pasition to match OBD-II
2Mar2012 | 1 | BSO | TronoPetro2010 |BurkeSoy 2010 SteadyState40% | o0  |11:4500|13:2300 | 980 |116:24|118:03| 99 N 57.55 |(frotlle position since last run. Maintained the same OBD-

I throttle position throughout runs, -Using BriskHeat SDC Heat Tape Controllers with open

- Scantool disconnected thermocouple between heat tape and tubing. Does not

- Bullding water left on far the night prior - cylinder head  [follow a regular pattern. {rewrapped on 29FE82012)

colder then usual

~Heat tape only on Aerasal Injet
7-Mar-2012 1 BS0 Trono Petro 2010 | Burke Soy 2010 | Steady State 40% 1 14:15:00| 15:51:30 96.5 118:03 | 119:42 99 N 55-56 . o
13:Mar-2012 | 1| _B50_| Trono Petro 0 2012 | Burke Soy 2010 | Steady State 40% | 1| 14:2230] 16:0000 | 875 |11942 12120 98 | N ~Heat tape only on Aerasol Inlet
19-Mar-2012 | N/A B100 Burke Soy 2010 Burke Soy 2010 Purge Q 17:36:00| 17:41:00 5.0 121:20 | 121:26 6 N Purge to B100

- EEPS turned off between pre |B & T8
20Mar2012 1 [ B100 | BurkeSoy2010 |BurkeSoy 2010 SteadyState 0% | 0 |13:58:00| 15:35:30 | 97.5 |121:26|123:04| 98 N | sesy | Bothhesttapes operational again

-Adjusted both heat tape controllers to try to maintain

correct temperature
22-Mar-2012| 1 | B100 | BurkeSoy2010 |BurkeSoy 2010 SteadyStatedos | 1 |13:13.00| 142630 | 735 |123:04 [124:07| 73 N s | E:ﬁ:‘f;‘"m oft ""V;‘::n;v_' :::sage - Heat tapes re-wrapped with thermocouple on the
22-Mar-2012 | N/A B100 Burke Soy 2010 Burke Soy 2010 Test 1 18:15:00 124:17 | 124:33 16 N Making sure engine starts back up outside of the ‘a:e- 2012

~ Adjusted heat tape setpoint to achieve correct gas temp 19MAR2012)

- Much calder Ambient temp then previous B100 runs
26-Mar-2012 1 B100 Burke Soy 2010 Burke Soy 2010 | Steady State 40% a 15:24:30( 17-02:30 s8.0 124:33 | 126:12 99 N 55 (A15°C)

- Grounded thermocouple used to collect dilution air and

gas temperatures are reporting
5-Apr-2012 N/A B0 Trone Petro #0 2012 MNone Purge Q 126:18 | 126:27 9 N Purge to B0
30-Apr2012 | N/A | B0 |Trono Petro#02012] _ None Test 0 13533 145363 N Testing new fuel system

- ted momentarily but
2-May-2012 1 BO Trono Petro #0 2012 None Steady State 80% i} 15:21:30( 17:21:31 1200 |145:48 |147:49 pbll N 58 successfully (went back to idle momentarily after warm-up

to reconnect)
3May-2012 | NJA | B100_ | Burke Soy 2010 | Burke Soy 2010 Purge [ N 58 |Purge toB100

- Tried Armfields ‘2 controller project work' control. It did

not work with the setting changes | made. Had ta shut

down and restart with control typically used.
3-May-2012 1 B100 Burke Soy 2010 Burke Soy 2010 | Steady State 80% o 15:29:00( 17:24:30 1155 147:49 | 149:50 1 N - Forgot to reinitiate Armfield ﬂa(: collection after restart - - New PID Heat tape controllers used to maintain dilution

air and transferline temperatures

No Armfield data. Torque toggled between 103 and 104

N o< (installed 18APR2012)

- Put box fan under engine blowing air towards the

-Manually logged fuel tank weight " A ° X

P B e e engine to provide enginesid of dyno with cooler i
7May2012 | 1 | B0 |TonoPetro#o2012|  None | SteadyStateBo% | 0  [13:1200|15:0000| 1180 |14950|15148| 18 | N - opened cooling water flow all the way for 80% load

crasol Inlet orifice clogged
11 Moy 2012| N/A | B100 | Burkesoy 2012 | Burke oy 2012 Purge 0 |161500] 162230 75 |15148 |15156] 8 N Purge to B100
14-May2012| 1 | B100 | BurkeSoy2012 |BurkeSoy2012| Steadystate80% | 0 [10:03:15| 120000 | 1168 [151:56 |15353| 117 N ggay |02 Lof3 dayexposures - 10 mice

SMPS data - many scans, one sample
15May2012| 1 | B100 | BurkeSoy 2012 |BurkeSoy 2012 Steady Stale 80% | 0 | 92800 | 11:2330 | 1155 1535315552 | 119 | Y | 12859 |Day2 " Acrosol Iniet orifice clogged

Redo day 2 of 3 day exposures - 10 mice
16-May-2012 1 B100 Burke Soy 2012 Burke Soy 2012 | Steady State 80% a 9:18:00 3:30 1155 |155:52 | 157:48 116 N 858

5-Gas missed engine start & warm-up
7-May2012] 1 | B100 | BurkeSoy 2012 | Burke Soy 2012 | Steady Sate 80% | 0| 83400 | 102930 | 1155 | 15748 | 15944 | 116 | N | 8511 |Day3 73 day exposures - 10 mice
24-May-2012| N/A B100 Burke Soy 2012 Burke Soy 2012 Steady State Q 14:26:30| 14:43:00 225 159:44 | 160:06 22 N D ining source of odor
§lun2012 | 1 | B0 |TronoPetro#02012]  None | SteadyStatedo% | 0 |13:4200] 15:14:00 | 920 |16006 |16139| 93 | N 82| Dilution System Manifold Test
270un2012| 1 | B0 |TonoPewo#02012]  Wone | SteadyStated0% | 0 |11:1800] 140032 | 1625 |16139 [164:21| 162 | N | 8295 |Diluton System Manifold Test
28-Aug-2012 1 B0 Trone Petro #0 2012 MNone Steady State 80% Q 13:24:30| 14:50:00 B85.5 164:21 | 165:47 86 Y 85.24

Impinger Redesign Test - Tall Impinger
6sep2012 | 1 80 |TronoPewo#02012[  None SteadyState 80% | 0 |11:03.43|122830| 848 |165:56 [167:22| 86 ¥ g9y |MPinger Redesign Test - Vortex Impinger

Clog in Aerosol Inlet - Flow Totalizer on Pump B2
10-5ep-2012 | N/A B0 Trone Petro #0 2012 MNone Test Q 10:57:20| 10:59:40 23 167:32 N 83.32 Testing Scantool measuring block - New Condensate Traps
10-5ep-2012 | N/A B0 Trone Petro #0 2012 None Test 1 17:28:00| 17:33:49 5.8 167:32 | 167:49 17 N Testing Scantool measuring block
125ep2012 | 1 | B0 |TonoPewo#02012]  Wone | SteadyState80% | 0 |10:3030] 12:2600 | 1155 |16842 [170:38| 116 | W Impinger Redesign Test - Vortex Impinger

Impinger Redesign Test - Diffused Impinger
21-Sep-2012 1 BO Trono Petro #0 2012 None Steady State 80% a 8:30( 12:47:30 83.0 171:04 | 172:34 90 Y 8863

Clog In Aerasol Inlet
5-0ct2012 | WA | 80| Trono Petro#02012] __ None Tost [ 17234 [17244] 10| N Testing cold air intake
8-Oct-2012 N/A B0 Trone Petro #0 2012 MNone Test 172:44 | 172:50 6 N Demanstrating engine operation
16-0ct-2012 | N/A B0 Trono Petro #0 2012 None Transient a 172:50 | 172:52 2 N Testing Transient Cycle schedule
202012 1 80 [TrenoPetro#02012|  Mone SteadyState80% | 0 |15:04:30| 16:58:00| 1135 |172:52 17446 14 | v | ousy i ) . i - Heat-exchanger and 125cm 3/8" S5 tube for

|mpinger Redesign Test - Swirling Impinger impinger sample line
8-Now-2012 1 B0 Trone Petro #0 2012 None Steady State 80% 1 10:13:00| 12:20:00 | 127.0 |174:46 | 176:53 127 Y 85.73
12Nov2012| 1 | B0 |TronoPewo#02012]  Wone | SteadyState80% | 0 |10:09.00] 12:04:00 | 1150 |17654 [178:49| 115 | N | 6487 |impinger Test - Heat Exchanger, Swiring Imp Heat Tape burned out
21-Now-2012 | N/A BO Trono Petro #0 2012 None Transient a 13:16:30( 13:22:30 60 178:54 | 179:01 7 N Developing Transient Cycle
27-Now-2012 | N/A B0 Trono Petro #0 2012 None Transient a 14:57:00 6.5 179:01 | 179:09 8 N Developing Transient Cycle
1iDec2012| 1 | B0 |TronoPewo#02012]  None | SteadySwte 80% |0 16:10.00 | 1150 [179:23 [181:48| 115 | N_| 8381 |impinger Test- Heat Exchanger wf catch-can
17-Dec-2012 | N/A B0 Trone Petro #0 2012 None Transient a 16:05:00 15.0 181:18 N Developing Transient Cycle
17-Dec-2012 | N/A B0 Trono Petro #0 2012 MNone Transient a 16:15:30| 16:30:00 14.5 181:34 | 181:49 15 N Developing Transient Cycle
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Table D.2. Steady-State Test Run Mean Engine Parameters

Steady-State 40%:

72

Parameter 1_07FEB2012_B000 | 1_O8FEB2012_B000 | 1_09FEB2012_B020 | 1_10FEB2012_B020 | 1_02MAR2012_B050 | 1_07MAR2012_B050 | 1_13MAR2012_B050 | 1_20MAR2012_B100 | 1_22MAR2012_B100 | 1_26MAR2012_B100
ime@tBSHh) 0.87 0.84 0.84 0.83 0.83 0.81 0.83 0.83 0.41 0.83

AveragelTorrected

TorqueJNm] 51.14 52.02 52.16 51.68 53.56 54.06 53.68 54.63 54.48 55.69
StDeviorrected

Torque 037 0.37 0.50 0.47 0.56 0.52 0.52 0.54 0.46 0.43
Averageforrected

Y%Aoad{%) 39.82 40.51 40.62 40.24 41.71 42.09 41.80 42.54 42.42 43.36
StDeviorrected

ellaod 0.29 0.29 0.39 0.36 0.43 0.41 0.40 0.42 0.35 0.34
AveragelEngineBpeediRPM) 2000.66 2000.56 2000.72 2000.57 2000.82 2000.84 2000.66 2000.82 2001.36 2000.72

tD 15.02 14.84 15.62 15.82 14.39 14.74 15.78 15.39 15.92 14.22
Average(Throttle@osition%) 45.24 45.24 45.24 45.24 45.00 45.00 45.00 45.00 45.00 45.00
StDeviThrottle®Position 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Averagelxhaust@Temperature{°C) 281.59 280.88 282.94 286.12 289.68 296.06 299.68 303.82 307.75 291.42
StDeviExhaustTemperature 1.92 1.69 1.86 1.56 1.70 141 141 1.64 152 172
Steady-State 80%:

Par 1_28AUG2012_B000 | 1_12SEP2012_B000 | 1_240CT2012_B000 | 1_14MAY2012_B100 | 1_16MAY2012_B100 | 1_17MAY2012_B100

Amount of Time at SS (h) 0.62 1.12 1.10 1.14 1.13 1.13
Average Corrected

Torque [Nm] 95.53 94.76 97.55 103.52 102.63 102.72
StDev Corrected

Torque 0.37 0.40 0.58 0.47 0.43 0.43
Average Corrected

% Load (%) 74.10 73.49 75.66 80.29 79.60 79.67
StDev Corrected

% Laod 0.29 0.31 0.45 0.36 0.34 0.34
Average Engine Speed

(RPM) 2203.03 2201.44 2201.64 2202.04 2202.16 2202.33
StDev Engine Speed 15.23 15.75 16.43 15.61 16.00 16.56
Average Throttle Position

(%) 67.00 67.00 67.00 67.00 67.00 67.00
StDev Throttle Position 0.00 0.00 0.00 0.00 0.00 0.00
Average Exhaust
Temperature (°C) 531.74 510.42 476.92 553.97 560.16 545.62
StDev Exhaust Temperature 1.94 1.85 2.66 3.01 2.35 2.40
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Table D.3. Particulate Matter Filter Mass Concentrations

Filter EngineRunBetup PMEMassTollected®nFilte]
Filter Exhaust
Filter?] Sample | Samplingd Sample | Fuel TestDate Difference@ost@vt-prel | MassZoncentration
Type | Filter®# | Location| Type Blend | %Aoad | (mm/dd/yy) wtfAmg)a (ug/m?) Notes
QFF 144 DL-C Diluted B00O 40 7-Feb-2012 0.532 595.11
QFF 145 DL-C Diluted B00O 40 8-Feb-2012 0.532 366.92
FF 171 DL-C Diluted B00O 40 8-Jun-2012 0.084 65.12
QFF 146 DL-C Diluted B020 40 9-Feb-2012 0.489 305.02
QFF 147 DL-C Diluted B020 40 10-Feb-2012 0.187 128.51
QFF 150 DL-C Diluted B0O50 40 2-Mar-2012 0.451 318.84
QFF 148 DL-C Diluted B0O50 40 7-Mar-2012 -0.371 -285.22 Filter@aythaveeen®orndn@orner
QFF 149 DL-C Diluted B0O50 40 13-Mar-2012 0.376 250.97
QFF 151 DL-C Diluted B100 40 20-Mar-2012 0.388 262.75
QFF 179 DL-C Diluted B100 40 22-Mar-2012 0.288 250.62 Run@nded®arly
QFF 180 DL-C Diluted B100 40 26-Mar-2012 0.919 601.86
QFF 202 DL-C Diluted B00O 80 2-May-2012 0.942 561.04
QFF 181 DL-C Diluted B00O 80 7-May-2012 0.062 36.33 Orificei@loggedd@n@erosoldnlet
QFF 203 DL-C Diluted B100 80 3-May-2012 0.559 335.45
QFF 204 DL-C Diluted B100 80 14-May-2012 0.638 372.52
QFF 205 DL-C Diluted B100 80 15-May-2012 0.497 292.68 Orifice®@loggeddn@erosolnlet
QFF 206 DL-C Diluted B100 80 16-May-2012 0.622 377.16 Smalldear®n@dgelpost-run
QFF 210 DL-C Diluted B100 80 17-May-2012 0.616 372.62
From@dry@un"
QFF 142 DL-C Diluted None None 27-Jan-2012 0.084 81.66 BlackBpecksiresent®nilter@fter@un
QFF 212 DL-E Diluted B00O 40 8-Jun-2012 0.414 367.46
QFF 211 DL-E Diluted B100 80 17-May-2012 0.561 308.37 Denuderfnflinetbeforefilter
QFF 143 DL-H Diluted B00O 40 7-Feb-2012 0.403 255.40

FF 167 DL-H Diluted B100 80 14-May-2012 0.066 63.14

FF 168 DL-H Diluted B100 80 15-May-2012 0.003 2.89 Orifice@loggedd@n@erosoldnlet

FF 169 DL-H Diluted B100 80 16-May-2012 0.088 84.53 Torn@longRdgedost-run
Teflo 152 DL-H Diluted None None 27-Jan-2012 -0.114 -125.54 FromZdry@un"

Teflo 155 TP Raw B00O 40 30-Jan-2012 2.182 3978.63 Q-n-DEun

Teflo 155 TP Raw B00O 40 30-Jan-2012 2.150 3920.28 2ndiveigh

Teflo 155 TP Raw B00O 40 30-Jan-2012 2.113 3853.42 3rd@veigh

Teflo 156 TP Raw B00O 40 31-Jan-2012 5.777 5974.42 Q-n-DEun#2

Teflo 156 TP Raw B00O 40 31-Jan-2012 5.586 5776.88 2ndiveigh

Teflo 158 TP Raw B00O 40 7-Feb-2012 3.143 3077.29

Teflo 159 TP Raw B00O 40 8-Feb-2012 4.833 4072.63

Teflo 161 TP Raw B020 40 9-Feb-2012 3.889 4103.01

Teflo 173 TP Raw B020 40 10-Feb-2012 5.576 7032.51

Teflo 176 TP Raw B0O50 40 2-Mar-2012 7.017 8105.03

Teflo 178 TP Raw B0O50 40 7-Mar-2012 7.144 8534.42

Teflo 189 TP Raw B050 40 13-Mar-2012 7.153 10244.23

Teflo 190 TP Raw B100 40 20-Mar-2012 11.125 12861.47

Teflo 192 TP Raw B100 40 22-Mar-2012 11.669 19972.47 Run@nded®arly
Splotchy®ollectionBattern

Teflo 194 TP Raw B100 40 26-Mar-2012 21.261 20975.73 Cold@mbient®onditions

Teflo 195 TP Raw B00O 80 2-May-2012 5.720 6683.95

FF 163 TP Raw B0O0O 80 7-May-2012 14.150 12589.96 Orifice®@loggeddn@erosolidnlet

FF 183 TP Raw B00O 80 6-Sep-2012 6.017 12396.63 Pre-wt@heck®/5:%9.798mg

FF 184 TP Raw B00O 80 12-Sep-2012 7.485 10240.40 Pre-wttheck®/12:%7.101mg

FF 185 TP Raw B00O 80 21-Sep-2012 10.963 20953.75 Pre-wtheck®/19:%7.761mg

FF 186 TP Raw B00O 80 24-Oct-2012 5.242 6113.99 Pre-wtheck?0/24:70.373mg
Teflo 199 TP Raw B0O0O 80 8-Nov-2012 3.848 4048.82 First@EngineRunforfinassollection
Teflo 199 TP Raw B0O0O 80 12-Nov-2012 4.124 4328.66 Second&nginefRunFor@nass&ollection
Teflo 200 TP Raw B00O 80 11-Dec-2012 5.933 6405.04 Sampledbhorizontally@vith@atch-can
Teflo 196 TP Raw B100 80 3-May-2012 3.567 2091.52 NoBpost-runFlow-rate@ecorded
Teflo 197 TP Raw B100 80 14-May-2012 8.413 7349.79

FF 164 TP Raw B100 80 15-May-2012 9.636 6614.42 Orifice@loggeddn@erosoldnlet
Teflo 198 TP Raw B100 80 16-May-2012 3.071 2424.10

FF 166 TP Raw B100 80 17-May-2012 5.426 6260.45

From®dry@un"

FF 162 TP Raw None None 27-Jan-2012 0.078 358.15 BlackBpecks@resent®nilter@fter@un
Teflo 160 TP-FTIR Raw B00O 40 8-Feb-2012 3.481 2841.36 Degradation®isible®nback®fHilter
Teflo 172 TP-FTIR Raw B020 40 9-Feb-2012 2.070 1626.74
Teflo 174 TP-FTIR Raw B020 40 10-Feb-2012 2.066 1631.67 Metallicarticles®nilter@fter@un
Teflo 177 TP-FTIR Raw B0OS50 40 2-Mar-2012 2.548 2151.24
Teflo 187 TP-FTIR Raw B0O50 40 7-Mar-2012 1.774 1432.08 Filter@ornGfter@un
Teflo 188 TP-FTIR Raw B0O50 40 13-Mar-2012 1.798 1435.32
Teflo 191 TP-FTIR Raw B100 40 20-Mar-2012 1.623 1310.45 MetallicBparticles@nilter@fter@un
Teflo 193 TP-FTIR Raw B100 40 22-Mar-2012 1.320 1466.06 Run@nded®arly

QFF 182 TP-FTIR Raw B0O0O 80 7-May-2012 4.985 3946.83 Orifice@loggeddn@erosoldnlet
QFF 207 TP-FTIR Raw B100 80 14-May-2012 2.423 1926.03

Orificei@loggeddn@erosoldnlet
QFF 208 TP-FTIR Raw B100 80 15-May-2012 2.073 1678.44 Somefilterfeftn®d-ringfpost-run
QFF 209 TP-FTIR Raw B100 80 16-May-2012 2.626 2124.13

FF 170 TP-FTIR Raw B100 80 17-May-2012 0.733 588.43 O-ring@idthotBeal@orrectly
Q-n-DEuNn@2E

Teflo 157 TP-Imp Raw B0O0O 40 31-Jan-2012 0.734 4125.47 flow®olEivenfbydmpiump
Teflo 157 TP-Imp Raw B00O 40 31-Jan-2012 0.698 3923.22 2nd@veigh
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Table D.4. Ambient conditions recorded from ExTech Temperature and Humidity Logger at
beginning of Engine Runs

EngineRun@ate Temp°C) R.H.®% RunType
31-Jan-2012 19.4 31.8 SS40%
7-Feb-2012 19.6 27.8
8-Feb-2012 18.2 27.7
9-Feb-2012 16.3 18.9
10-Feb-2012 17.6 215
2-Mar-2012 14.4 26.5
7-Mar-2012 16.9 19.7
13-Mar-2012 20.7 42.2
20-Mar-2012 23.1 44.7
22-Mar-2012 24.6 43
26-Mar-2012 11.6 139
2-May-2012 21.1 43.3 SS80%[L
3-May-2012 20.7 50
7-May-2012 21.3 19.7
14-May-2012 20.6 50.3
15-May-2012 204 68.6
16-May-2012 21.8 63
17-May-2012 18.2 314
8-Jun-2012 24.8 46.2 SS40%[2
27-Jun-2012 21.9 49.4
28-Aug-2012 28.4 46.6 SS80%2
6-Sep-2012 25.9 60.4
12-Sep-2012 23.4 40.8
21-Sep-2012 21.4 50.5
24-0Oct-2012 16.9 36.1
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Table D.5. IROX RESULTS FOR 2012 CM-12 TEST FUELS

IROX-Diesel mid-Infrared Results for 2012 CM-12 Engine Test Fuels
Dilution Cetane
Date Factor Improv
IROX Run Sample | Sample | Biodies Adjusted | BXX.X | Density |  Total Cetane| er 1185cm™
Date/Time |IROX Run Name | Taken Type | elinfo | Pewoinfo | @XKX% | %Dilf | (g/cc) |Aromatics %) PAH% | No. | [pem] |7 907 95 |raee FAME Peak |Comments
4160121308 | Osewzoizeopre | a2 0 WiA__| trono 2010 o 0416 241 19 a2 | 57 |s279] a8 [01] a6 | 262 0274948
4/16/1213:48_| 0gFERa01z60pcem | /g w0 WA | Tono 2010 ] i a5 20 sas | 5w |amz|smaoz]| 12 | % 0267585
47167121353 | Usremdonzeopres | y/mnz 0 WA | trono 2010 o [TTH) 5 26 44 464|394 | 350 |02 | 12 | 261 0260732
416121402 | caremaonzeopesT | 2/m/1z 0 Wi | Tromo 2010 ] [T 38 27 ws | s |sma |34l o1 | a6 |64 0285431
4/16/12 14:05 2f8/12 B0 NiA Trono 2010 0.1 01 0817 239 22 441 287 3259 | 3456 | 0.2 12 | 266 0.287491
416012 08FEB2012800018 2 a0 NiA | Trono 2010 03 03 0815 227 3 442 68 | 3247 (3a43| 03 | 18 | 268 0302643
e 5o
41602 1410 wrm 820 10| Towow | 204 2 oam 33 19 593 | e |35 3968|159 | ssa | 271 2799861
Burie 5oy
shsn21a19 | amianzonzezomd |z 820 010 | Towaon0 | 205 25 | e 2 z sa7 | w7 |3ms 134 | 773 2730426
] T 1 1
4/16/12 14:23 2 820 2010 Trone 2010 20.5 25 0828 U5 14 59.1 812 3769 | 394.4 | 251 | 1506 | 274 2703568
Tk 5oy
4/16/1214:28 | DSFEB2012B2010 2912 820 2010 | Tromo 2010 15.9 205 0.829 196 56 543 811|176 | 430 | 129 774 | 276 \iarning #10 - CO2 peak not found
T B Tk
a/16/12 1433 | ooreano12820m0p a2 620 2010 | Tromo 2010 212 3 0828 234 13 sa6 684 | 3759 | 3019 | 308 | 1848 | 277 2810885
T
41612 1442 a2 a0 w10 | mow om0 | 212 5 s 7 17 e | e | s | 398 [1s0 | woms | 27 2770187]
Bk 557
8121451 a9 820 210 | moswon0 | 207 35 | oem w2 21 o1 | on |39 |s0rs| e | as |27 2751938
] T
416012 1455 2912 820 010 | mowo 2010 | 209 a5 | osm 35 18 a1 | o4 |30 |32 |ess |asa |27 2793915
Turke 5oy
a/16/1215:02 | Ueremzonzezoms | s 820 010 | wowwzow | 212 3 sz 1 15 ses | soa | am |3ses | ea | s |27 2782157
4/16/12 1541 | 16APR201Z_KEX_L wHeane | WA A 01 01 | oess 4 66 506 | 6n |ams [aa7e |05 | 3 |23
4/16/12 1555 | 16APR2012_HEK_L wHeane | WA A 0 ] 655 26 7 43 | e |ooad (08| 0 | 0 |213 0072357
Tk
a16M1216:01 | osFEma01z8200m | 812 820 010 | wowzow | 206 3 sz 52 26 3 | ses |3s26| 401 |18 sms | 273 200861
Turte T 1
4/16/12 16:13 10FEB2012820pre 2/10/12 B20 2010 Trono 2010 20.4 2 0828 262 24 585 547 IB52 | 4048 | 601 | 4146 | 274 2607346
Tt
416121618 21002 810 010 | wono2010 | 211 ss | osw 31 16 sa7 | ges | amna | 2880085
Bk 557
shenziasy | oseemaonzezopm | s 820 2010 | mowzow | 213 65 | osm 2a) 22 66 | on |2 lsss| w0 | w0 |2 2779435
] e
41812 1508 222 850 2010 | Trom 2010 44 12 | oms 71 58 s61 | 64 |3 |358 |10 ema | 276 1.658356 850 dilute port fuel 3parts hexane
BuriE 55y
sfsn21s:10 | eremaonzesows | aiasru 850 210 | Toaw0t0 | 43.9 22 | s 57 01 822 | 86 | a7 |aseq |ess |41z | 278 5728 of uniuted 850
] e
4/1812 15:25 i 2/29/12 B50 2010 Trono 2010 50.4 0.8 0708 79 57 573 860 3412 | 340 | 123 | 738 | 281 1 it Apart
Tk
413121530 s as0 010 | wono2010 | 424 152 | oas 261 01 s23 | sos |asas 4577 | e 22 57388 Vesting measurement accuracy of undited 850
Bk 5oy
4n82 154 | 29FEm201zBS0ht | 24292 850 10| mowo 2000 | 47.2 se | oo 88 6 s02 | e [sa3|395 |11 m2e | e 1341074
e
418012 1548 2 850 w10 | Tow 0w | 409 w2 | oas = a me | e |as a7 [ess | asa | 2ms of united 550
BurRe 55y
ssn21ss1 | eremzonzesows | azru 850 010 | Towwa0n0 | 47.2 ss | ow 83 57 s62 | ss9 | 391|337 |ne| s | 288 1.709051 Repeat gilution of B50 with n-Hexane (1:3) for methodelogy verfication
— e T 1 1 —|'
418112 17:01 32 850 2010 | o201 | 432 135 | o2 89 (13 571 654|340 | 3307 78 1 | 1pant
4/181217:10 | aamaR2012mS0p0s | 3212 as0 10| woo2010 | 436 e | ois 77 s sea | sea | 337 335 |nie) eas |2 1.562515 850 dilute
1 Tk 1
418121717 | omaaraorzesopre | 37712 850 2010 | Tromo 2010 496 08 0709 g 57 s46 w000 [3292 378|112 ] 672 | 278 1 : 1p;
e
418121730 | amaaRaizBsopes | 37712 850 10| mow om0 | 428 us | oos 2] 57 ses | 5w | 3w 332 us| ese | e 1.544388 850 dlluted with n-Hexane; part fusl 3parts hexane
Bk 557
4180121741 | 13maRzoLzBSOWR | 313/ as0 2010 | moozoz | 448 ws | oios 87 57 574 | es |wma| 3 |us| e |7 1.57785 |B50 diluted with -Hexane 19an fuel 3parts hexane
T —1—
4118112 17:4% id | 313412 850 2010 | Toao2012 | 456 88 0708 LE) 55 58 62 | 39 |68 |ns| 69 | 3 ! | i : fpant
4180121801 | 13MaR201ZBSORet | 313/ 850 010 | Tone012 | 44.4 u2 | om 75 se s75 | 7e9 | s22 |30a5 |09 6sa | 281 1.581351 850 diluted with -
T T Turke
/1812 18:08 | 13nan2012850ee | 31312 850 010 | wono2012 | 448 e | oms 82 56 s22 | eon | 3aas|ams | s ead | 281 1 i : 1p:
T S
418121820 | 13MARI012B50p0s | 31312 a5 w10 | mow iz | 44.8 we | oios ’ 61 ses | 6m |3332 3921|106 | sas | 281 1.625946 850 dlutod with n-Hexane; part fusl 3parts hexane
4/18/12 18:20_| 18APR201Z_HEX_L n-Hexane | N/A [ [ [} 0655 31 [ 439 547 2047 [2881| 0 [ o [2s2 0052704
Tk
4/19/1218:59 | 20MAR20128100tp | 3/20/12 8100 2010 | Tromo 2012 97.6 24 0713 112 53 689 788 | 3717|3685 | 68 | as | 272 2995392 B100 dilus . hexane
T T Turke
4/19/12 19:12 3/20/12 B100 2010 Trono 2012 97.6 24 0713 &7 L8 663 563 3568 | 3536 | 175 | 108 | 276 il 3 hexane
Tk Sy
4181121315 ymm a0 | 2010 | wonoaonz | 94.8 sa | oo 12 53 a2 | om | 3634|3611 | 139 | 1134 | 218 3 ditvted herane
Bk 557
41901219:20 | 2z8rRz01ZB100pr | 32212 0100 | 2010 | wonoaonz a4 [ o3 108 52 &2 | s |3676 3653 [6e9|araa | 202 2856945 5100 diluted with n-Hexane; 1part fuel:3pans hexane
T T T 1
4/19/12 19:26 | 22MAR20128100ps a2 8100 2010 Trono 2012 93.2 68 0713 105 52 B84 673 369.7 | 367.3 | 689 | 4134 | 285 2.761414 | B100 diluted with n-Hexane; 1part fuel:3pants hexane
B 55y
/190121932 | J0MARZOLZBI00RS | 32012 B0 | 2010 | meno0uz | 916 a1 | o 92 54 659 | ss7 | am7 |33 |6es | azs | 287 2735596 | 5100 i s hexane
] T
419712 1930 | 2maaR201zBIO0r | 32312 8100 | 2010 | weomo 2012 96 a a2 102 44 668 | 643 |3sa1| 381|181 1086 | 287 sample taken i i 13
Tt
4190121945 | a7mrR2012BI00ps | 2mm2 a0 | 2010 | wonoaonz | 97.2 28 | o 103 53 a6 | 739 | 3653|3634 | 2311386 | 287 sampha taken afer E100 diluted with n-Hesane; 1:3
Bk 5oy
419121950 | asmz0izeiond | w22 8100 | 2010 | fonoaonz | 100 ] onz &8 a7 625 | v |24 |39 |5 a1 | 288 3084427 | 5100 samp froten ZEMARZOLZ, unfronen Z7MARZ012. B10D diuted with n-Hexane; 1:3
e
41912 1951 | 26MARZO1ZB100pr | 372612 m | 2010 | wowamz | 96.8 32 | o 1) 8 o7 681 | 3573 3508 | 168 | 1003 | 289 2539875 5100 diluted with n-Hexane; Tpart fuek:3parts hexane
T
/190122003 | 26MARZOIZBI000s | 3/26/12 s00 | 2010 | monoonz | 90.8 s2 | om 54 62 e 2759552 5100 diluted with n-Hexane; 1part fuel:3oans hexane
4/19/12 20:07 | 19APRIDIZ_HEX_L n-Hexane | N/A [ [} [ 0654 71 181 2 0.18074]
5/27/12 10:27 | 275EP2012_HEX_1 n-Hexane NiA NA o o D655 43 &7 511 892 | 0 o 76 0015381
S/27/12 17:27 OZMAY2012B0pre 2-Mary B0 NiA Trono 2012 24 06 0816 203 15 459 3368 | 08 | 48 | 265 0.372589
8/27/1217:33 02MAY2012680p08 2-May 0 NfA Trono 2012 12 0.3 0817 224 27 441 1388 | 04 | 24 | 267 0.293701
9/27/1217:40_| 275EP2012_WEX_2 o-Hexane | NA N/A [ [ 0673 5.1 67 0 28| 0 | 0 [z1 00103
T —|
5/27/12 17:45 3-ay B100 2010 Trono 2012 94.8 52 0713 83 a1 13 3562 | 151 | %06 | 272 3.342163 | B100 dil 3 hexane
Tk 5oy
52121750 | 03MAYZ0I28100ps | 3y a0 | 2010 | wono2onz | 95.2 a8 | o 102 s a5 3652 233 | 1398 | 270 3177353 8100 dilut 3 herane
/27121750 | 27sepa0iz_HEX 3 nHemane | Wi A 0 [ [ 35 [ a3 a8 | o1 | as |15
8/77/1217:58 | 07MAY201280pre T4ay 80 M/n | Tromo 2012 [ [ 0315 o) 23 434 316 02 | 12 |76 0.27337|
S s | iMAroizvpm | Tey w [ [wowan | 08 | oz [ oms s 3 [ 53 [0s | 24 207 | omsuss]
5/27/12 18:08_| 275EP2012_HEX 4 aetesane | Wi A [ [] 0657 36 68 50 o | o |z -DU]AE'
Turke Soy
8/27/12 18:12 14-May 8100 May 2012 | Trome 2012 94 & 0712 a2 675 3767|221 | 1326 | 281 il 5 hexane
BurkeSay
527121816 | 10MAYZ0128100ps | 18-May 8100 |May2002 | Trono012 | 94.8 s2 | o o8 41 22} 3654 686 | 116 | 282 3275205 8100 diut 3 herane
/27121821 | 275€Pa012_HEK S wHene | WA A [ [ Dss 27 7 s 2901 | 02 | 12 |24 00354
BUke o
927121826 | 15MAYZ0OIZ8100pr | 15-May 100 |May2012 | Tionoonz | 92.4 s | om 105 s o1 | ow || 3007 ee7 a2z | 285 3.131683 BL00 diluted with n-Hexane: 1part fusl:3pans hevane
Turke Soy
72 1820 15 May 100 | May202 | Tomoamaz | 97.2 28 | oma o8 a7 e85 | s |z | am |03 1a | s 3421155 5100 diut 3 hesane
5/27/12 18:33 | 275EP2012 MEX 6 nHexane | N/A [ [ o 0655 36 68 501 432 |2067 (2039 02 | 12 | 287 0.000885|
Burke S0y
/2712 1835 16 May 8100 |mavzoiz | wonoonz | 94.8 sa | o 93 45 a3 | sw | a7as | 306|152 12 | 287 diuted hesane
Burke 5oy
327/121839 | 16MAZ01281008s | 16-May 8100 |May2012 | monoaonz | 93.2 s8 | omz 104 a 82 | ee7 | 3ms | 366 |ess|ane | 288 220184 5100 diuted with n-Hexane; 1part fuel:3pants hexane
8/27/12 18:53_| 275692012_WEX_7 n-Hexane | NIA [ [ [ 0655 34 68 498 s0s | 2831] 282 |02 | 12 | 285
Turke Soy 1
9/28/12 1001 | 17MAV201281000 | 17-May 8100 |May2012 | Tromo202 | 93.6 64 | oma &8 47 a1 | eor | 36a6 | 3636|105 | 63 | 265 538681 B100 diluted with n Hexane 1part fuek3pares hevane
Bk Soy
572812 10:06 17-May 8100 | May 2012 | Trono 2012 92 [ i1 a8 52 625 | s1s |31 |3s03 |ess | aaa | 268 diluted with - Hexan; herane
/2812 10:11_| 285EP2012_HEX_1 wHeane | WA A 0 ] [ 34 55 507 | eo6 |94 | 283 |03 | 18 | o7 0017865
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Figure D.1. IROX-Diesel Fuel Properties for fuel samples collected from the fuel tanks, before and

after CM-12 tests.
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Table D.6. Steady-State 40% Load Engine Tests from Winter-Spring 2012

$S40 (Steady-State, 40% Engine Load) TESTS from WINTER-SPRING 2012

Test Date PM Mass PM CHEMICAL
Filter MM/DD/YYY Filter | Sampling | Collected Flow rate Minutes Concentration | Measured ANALYSIS
ID# |[Test# Y FUEL | Type location (mg) (L/min) sampled Total Flow (L) (ng/m?) by: Notes DATE
142 1 1/27/12 None QFF DL-C 0.084 16.2 63.50 1029 82 1D Run Blank - First 2012 Sample Feb-13
152 1 1/27/12 None | Teflo DL-H -0.114 143 63.50 908 -126 D Run Blank - First 2012 Sample
162 1 1/27/12 | None FF TP 0.078 3.415 63.50 217 358 1D Run Blank - First 2012 Sample
143 1 2/7/12 8000 QFF DL-H 0.403 20.47 77.08 1578 255 D Jun-13
144 1 2/7/12 B00O QFF DL-C 0.532 11.59 77.08 893 595 1D Jun-13
158 1 2/7/12 B00O Teflo TP 3.143 13.25 77.08 1021 3077 1D
145 1 2/8/12 B0O00 QFF DL-C 0.532 19.44 74.58 1450 367 D
159 1 2/8/12 B00O Teflo TP 4.833 15.91 74.58 1187 4073 1D
160 1 2/8/12 B00O Teflo TP-FTIR 3.481 12.5 98.00 1225 2841 1D Degradation visible on back of filter
146 1 2/9/12 B020 QFF DL-C 0.489 21.65 74.05 1603 305 1D Jun-13
161 1 2/9/12 B020 Teflo TP 3.889 12.8 74.05 948 4103 1D
172 1 2/9/12 B020 Teflo TP-FTIR 2.070 13 97.88 1272 1627 D
147 1 2/10/12 B020 QFF DL-C 0.187 19.875 73.22 1455 129 1D Jun-13
173 1 2/10/12 B020 Teflo TP 5.576 10.83 73.22 793 7033 1D
174 1 2/10/12 B020 | Teflo | TP-FTIR 2.066 13 97.38 1266 1632 ID Metallic particles on filter after run
150 1 3/2/12 B050 QFF DL-C 0.451 19.115 74.00 1415 319 1D Jun-13
176 1 3/2/12 B050 | Teflo TP 7.017 11.7 74.00 866 8105 D
177 1 3/2/12 B050 Teflo TP-FTIR 2.548 12.1 97.90 1185 2151 1D
148 1 3/7/12 B050 QFF DL-C -0.371 17.9 72.67 1301 -285 1D Torn along edge post-run
178 1 3/7/12 B050 | Teflo TP 7.144 11.52 72.67 837 8534 D
187 1 3/7/12 B050 Teflo TP-FTIR 1.774 12.85 96.38 1239 1432 1D Filter torn after run
149 1 3/13/12 B050 QFF DL-C 0.376 20.2 74.17 1498 251 1D Jun-13
188 1 3/13/12 B0OS0 Teflo TP-FTIR 1.798 12.85 97.47 1252 1435 D
189 1 3/13/12 B050 Teflo TP 7.153 9.415 74.17 698 10244 1D
151 1 3/20/12 B100 QFF DL-C 0.388 19.905 74.25 1478 263 D Jun-13
190 1 3/20/12 B100 Teflo TP 11.125 11.65 74.25 865 12861 1D
191 1 3/20/12 B100 | Teflo TP-FTIR 1.623 12.7 97.50 1238 1310 D Metallic particles on filter after run
179 1 3/22/12 8100 QFF DL-C 0.288 19.4 59.17 1148 251 D Run ended early
192 1 3/22/12 B100 Teflo TP 11.669 9.875 59.17 584 19972 1D Run ended early
193 1 3/22/12 B100 Teflo TP-FTIR 1.320 12.25 73.50 900 1466 D Run ended early
180 1 3/26/12 B100 QFF DL-C 0.919 20.45 74.67 1527 602 D Jun-13
194 1 3/26/12 B100 | Teflo P 21.261 13.575 74.67 1014 20976 D Splotchy collection pattern
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Table D.7. Steady-State 80% Load Engine Tests from Winter-Spring 2012
SS80 (Steady-State, 40% Engine Load) TESTS from WINTER-SPRING 2012

PM Mass PM
Filter Test Test Date Filter Sampling Collected Flow rate Minutes Total Flow Concentration
ID# # MM/DD/YY FUEL Type location (mg) (L/min) sampled (L) (ug/m?) Notes
167 1 5/14/12 B100 FF DL-H 0.066 11.35 91.63 1040 63
197 1 5/14/12 B100 | Teflo TP 8.413 9.825 116.50 1145 7350
204 1 5/14/12 B100 | QFF DL-C 0.638 18.7 91.63 1714 373
207 1 5/14/12 B100 | QFF | TP-FTIR 2.423 10.8 116.50 1258 1926
164 1 5/15/12 B100 | FF TP 9.636 15.95 91.33 1457 6614 Orifice clogged in Aerosol Inlet
168 1 5/15/12 B100 FF DL-H 0.003 11.38 91.33 1039 3 Orifice clogged in Aerosol Inlet
205 1 5/15/12 B100 | QFF DL-C 0.497 18.58 91.33 1697 293 Orifice clogged in Aerosol Inlet
Orifice clogged in Aerosol Inlet
208 1 5/15/12 B100 | QFF | TP-FTIR 2.073 10.695 115.50 1235 1678 Some of filter left on o-ring post-run
169 1 5/16/12 B100 FF DL-H 0.088 11.37 91.22 1037 85 Torn along edge post-run
198 1 5/16/12 B100 | Teflo TP 3.071 13.89 91.22 1267 2424
206 1 5/16/12 B100 | QFF DL-C 0.622 18.07 91.22 1648 377 Small tear on edge post-run
209 1 5/16/12 B100 | QFF | TP-FTIR 2.626 10.705 115.50 1236 2124
166 1 5/17/12 B100 FF TP 5.426 9.515 91.08 867 6260
170 1 5/17/12 B100 FF TP-FTIR 0.733 10.79 115.50 1246 588 0O-ring did not seal correctly
210 1 5/17/12 B100 | QFF DL-C 0.616 18.15 91.08 1402 439
211 1 5/17/12 B100 | QFF DL-E 0.561 19.985 91.08 2153 261 Denuder in line before filter
171 1 6/8/12 BOOO | FF DL-C 0.084 20.945 61.58 1290 65
212 1 6/8/12 BO0O | QFF DL-E 0.414 18.28 61.58 1404 295
183 1 9/6/12 BOOO FF TP 6.017 8.056 60.25 485 12397 Pre-wt check 9/5: 69.798mg
184 1 9/12/12 BOOO FF TP 7.485 8.084 90.42 731 10240 Pre-wt check 9/12: 67.101mg
185 1 9/21/12 B0OOO FF TP 10.963 8.72 60.00 523 20954 Pre-wt check 9/19: 67.761mg
186 1 10/24/12 BOOO FF TP 5.242 9.585 89.45 857 6114 Splotchy collection pattern
ED) /) $9) 41 C9 "G "HY& ()" ', & #55%+)% 9" 83
mn sg;k) IISSIWI*)S L} /7 )Elss
*'&HS!) %
" )-% /.|_0' %
B ool B, 0%
8 41 ) %
B (RS % [01%
= (1asn) % 19'%
§ /0 % I /08%
: o I i
o' % T
1 HST %t T T T
+1% +*1% +81% +(11%
455 RBIH) % § 5585

Figure D.2. $S40 and $S80 Average Tailpipe PM Mass Concentrations. n = number of replicate

samples. Error bars are one standard deviation.
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Table D.8. EEPS Channel Means for SS40 and SS80 Tests
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Effect of Dilution Ratio Correction on EEPS PN Distributions
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Figure D.3. Uncorrected EEPS mean number distributions by run.
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Figure D.4. EEPS Particle Number Distributions for $S40 and SS80 tests. Data were corrected for
measured dilution ratio.
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Figure D.5. Average Particle Number Distributions for replicate steady —state emissions tests at
each biodiesel blend ratio. EEPS data are not corrected for tunnel blank and dilution ratio here.
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Table D.9. Particle Number Distribution Diameter Modes and Corresponding DR-Corrected
Concentrations by Blend

1_09FEB2012_B020
1_10FEB2012_B020

1_07FEB2012_B000
1_08FEB2012_B000

DR=56

Mode 1:
Concentration Ave: 6.3420e5 #/cc
DR Corrected Con Ave: 3.5515e7 #/cc
Diameter Ave: 10.8 nm

Green circle represent average mode peak.

Green circle represent average mode peak.
DR=56

Mode 1:
Concentration Ave: 4.8957e5 #/cc
DR Corrected Con Ave: 2.7416e7 #/cc
Diameter Ave: 52.3 nm

1_02MAR2012_B050
1_07MAR2012_B050
1_13MAR2012_B050

DR=56

Mode 1:
Concentration Ave: 6.3420e5 #/cc
DR Corrected Con Ave: 3.6515e7 #/cc
Diameter Ave: 10.8 nm

Mode 2:
Concentration Ave: 6.7696eb #/cc
DR Corrected Con Ave: 3.7910e7 #/cc
Diameter Ave: 55 nm

Green circles represent average mode peaks.

1_20MAR2012_B100
1_22MAR2012_B100
1_26MAR2012_B100

Green circles represent average mode peaks
calculated with data from

1_22MAR2012_B100 and 1_26MAR2012_B100 only.
DR=56

Mode 1:

Concentration Ave: 2.4695e6 #/cc

DR Corrected Con Ave: 1.3829e8 #/cc
Diameter Ave: 10.8 nm

Mode 2:

Concentration Ave: 2.2725e6 #/cc

DR Corrected Con Ave: 1.2726e8 #/cc
Diameter Ave: 17.8 nm

Mode 3:

Concentration Ave: 2.3895e6 #/cc

DR Corrected Con Ave: 1.3381e8 #/cc
Diameter Ave: 31.7 nm
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Table D.10. FTIR Gas-Phase Concentrations for SS40 Biodiesel Runs

