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Summary

Harpin, the product of the hrpN gene of Erwinia
amylovora, elicits the hypersensitive response and
disease resistance in many plants. Harpin and known
inducers of systemic acquired resistance (SAR) were
tested on five genotypes of Arabidopsis thaliana to
assess the role of SAR in harpin-induced resistance. In
wild-type plants, harpin elicited systemic resistance to
Peronospora parasitica and Pseudomonas syringae pv.
tomato, accompanied by induction of the SAR genes PR-
1 and PR-2. However, in experiments with transgenic
Arabidopsis plants containing the nahG gene which
prevents accumulation of salicylic acid (SA), harpin
neither elicited resistance nor activated SAR gene
expression. Harpin also failed to activate SAR when
applied to nim17 (non-inducible immunity) mutants,
which are defective in responding to SA and regulation
of SAR. In contrast, mutants compromised in
responsiveness to methyl jasmonate and ethylene
developed the same resistance as did wild-type plants.
Thus, harpin elicits disease resistance through the NIM1-
mediated SAR signal transduction pathway in an SA-
dependent fashion. The site of action of harpin in the
SAR regulatory pathway is upstream of SA.

Introduction

Harpin, the first bacterial hypersensitive response (HR)-
elicitor characterized, is an acidic, heat-stable, glycine-rich,
44 kDa protein encoded by the hrpN gene (hypersensitive
reaction and pathogenicity) of Erwinia amylovora (Beer
etal., 1991; Wei et al., 1992). The bacterial pathogen causes
fire blight disease of apple, pear and other members of the
Rosaceae (van der Zwet and Beer, 1995). Harpin also
induces resistance in a variety of plants against a broad
array of pathogens (Qiu etal., 1997; Wei and Beer, 1996).
Subsequently, several similar Hrp proteins (harpins) have
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been characterized from different bacterial plant patho-
gens (Arlat etal., 1994; Bauer etal., 1995; Charkowski etal.,
1998; Cui etal., 1996; He etal., 1993; Kim and Beer, 1998;
Preston etal., 1995). Harpins elicit the HR, and some have
been shown to elicit disease resistance (Bauer etal., 1997;
Strobel etal., 1996; Wei and Beer, 1996; Wei etal., 1998;
S.V. Beer etal., unpublished results).

Certain interactions between harpins and plants must
occur for the induction of resistance (Hoyos etal., 1996). In
tobacco suspension cell cultures treated with HrpZ or HrpN
protein, a variety of responses occur that lead to ion
influxes across the membranes, alkalization of the growth
medium, cell membrane depolarization and production of
active oxygen species (Baker etal., 1993; He etal., 1994;
Popham etal., 1995; Wei etal., 1992). Programmed cell
death occurs in Arabidopsis suspension cultured cells in
response to HrpZ (Desikan etal., 1998). A potential role for
phosphorylation in the regulation of these responses is
suggested by observations that they are sensitive to
K252a, an inhibitor of protein kinases (Baker etal., 1993),
and that tobacco leaves infiltrated with harpin or water
accumulate a mitogen-activated protein kinase (MAPK)
(Adam etal., 1997). Together, these data suggest that
application of harpin to plants initiates signal transduction
events that lead to defence responses (see review by Boller
and Felix, 1996).

Induced resistance in plants is regulated by complex
signal transduction pathways that respond to infection by
pathogens and specific abiotic inducers of resistance. One
of the better understood signaling pathways in plant
defence leads to the expression of systemic acquired
resistance (SAR) (Delaney, 1997; Dorey et al., 1997; Lawton
etal., 1995; Ryals etal., 1996; Sticher etal., 1997). Salicylic
acid (SA) is an endogenous signaling molecule (Klessig
and Malamy, 1994) which accumulates following pathogen
exposure (Malamy etal, 1990; Malamy etal, 1996;
Métraux etal., 1990) and is required for induction of SAR.
Application of SA induces resistance to the same spectrum
of pathogens and activates the same set of genes as
biological inducers of SAR (Kessmann etal, 1994).
Transgenic tobacco and Arabidopsis plants unable to
accumulate SA, due to expression of an introduced
bacterial gene encoding salicylate hydroxylase, are unable
to express SAR and show other defects in resistance to
pathogens (Delaney etal, 1994; Gaffney etal.,, 1993).
Several functional synthetic analogs of SA, including 2,6-
dichloroisonicotinic acid (INA) and benzo-1,2,3-thiadiazole-
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7-carbothioic acid S-methyl ester (BTH), faithfully mimic
SA in activating SAR (Lawton etal., 1996; Vernooij etal.,
1995; reviewed in Kessmann etal., 1994). SAR induction is
accompanied by the expression of a variety of genes,
including those that encode pathogenesis-related (PR)
proteins, which presumably play a role in the resistance
phenotype (Alexander etal., 1993; Beffa and Meins, 1996;
Bol etal., 1990; Sticher etal., 1997; Ward etal., 1991).

To elucidate the parts of the signal transduction pathway
downstream of SA that lead to SAR, a variety of mutant
screens have been used. These have involved assays for
defective induction of pathogen resistance (Delaney etal.,
1995) and screens using SAR-gene-promoter fusions to
reporter or selectable marker genes, coupled with treat-
ment with SAR-inducing compounds like INA (Cao etal.,
1994; Shah etal., 1997). In each case, mutations were
discovered in the same gene, called NIM1, NPR1 or SAl1,
respectively, by each group (Cao etal., 1994; Delaney et al.,
1995; Shah etal., 1997). nim1 mutants were shown to be
unresponsive to SA, INA or BTH for induction of SAR
(Delaney etal., 1995; Lawton etal.,, 1996) demonstrating
that like SA, the synthetic compounds also act through a
plant signaling pathway defined by the NIM1/NPR1.
Because mutants at this locus retain the ability to
accumulate SA, yet fail to respond to this compound, the
NIM1/NPR1 gene is believed to act between the site of
action of SA and the induction of SAR-associated defence
genes. The NIM1/NPR1 gene was cloned in two labora-
tories (Cao etal., 1997; Ryals etal., 1997) and was shown to
encode a protein that contains ankyrin repeats, motifs
present in a variety of proteins and believed to mediate
protein—protein interactions. The protein NPR1 or NIM1 is
suggested to regulate PR gene expression by interacting
with a transcription factor (Kim and Delaney, 1999; Zhang
etal., 1999).

Other induced resistance pathways exist that are
independent of SAR (Niki etal.,, 1998; Penninckx etal.,
1996; Vijayan etal., 1998; Xie etal., 1998). For example,
certain growth promoting rhizobacteria can elicit a form of
systemic resistance called induced systemic resistance
(ISR) (Hoffland etal., 1995; Liu etal., 1995; van Loon etal.,
1998), which is distinct from SAR because it is not
dependent upon SA accumulation and is not linked to
the accumulation of SAR-associated gene products
(Pieterse etal., 1996; van Loon etal., 1998). Furthermore,
also unlike SAR, ISR appears to depend on signaling by
jasmonic acid and ethylene, based on the inability to
induce ISR in Arabidopsis mutants insensitive to these
compounds (Pieterse etal., 1998). Thus, at least two
distinct pathways contribute to the suite of pathogen-
induced resistance systems. These involve distinct signal-
ing pathways that require either the accumulation of SA or
the action of ethylene and jasmonic acid for SAR and ISR,
respectively. Activation of SAR requires function of the

NIM1/NPR1 gene product. Curiously, however, although
the induction of ISR occurs independently of SA, it is
reported to depend upon action of the NIM1/NPR1 gene
product, as npr1-2 mutants are unable to induce ISR
(Pieterse etal., 1998).

Induction of resistance by harpin could result from
the activation of a variety of defence pathways. To
better understand the mechanisms underlying harpin-
induced disease resistance, we examined harpin-treated
plants for accumulation of SAR-associated gene pro-
ducts, which would suggest that harpin functions
through the SAR pathway. To assess the role of specific
signaling pathways in harpin-induced resistance, we
examined its effectiveness in several Arabidopsis genet-
ic backgrounds, including SA-non-responsive nim1-1,
jasmonate-insensitive jar7-1 and ethylene-insensitive
etr1-1 and etr1-3 mutants, and SA-non-accumulating
NahG plants (Delaney etal, 1994; Delaney etal., 1995;
Guzman and Ecker, 1990; Schaller and Bleecker, 1995;
Staswick etal., 1992; Staswick etal., 1998). Harpin was
found to be an effective inducer of resistance to
Peronospora parasitica and Pseudomonas syringae and
caused induction of SAR genes in all genotypes except
nim1-1 and NahG. The present data indicate that harpin-
induced resistance acts specifically through the SAR
pathway, and does not depend upon JART or ETR1
gene products.

Results

Harpin induces expression of SAR genes

In Arabidopsis, several PR genes, including PR-1, PR-2 and
PR-5 are expressed co-ordinately with SAR (Ryals etal.,
1994; Uknes etal., 1992). We monitored the expression of
PR-1 and PR-2 in plants treated with the HrpN protein
(harpin) from Erwinia amylovora. Harpin was obtained
from a cell-free elicitor preparation (CFEP) made from
cultured Escherichia coli cells containing a cloned hrpN
gene. As a negative control a cell-free empty vector
preparation (CFVP) was similarly prepared from E. coli
cells that contain the vector without the hrpN insert. Plants
sprayed with INA were used as a positive control for SAR
in most experiments. Infiltration of harpin into the older
lower leaves of Arabidopsis caused accumulation of PR-1
transcripts in the untreated apices and the youngest leaves
(Figure 1), showing systemic induction of the gene.
Expression of PR-7 occurred in a time-dependent manner,
first being detected after 2days, and increasing through
6days after harpin application. Harpin-induced PR-1
mRNA accumulation exceeded that mediated by treatment
with 0.3mm INA. No PR-7induction was observed in plants
treated with the empty vector control extract (CFVP)
(Figure 1).
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Figure 1. Harpin-induced systemic expression of the PR-1 gene in
Arabidopsis, ecotype Ws-O.

Three leaves of the plant were infiltrated with water (W), INA (I), empty
vector preparation CFVP (V) and harpin-containing preparation CFEP.
RNA was extracted from the apices and the three youngest leaves, and
analyzed by Northern blot hybridization with a PR-7 cDNA probe.
Loading was monitored by staining the gel with ethidium bromide (EtBr).
Days between treatment and RNA extraction are indicated.

Gene induction in SAR-compromised genotypes

To test whether harpin-induced gene expression involves
the SAR pathway, we assayed for PR-7 and PR-2 mRNA
accumulation in salicylate hydroxylase (NahG)-expressing
plants and in the nim7-7 mutant (Figure 2). Both genotypes
are unable to express SAR, which depends upon SA
accumulation and signaling through the NIM1 pathway
(Delaney etal., 1994; Delaney etal., 1995; Gaffney etal.,
1993). Harpin and control solutions were sprayed onto
wild-type, NahG and nim1-1 plants; leaf tissues were
collected for RNA analysis 1, 3 and 5days after treatment.
In wild-type (Col-O and Ws-O) plants, both PR-7 and PR-2
showed strong induction by harpin at days 3-5, while
NahG and nim1-1 plants showed no accumulation of these
mRNAs at any timepoint assayed. Plants treated with the
positive control, INA, showed induction of PR-7 and PR-2
in wild-type and NahG plants. INA is capable of inducing
resistance in salicylate hydroxylase plants because it is not
a substrate for this enzyme (Delaney etal., 1994; Vernooij
etal., 1995). These data indicate that harpin-induced PR-1
and PR-2 expression requires a functional SAR signal
transduction pathway.

Harpin-induced resistance to Peronospora parasitica

To determine if harpin can induce disease resistance in
Arabidopsis, the growth of the oomycete pathogen P.
parasitica in harpin-treated plants was determined. Three
lower leaves of 20-day-old wild-type Col-O and Ws-O
seedlings were infiltrated with CFEP or CFVP. Five days
later, the plants were inoculated with P. parasitica strains
Noco2 and Emwa, which are virulent on Arabidopsis
ecotypes Col-O and Ws-0, respectively. The development
of infection was observed macroscopically and by staining
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Figure 2. Requirements of SA accumulation and NIM1 for harpin-induced
SAR gene expression.

Plants were sprayed with water (W), INA (I), CFVP (V) or CFEP (E). After
the RNA was isolated from the three youngest leaves, PR-1 and PR-2
RNA accumulation was analyzed by Northern blot hybridization with
cDNA probes.

leaves with lactophenol-trypan blue and microscopic
examination. The data in Figure 3 clearly show the
effectiveness of harpin-induced resistance against the
oomycete pathogen. Control plants treated with CFVP or
water were obviously infected and supported growth of
large numbers of conidiospores. In contrast, plants treated
with harpin were less infected, as indicated by few
conidiospores growing on the leaves. Thus, the severity
of infection, based on the numbers of conidiospores per
leaf, was remarkably reduced by treatment with harpin,
suggesting that harpin induces systemic resistance to the
oomycete in two ecotypes of Arabidopsis.

Resistance also developed following spray application of
harpin to leaves of 14-day-old wild-type Arabidopsis
seedlings (Figure 4). Substantial pathogen growth was
observed in leaves of plants treated with CFVP. In contrast,
only a few conidiophores grew on the leaf surfaces and a
few oospores and hyphae were produced within the leaf
tissues of harpin-treated plants.

Harpin-induced resistance to Pseudomonas syringae pv.
tomato DC3000

We then assayed for specificity of harpin-induced resis-
tance in Arabidopsis. We found that harpin elicited
resistance against P. syringae pv. tomato DC3000 (Figure
5a,b). Bacterial growth was reduced in the untreated upper
leaves after infiltration of harpin into the lower three leaves
of the plant. At each timepoint, the bacterial population in
harpin-treated plants was less than that in control plants.
Thus, disease resistance elicited by harpin occurs systemi-
cally in leaves not directly treated with harpin. When
harpin was applied by spraying, bacterial multiplication
was also reduced. The bacterial population increased in
4 days approximately 5000-fold and 3000-fold in CFVP-
treated plants of ecotypes Col-O and Ws-O, respectively,
while in harpin-treated plants an approximate 400-fold
increase was observed in the two ecotypes during the
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Figure 3. The effect of several elicitors on infection by P. parasitica in
wild-type Arabidopsis.

Three lower leaves of the plants were infiltrated with the indicated
elicitor or control solutions. After 5days, plants were inoculated with the
oomycete pathogen. Five days after inoculation, upper leaves were
detached and washed in distilled water to obtain a spore suspension
which was counted using a haemocytometer. The numbers of
conidiospores per leaf are shown as the average of five samples with SD.

same period (Figure 5a,b). This reduction is similar to that
caused by synthetic inducers of SAR (Uknes etal., 1992).

Harpin-induced disease resistance requires SA
accumulation and NIM1 function

Unlike wild-type plants, harpin treatment of NahG and
nim1-1 plants failed to induce resistance to P. parasitica
(Figure 4) and P. syringae pv. tomato DC3000 (Figure 5¢,d).
These results are consistent with the failure of harpin to
induce SAR gene expression in these SAR-defective
genotypes. Because harpin fails to induce resistance in
these SAR-disabled genotypes, it is not likely to be directly
antimicrobial, but rather to act through induction of an

endogenous plant defence pathway requiring SA and
defined by the NIM1 gene. Harpin, SA and INA produced
similar levels of resistance to P. parasitica and P. syringae
pv. tomato DC3000 (Figures 3 and 5). All three compounds
also failed to induce resistance in nim7 mutants, high-
lighting the central role of the NIM71 gene in defence
signaling.

Harpin induces resistance in jasmonate and ethylene
response mutants

To determine whether harpin-induced resistance requires
signaling by jasmonate or ethylene, we tested the
response to harpin in the methyl jasmonate insensitive
mutant jar1-1 (Staswick etal., 1992), ethylene insensitive
mutants etr1-1 and etr1-3 (formerly ein1-1) (Guzman and
Ecker, 1990; Schaller and Bleecker, 1995), and isogenic
wild-type Col-O plants. Plants were sprayed with harpin,
subsequently inoculated with P. parasitica, and disease
development was monitored. Macroscopic and micro-
scopic observations showed that a similar level of
resistance developed in wild-type and three mutant lines
following application of harpin (Figure 6). All CFVP-treated
plants supported vigorous growth of P. parasitica within
leaf tissues. In contrast, harpin-treated plants were nearly
free of infection. Seven days after inoculation, 70-90% of
the CFVP-treated mutant and wild-type plants were
infected, compared to 5-10% of harpin-treated mutant
and wild-type plants infected. Thus, jasmonate and
ethylene signaling systems do not appear to affect the
function of harpin in inducing resistance to the oomycete
pathogen.

Discussion

The aim of this study was to determine the mode of action
through which the HrpN protein (harpin) of E. amylovora
elicits disease resistance in Arabidopsis. We examined
wild-type Arabidopsis (Col-O and Ws-0), two SAR defec-
tive genotypes (NahG and nim7-1), a jasmonate-insensi-
tive mutant (jar7-1), and two ethylene-insensitive mutants
(etr1-1 and etr1-3) for their responsiveness to harpin and
established chemical elicitors of SAR. Both phenotypic and
molecular data support our conclusion that harpin-
induced resistance in Arabidopsis functions through
activation of SAR that requires accumulation of SA and
regulation by the NIM1/NPR1 gene product. The demon-
stration of alternative resistance signaling pathways
mediated by jasmonic acid and ethylene indicates the
possibility for multiple actions of an inducer in triggering
resistance signal transduction. Because methyl jasmonate
and ethylene-insensitive mutants developed resistance
following the application of harpin, the involvement of
jasmonic acid and ethylene signaling mechanisms in the

© Blackwell Science Ltd, The Plant Journal, (1999), 20, 207-215



Figure4. Growth of P. parasitica on and in
the leaves of wild-type and SAR-disabled
lines of Arabidopsis.

Harpin (CFEP) or control solution (CFVP)
was sprayed on the plants. Five days later
plants were inoculated with P. parasitica
and photographed 5days after inoculation.
Inserts show the in planta growth of the
oomycete. To observe the in planta growth
of the pathogen, the first true leaf (Col-O
treated with CFEP) or the upper leaves were
stained with trypan blue 5days post-
inoculation and photographed under the
microscope. Leaf vascular tissues are
stained pale blue; oomycete hyphae and
oospores stain more darkly. Bar=800pum.

Figure 6. Harpin-induced resistance to P.
parasitica in Arabidopsis mutants impaired
in sensitivity to methyl jasmonate and
ethylene.

Methyl jasmonate insensitive mutant (jar7-
1), ethylene insensitive mutants (etr7-7 and
etr1-3), and wild-type plants were treated
with CFVP or CFEP, challenged with P.
parasitica and stained to visualize oomycete
structures.
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Figure 5. Populations of P. syringae pv. tomato DC3000 in wild-type and
SAR-impaired genotypes of Arabidopsis.

Plants were treated by spraying whole plants with CFEP, INA or CFVP,
and inoculated by spraying bacterial suspension 5days after the
application of elicitors. Bacteria were recovered from leaf tissues on the
indicated day by homogenizing surface-sterilized leaves. For every
timepoint five samples were included; data shown are mean colony
forming units (cfu) per mg of leaf tissues as determined by plate counts.

action of harpin for pathogen resistance seems unlikely,
and further supports the conclusion that harpin acts
through the SAR pathway.

An important understanding from this study is that
harpin induces resistance by a signaling process that
begins upstream of SA, leads to activation of PR genes,
and is regulated by NIM1 gene product. This distinguishes
harpin from other elicitors. First, SA dependence and PR
gene activation distinguishes harpin-induced resistance
from ISR, which is neither dependent on SA nor associated
with PR gene expression (Pieterse etal., 1996; Pieterse
etal., 1998). Second, SA-dependence also distinguishes
harpin from INA and BTH that act downstream of SA
(Lawton etal., 1996; Vernooij etal., 1995). Finally, harpin-
induced resistance to P. parasitica isolate Noco2 is
different from the constitutive, NPR7-independent and
defensin gene (PDF1.2) expression-associated resistance
to the same isolate in Arabidopsis mutant cpr5 that
expresses both NPR1-dependent and NPR7-independent
resistance (Bowling etal, 1994; Bowling etal, 1997).
Otherwise, because harpin induces resistance to bacteria,
it may also activate antibacterial genes that have not been
defined and are suggested to require regulation by NPR1/
NIM1 (Bowling etal., 1997; Clarke etal., 1998).

This study presents a preliminary understanding of a
harpin-triggered signal transduction process. The SA-

dependent and NIM1/NPR1-mediated signal transduction
pathway may be only one signaling pathway used by
harpin for resistance induction, although we were able to
rule out dependence on the JAR1 and ETR1 signaling
pathways. In addition to resistance against pathogens (Qiu
etal., 1997; Wei and Beer, 1996; Wei et al., 1998; this work),
several other beneficial effects occur in plants treated with
harpin, including the enhancement of plant growth (H.
Dong and S.V. Beer, unpublished results; Qiu etal., 1997;
Wei etal., 1998) and the repellency of insects (Zitter and
Beer, 1998). The mechanisms that underlie these diverse
beneficial effects of harpin are not known. Nevertheless,
previous data suggest the involvement of reactive oxygen
intermediates (for its implication see Alvarez etal., 1998;
Dangl etal., 1996; Jabs etal., 1996) and programmed cell
death, calcium ion channels and protein kinase cascades in
interactions of Hrp proteins with plants (Adam etal., 1997;
Baker etal., 1993; Dong etal., 1999; He etal., 1994; Popham
etal., 1995; Wei etal., 1992). These may together account
for the pleiotropic effects of harpins in plants. Further
explorations of the relationships between signaling path-
ways that affect the several beneficial effects of harpin are
underway.

Experimental procedures

Plant growth and pathogen maintenance

Arabidopsis  thaliana ecotypes Columbia (Col-O) and
Wassilewskija (Ws-O) were used in all experiments. NahG
transgenics (Delaney etal., 1995; Gaffney etal., 1993) and nim1-
1 mutant plants (Delaney etal., 1995) were previously produced
from the Col-O and Ws-O ecotypes. Methyl jasmonate response
mutants jar7-1 and ethylene response mutants etr1-1 and etr1-3
were derived from Col-O (Guzman and Ecker, 1990; Schaller and
Bleecker, 1995; Staswick etal., 1992), and their seeds (accession
numbers CS8072, CS237 and CS3037) were provided by the
Arabidopsis Biological Resource Center at the Ohio State
University (Columbus, OH, USA). All the genotypes were grown
in greenhouse soil mix at 21°C and 14h light per day for
vegetative growth, at 18°C and 12h day length for infection by
Peronospora parasitica, and at 24°C and 14h day length for
infection by Pseudomonas syringae pv. tomato DC3000 (Koncz
etal., 1992).

Peronospora parasitica strain Emwa and Noco2 were main-
tained by weekly culture on Arabidopsis ecotypes Ws-O and Col-
0. Conidial suspensions were made from infected leaves and
inoculated as described previously (Uknes etal, 1992).
Pseudomonas syringae pv. tomato DC3000 was cultured on L-
Agar medium (Gerhardt etal., 1981) prior to inoculation of plants.

Preparation of elicitors and treatment of plants

INA (2,6-dichloroisonicotinic acid) was kindly provided as 25%
wettable powder by Dr Kay Lawton (Novartis Crop Protection,
Inc., Research Triangle Park, North Carolina, USA). INA was used
at 0.3mmMm in water except when otherwise noted. Salicylic acid
(SA) was used at 0.3 or 0.5 mm in water as described. Harpin was
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prepared as a cell-free elicitor preparation (CFEP) from E. coli
strain DH5-a. hErbo_ring ‘plasmid pCPP2139, which contains the
hrpN of E. amylovora (Wei etal., 1992) in the expression vector
pCPP50 (Bauer et al., 1997). The cell-free empty vector preparation
(CFVP) was similarly made, except that the DH5-a: strain contained
only the vector, pCPP50. The HR-eliciting activity of CFEP and
CFVP was determined by infiltrating opposite leaf panels of
Xanthi NN tobacco leaves with dilutions of both preparations. The
undiluted CFVP did not elicit HR, and was used as a negative
control for harpin-containing CFEP. The concentration of harpin in
CFEP was determined by HPLC by Eden Bioscience Corporation
(Bothell, WA, USA). Inducing compounds, elicitor preparations
and controls were applied by spraying the plants to run-off with
an atomizer (Devilbiss no. 15) 14 days after sowing except when
otherwise noted. Five days later, plants were inoculated using an
atomizer with a P. parasitica conidial suspension containing
5% 10* conidiospores per ml, or with a suspension of P. syringae
pv. tomato DC3000 at 5 X 108 cfu per ml of water. Ecotype Col-O
and genotypes derived from it (NahG, jar1-1, etr1-1 and etr1-3)
were inoculated with the virulent P. parasitica isolate Noco2; Ws-
O and nim1 were inoculated with the virulent isolate Emwa.
Inoculated plants were maintained under the conditions de-
scribed above for 5days before infection was assessed. Each
induction-inoculation combination included six pots, and each
pot contained 15-25 seedlings.

Evaluation of infection

Infection by P. parasitica was judged based on the presence of
conidiophores on the leaf surfaces (Koncz etal., 1992).
Conidiospores on leaves were estimated by counting spores in
leaf washes using a haemocytometer under the microscope and
expressed as conidiospores per leaf. Oomycete growth in leaves
was examined using an Olympus BX60 microscope following
staining with lactophenol trypan blue and clearing with chloral
hydrate (Uknes etal., 1992). To monitor in planta bacterial
multiplication, leaves of inoculated plants were detached at
designated times, sterilized with 70% ethanol and homogenized
in sterile water; bacteria were recovered from the resulting
homogenates by culturing on L-agar medium (Gerhardt etal.,
1981).

RNA blot analyses

RNA was prepared from experimental and control plants using
the RNeasy Plant Mini Kit (Qiagen, Chatsworth, CA, USA), size-
fractionated by agarose gel electrophoresis (Clark, 1997), and
transferred to Immobilo-N transfer membrane (Millipore).
Replicate blots were hybridized to *?P[dCTP]-labeled
Arabidopsis SAR gene cDNA probes PR-71 and PR-2 as described
previously (Church and Gilbert, 1984). Loadings were standar-
dized by calculating the total RNA (4ug per lane) of samples and
verified by ethidium bromide (EtBr) staining of gels.
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