Botany 295: Molecular Plant-Microbe Interactions

 

Fall 2006         Jeanne Harris and Terry Delaney             3 credits

Course will meet Wednesday and Friday.

 

(#) Date          Topic

(01) Aug. 30   Overview of the course, Introduction to Pathogenesis/Symbiosis

Rhizobium-legume symbiosis

(02) Sept. 1     Lecture:  Introduction to the Rhizobium-legume symbiosis.

á      Review: Long, S. R. (1996).  Rhizobium Symbiosis: Nod factors in perspective.  The Plant Cell 8: 1885-1989.

(03) Sept. 6     Discussion:  Cloning of the first Rhizobium nod genes.

á      Discussion paper: Meade, H. M., Long, S. R., Ruvkun, G. B., Brown, S. E., Ausubel, F. M.  (1982).  Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis.  Journal of Bacteriology 149(1): 114-122.

á      Discussion paper:  Long, S. R., Buikema, W. J. and Ausubel, F. M. (1982).  Cloning of Rhizobium meliloti nodulation genes by direct complementation of Nod- mutants. Nature 298: 485-488.

(04) Sept. 8     Discussion:  The bacterial bacA gene is required for successful infection of a host by both a plant symbiont and an animal pathogen.

á      Review:  Oke, V. and Long, S. R. (1999).  Bacteroid formation in the Rhizobium-legume symbiosis.  Current Opinion in Microbiology 2: 641-646.

á      Discussion paper:  Glazebrook, J., Ichige, A., Walker, G. C. (1993). A Rhizobium meliloti homolog of the Escherichia coli peptide-antibiotic transport protein SbmA is essential for bacteroid development. Genes and Development 7: 1485-1497.

á      Discussion paper:  LeVier et al. (2000).  Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival.  Science  (Mar. 31) 287(5462): 2492-2493

(05) Sept. 13   Discussion:  Early host responses to Nod factor.

á      Review:  Cardenas, L., Holdaway-Clarke, T. L., S‡nchez, F., Quinto, C., Feij—, J A., Kunkel, J. G. and Hepler, P. K. (2000).  Ion changes in legume root hairs responding to Nod factors.  Plant Physiology 123: 443-451.

á      Discussion paper:  Ehrhardt, D. W., Wais, R. W. and Long, S. R. (1996). Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85: 673-681.

(06) Sept. 15   Discussion: A Nod factor signal transduction pathway in the plant host.

á      Review:  Oldroyd, G. (2001).  Dissecting symbiosis: Developments in Nod factor signal transduction.  Annals of Botany 87:709-718.

á      Discussion paper:  Catoira, et al (2000). Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway. The Plant Cell 12: 1647-1665

á      Discussion paper:  Wais et al (2000). Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula.  PNAS 97(24): 13407-13412.

(07) Sept. 20   Discussion: A Ca2+/calmodulin-dependent protein kinase in Nod factor signal transduction.

á      Review:  Cook, D., (2004). Unraveling the mystery of Nod factor signaling by a genomic approach in Medicago truncatula.  PNAS 101(13):4339-40.

á      Discussion paper: Levy, J., Bres, C., Geurts, R., Chalhoub, B., Kulikova, O., Duc, G., Journet, EP., Ane, J.M., Lauber, E., Bisseling, T., Denarie J., Rosenberg C., DebellŽ F. (2004). A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303(5662):1361-4.

á      Discussion paper: Mitra, R., Gleason, C. A., Edwards, A., Hadfield, J., Downie, J.A., Oldroyd, G.E., Long, S. (2004). A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning. PNAS 101(13):4701-5.

Mycorrhizae

(08) Sept. 22   Introduction to Mycorrhizae.

á      Review:  M. J. Harrison (1997). The arbuscular mycorrhizal symbiosis: an underground association.  Trends in Plant Science 2(2): 54-60.

(09) Sept. 27   Discussion: Rescue of a maize root mutant by mycorrhizae.

á      Discussion paper: Paszkowski, U. and Boller, T. (2002). The growth defect of lrt1, a maize mutant lacking lateral roots, can be complemented by symbiotic fungi or high phosphate nutrition. Planta 214(4): 584-590.

(10) Sept. 29   Discussion: Identification and characterization of an exudate from plant roots that stimulates hyphal branching in arbuscular mycorrhizae.

á      Review: A. Brachmann and M. Parniske. (2006). The most widespread symbiosis on earth. PLoS Biology 4(7): e239.

á      Discussion paper: Akiyama, K. et al. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi.  Nature 435: 5467-5472.

Plant induced-resistance against pathogens

(11) Oct. 4      Introduction to systemic acquired resistance (SAR).