Acetylened BOOOPotall  2.853EHD.01005E Ethylene®  BOOOMotald  [E15.27RHD.641 NO,fHighZ  BOOOTotal? 88.6522.0320
(ppm)B BOOOBSH 1.818@@.1367@ (ppm)& B0O0OBSE 7.463@D.23187 (ppm)@ B000BSA 94.34R.5420
B020Motall  [.8772M.44193 BO20Motall  [7.695RHD.553 B020otalll 56.2623.2270
a B020BSE [@.7052D.35993 o B020BSE (5.5552.10803 " B020SE 3.3022.5543
o BOS0otalld 2.0142D.42548) - BOSOMotald  7.886@M.31540 o BOS50Totald 76.12E2.01F
m BO5055 1.463@D.76330 o B05055 6.100@.27730 a BOSOBSE 61.3823.3690
o B100Totalll 3.160@D.31438 m B100Totalll 11.817.9460 o B100Totall 53.75E®.0328
@ B100BSE 2.6532D.46860 @ B100BSH 9.0142.5250 @ B100SH 35.20@.2050
CHf  BOOOTotalr  [5.452RM.15330 Formaldehyde® BoooOTotalz 19.887.1250 NO,AlowE  BOOOMotald 0.12EM.59207
(ppm)@  BOOOBSE 3.2847D.11898 (ppm)E BO0OBSE 8.206(D.62550 (ppm)@  BOOOBSE 96.22@.27287
BO20Motall  [B.593EM.4477E o BO20Motall  [B.952RM.32830 B020otal ®7.35E.2650
o B020BSE [2.9582D.37603 - B020BSE 5.0992D.27393 o B020BSE 74.2022.8383
m BOSOTotalll 4.3262M.46120) o BOSOTotall  8.841RHD.5144R a BOSOTotalll 62.29RT.7092
o BOS0BSH 3.233@M.12610 - BOS0BSH 5.4347D.34780 o BOS0BSH 65.62E5.1817
o B100Motal 4.7402:D.58393 o B100Motald 11.692®. 4698 " B100Motal 63.420D. 5880
@ B100BSE 3.7402:D.39398 @ B100BSH 7.682@.3498 @ B100SH 62.45E0.998
COHppm)E  BOOOotal 567.1224.298 H,0%)a BOOOMotaln  [8.805+D.03191A 0,A50@ BOOOotall  [3.545ED.7148E
BO00BS 405.50:8.2948 BO0O5SA 4.47820.033008 hitran?l  B00OBSA -0.824522.082
B020otalll B13.22@3.250 BO20Totall  [B.566(M. 18820 (ppm)@  BO20Motall  M.9242@MD.1634E
a B020BSE 266.92M.3448) o B020BSE ®.469EM.14343 " B020SH ®.149EM.13628
a BOSOMotalll 290.2RE 5,220 o BOSOFotald  3.906D.28760 " BOSO0Motall 11.70RT0.450
a BOS0BSE 241.8212.370 o BOSOBSE 4.66797M.17160 a BOSOBSE 1.618Em. 24950
o B100Motall 323.12%6.608 o B100Motalm  4.5002D.31058 o B100Totald 56458560
@ B100BSE 253.3233.320 m B100BSH 4.9317M.42650 m B100SH 1.328RHM.66320
COH%)@  BOOOMotald 0.05029E.00085858 HNCOR BOOOMotall  [7.0865RR.2117 Propanell  BOOOTotald 4.8847.65150
BOOOBSE  0.03696ED.0004504% (ppm)a@ BOOOBSE  -0.08540RM.6338 |, (ppm)a __ BOOOBSE 0.75332M.14570
B020Totall  [.027502M.001994% BO20Totall  [2.51507.2420 B020Total @2.1197M.83333
o 8020553 [.02404D.00093270 - 8020553 [0.2527@[.0028 o B020557 [@.36107.2070
" BOSOMotall  0.025487.0013318 o BOSOMotalm  2.190@D.76537 " BOSOTotal 6.804R . 4648
o BOSOBSE  0.02164ED.0011398 o BOS0BSH 0.3902BM.79328 o BOS0S -0.7980RT. 9960
o B100Motald  0.02827F.004511% o B10OMotalm  1.383M.6284R o B100Totald -3.281RT5.8640
@ B100BSE  0.022482D.0036230 m B100BSE  -0.4008EHD.8098E m B100SE -13.29EH1.0830
COA%)3  BOOOPotall  [3.9992HD.023760 N0 BOOOMotall  [.7429RD.097372 Propylenell BOOOotali [3.8052M.31002
BOOOBSE 4.756@M.080287 (ppm)@ BOOOBSE  0.7569RM.095248 (ppm)@  BOOOBSE 1.0812M.58820
B020Totall  [B.6982M.23991 B020Totall  M.68842M.0089561 B020Totall @.2652M.23510
" B020BSE ®.7632D.18433 o B020BSE  [.74497M.0009089E a B020SH D.66462M.15910
o BOSOotalll 3.7552M.28420) o BOSOMotalm  0.59902D.09176R o BOSOTotal 0.57642.051F
" BOSOBSE 4.651R.24910 o BOSOBSE  0.6340R@.083208 o BOSOBSH 0.95 103D, 12207
a B100Totall 4.115E@.19160 o B100Totall  0.6534RD.03582 o B100Total 1.040R:D.53050
@ B100BSH 4.712@@.35187 @ B100BSE  0.6612R@.042758 i B100SY 1.127@:0.31348
Dieseld ~ BOOOMotal® 202.9279.748) NH,@ BOOOTotald  0.1321@M.050150 Urea  BOOOFotal?  [©0.02533@M.004947F
(ppm)@  BOOOBSE 128.5@:A1.550 (ppm)a BOOOBSE  0.4702EM.053940 pr;‘j’;]ct BOOOBSE  -0.02211EM.0007208E
B020Motalll 3.9825.8250 BO20@otalm  [.1853+D.06539E (ppm)@  Bo20motal  -0.01111@M.005215F
o B020BSE [©3.7225.1620 a B020BSE 0.22847M.10250 o BO20BSE  [30.0042862M.0096270
a BOSOTotalll 116.52:56.950 o BOSOTotall  0.4358D.7504R o BOSOTotall  -0.02032ETD.002876
m BOS0BSH 81.87@[5.970 o BOS0BSE 0.82057F.0178 o BOSOBSE  -0.01427RD.0051067
o B100otalll 105.8@%3.950 o B100Motalm  0.4229E:D.3009E o B100Totalm  -0.02222R0.0059042
@ B100BSE 131.2@:74.528 m B100BSH 0.65647M.41580 m B100BSE  -0.01272@0.0079697
Ethanel  BOOOMotald 1.737@&D.13380 BOOOFotall 01337580
(ppm)B  BOOOBSE  0.3618M.0152 (ppm)® BOOOISSE 392.5212.628 BO0O:fFebl¥,FebB
BO20otall  [@0.2177RM.234 BO20@otall (283 9EM@5.760 B020:Feb® FebA0?
BO20BSE  (0.6296RD.15910 8020557 ®90.3271.931 BO50:Mar2,Mar,Mar 33
il M B100:Mar20,MMar22,MMar26E
o BOSOMotald  0.98607.3098% o BOS0Motalll 279.73®9.408
o BOS0BSH -0.8162@D.38067 m BOS0BSH 371.8281.028 )
- B100fotal® -0.56882M.380 o B100@ otaldl 283.7@@3.250 Total:@ntire@unt
i B100BSE -1.346RM.24788 i B100BSE 352.4@34.400 SS:2000-5000Bec@fter@ngine®tart?
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Mean Cancentration of Gases: BOOD

Mean Cancentration of Gases: B100

10 L T S T R D T | L — T
O Totsl . T 1 : T T ! T ] ! ! ! o Total
° Toal Enor ——Tota s
B ® o ss
= o ss
; ® | —ssEm % B ——sSEnw
® € B - 2
: ) ; é
wE e @ 0 L] -
i 2
3
£
a ’ i
'k i ' g ; 4
s @ 3 [}
& * H] g L F 1 !
; i B § ;
5 T H
3 @ ? P i
§ # = R Wk | ] J
H g < Tos
£ 3 3 :
3
®
] w'k 4
0L 1
a
I O sl O A i & 5 F §F F & §F 4 AR e 25 4 i i 4
&P o & fc » “’o L L F &P S, PR I I I I R I LR e S i f &
g ® & & & & &8 & 3 S E & F 55 & H & ¥ 3 ¢ B
& & E & & & 4 & ERE K.;" & CAC AR
<
. Mean Concentration of Gases. BOSO : Mean Concentration of Gases. B020
1o T T T T T T T T o T T T T T T T T T T T T T
H O Totsl o Totsl
——Total Emae & Total Ermor
z o ss g >3 o ss
H g sser —ssem
10 : 5 2 =
& 2
i -
0k =
' LW 7 ' i i * s
® ¢ 8 7 :
o g ! g e 3 =
i s I iR 1 3
+ w b F
5 117 $ 5 = & > | ¥
i T i T : s
i : H
< o 2 ] g $ -
@l 1
10’
]
w0'E
TR ® ¢ ¢ g § 3§ 4 4 4 % F 9 F § % I B AN G SO (Nt | L T S TN TR S T |
PR O I P P PP LI P LOF NS L PR P I N I S R I P I R S S
g ° S S & & S & &S g F < ¢ o ST E T LI &
& f & F & 5*{@?’9 & & &E &S & R ;(p" & s & & ‘#‘:"*
« <

Figure D.6. Mean Exhaust Gas Species Concentrations for (a) BO, (b) B20, (c) B50 and (d) B100

fuel blends. Error bars are one standard deviation.
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