á      Review: Ryals, J., Uknes, S., and Ward, E. (1994). Systemic acquired resistance. Plant Physiol 104, 1109-1112.

(12) Oct. 6      Discussion: Role of Salicylic Acid in SAR.

á      Review: Delaney, T.P. (2005). Salicylic Acid. In Plant Hormones: Biosynthesis, Signal Transduction, Action!, Davies, P.J. (ed), pp. 635-653.

á      Discussion paper: Gaffney, T., et al. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261, 754-756.

á      Discussion paper: Delaney, T.P., et al. (1994). A central role of salicylic acid in plant disease resistance. Science 266, 1247-1250.

(13) Oct. 11    Discussion: The long distance signal in SAR.

á      Review: Ryals, J., et al. (1995). Signal transduction in systemic acquired resistance. Proc Natl Acad Sci USA 92, 4202-4205.

á      Discussion paper: Rasmussen, J.B., Hammerschmidt, R., and Zook, M.N. (1991). Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv syringae. Plant Physiol 97, 1342-1347.

á      Discussion paper: Vernooij, B. et al. (1994). Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6, 959-965.

(14) Oct. 13    Discussion: Disease lesion mimic mutants.

á      Review: Ryals, J., et al. (1996). Systemic Acquired Resistance. Plant Cell 8, 1809-1819.

á      Discussion paper: Dietrich, R. A., et al. (1994). Arabidopsis mutants simulating disease response. Cell 77, 565-577..

(15) Oct. 18    Discussion: Genetic Analysis of the SAR pathway.

á      Review: see Ryals, J., et al. (1996), above.

á      Discussion paper: Delaney, T. P., Friedrich, L., and Ryals, J. A. (1995). Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci USA 92, 6602-6606.

á      Discussion paper: Cao, H., et al. (1994). Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6, 1583-1592.

(16) Oct. 20    Discussion: SAR-Independent Resistance – SON1.

á      Discussion paper: Kim, H. S., and Delaney, T. P. (2002). Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. Plant Cell 14, 1469-1482.

(17) Oct. 25    Discussion: SAR-Indep. Resistance–Induced Systemic Resistance.

á      Discussion paper: Van Wees, S. C., et al. (1997). Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant Microbe Interact 10, 716-724.

á      Discussion paper: Pieterse, C. M. J., et al. (1998). A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10, 1571-1580.

Fluorescent Pseudomonads: biocontrol

(18) Oct. 27    Discussion: Biocontrol by beneficial pseudomonads via a variety of protective mechanisms.

á      Review:  Haas, D. and DŽfago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology  3(4): 307-319.

á      Discussion paper:  Bolwerk, A. et al. (2003).  Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. Radicislycopersici. MPMI 16(11): 983-993.

Type III secretion

(19) Nov. 1    Discussion:  Genetics of  type III secretion in P. syringae

á      Review: Gal‡n, J. and Collmer, A. (1999). Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284: 1322-1328.

á      Discussion paper: Roine, E. et al. (1997). Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. PNAS 97: 3459-3464.

(20) Nov. 3    Discussion:  Bacterial pathogens of plants and animals recognize the same type III secretion signals.

á      Review: Anderson, D. M. and Schneewind, O. (1999). Type III machines of Gram-negative pathogens: injecting virulence factors into host cells and more. Current Opinion in Microbiology 2: 18-24.

á      Discussion paper: Anderson, D. M., Fouts, D. E. Collmer, A. and Schneewind, O. (1999). Reciprocal secretion of proteins by the bacterial type III machines of plant and animal pathogens suggests universal recognition of mRNA targeting signals. PNAS 96(22): 12839-12843.

The hypersensitive response  (HR) amd breeding for resistance

(21) Nov. 8    Introduction to the HR

á      Review: paper To be announced (TBA)

á      Introduction to resistance breeding

á      Review: paper (case study) Barley powdery mildew resistance? Segue into mlo resistance – ties into HR and lecture 14

(22) Nov. 10 Discussion:  Genetics of gene for gene resistance -TBA

á      Review: paper

á      Discussion paper:

(23) Nov. 15 Discussion:  Cloning the Cf-9 resistance gene -TBA

á      Review: paper

á      Discussion paper:

(24) Nov. 17 Discussion:  Genetics of gene for gene resistance -TBA

á      Review: paper

á      Discussion paper:

(25) Nov. 29 Student Presentations -TBA

á      Review: paper

á      Discussion paper:

(26) Dec. 1      Student Presentations -TBA

á      Review: paper

á      Discussion paper:

(27) Dec. 6      Student Presentations -TBA

á      Review: paper

á Discussion paper: