Assessing the Fit of Site-Occupancy Models

Darryl I. MACKENZIE and Larissa L. BAILEY

Few species are likely to be so evident that they will always be detected at a site when
present. Recently a model has been developed that enables estimation of the proportion of
area occupied, when the target species is not detected with certainty. Here we apply this
modeling approach to data collected on terrestrial salamanders in the Plethodon glutinosus
complex in the Great Smoky Mountains National Park, USA, and wish to address the ques-
tion “how accurately does the fitted model represent the data?”” The goodness-of-fit of the
model needs to be assessed in order to make accurate inferences. This article presents a
method where a simple Pearson chi-square statistic is calculated and a parametric bootstrap
procedure is used to determine whether the observed statistic is unusually large. We found
evidence that the most global model considered provides a poor fit to the data, hence es-
timated an overdispersion factor to adjust model selection procedures and inflate standard
errors. Two hypothetical datasets with known assumption violations are also analyzed, illus-
trating that the method may be used to guide researchers to making appropriate inferences.
The results of a simulation study are presented to provide a broader view of the methods
properties.

Key Words: Goodness-of-fit; Model fit; Patch occupancy; Plethodon glutinosus; Plethodon
oconluftee.

1. INTRODUCTION

The probability a site is occupied by a target species may be of interest in many ecolog-
ical settings. In a wildlife monitoring context, site occupancy may be used as a coarse surro-
gate for actual abundance as the methods required to collect simple presence/absence-type
data are less costly in terms of time and effort than methods used for abundance estimation
(MacKenzie et al. 2002), especially when multiple species are to be monitored. For exam-
ple, the U.S. Geological Survey’s Amphibian Research and Monitoring Initiative (ARMI;
http://armi.usgs.gov) use the “proportion of area occupied” by a species as their preferred

metric for mid-level monitoring efforts, reserving the use of mark-recapture techniques for
key index sites. Meta-population studies are also interested in site- (or patch-) occupancy
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probabilities as they may be used as a state variable in various metapopulation models (e.g.,
Levins 1969, 1970; Lande 1987, 1988; Hanski 1992, 1994, 1997). “Incidence functions”
(e.g., see Diamond 1975; Hanski 1992) are used to express occupancy as a function of
site characteristics, such as patch size, which under certain strong assumptions have been
used to estimate population dynamic parameters such as colonization and local-extinction
probabilities (Hanski 1992, 1994, 1997; Moilanen 1999). A third setting is habitat model-
ing, where the intent is to relate species presence/absence to characteristics of the sampling
locations. Similarly, contrasts between characteristics of occupied/used sites and unoccu-
pied/unused sites can be made using logistic regression, for example, and are sometimes
referred to as “resource selection probability functions” (Manly et al. 2002). The species
distribution may then be inferred from available habitat information (e.g., Boyce and Mc-
Donald 1999). However, few species are likely to be so conspicuous that they will always
be detected when present at a site. Failing to account for imperfect detectability will lead to
underestimates of the true occupancy probability, with the degree of bias in a naive estimate
being dependent upon the probability the species is detected at least once. Furthermore, for
many species detection probabilities are likely to vary with local environmental conditions,
thus a comparison of naive occupancy probabilities at two (or more) points in time or space
is valid only if detection probabilities are exactly equal or explicitly accounted for.

Recently, MacKenzie et al. (2002) developed a model that estimates the probability
a site is occupied by a species, despite imperfect detection when the species is present.
Their model offers a more flexible framework than previous efforts (Geissler and Fuller
1987; Azuma, Baldwin, and Noon 1990; Bayley and Peterson 2001), enabling relation-
ships between occupancy/detection probabilities and potential model covariates, such as
site characteristics and environmental conditions, to be investigated directly. Missing ob-
servations (occasions when a site was not surveyed) can also be accommodated by their
model. A requirement, however, is that data be collected from a number of sites which are
surveyed multiple times to detect the target species. Some investigators may view this as an
impediment to their approach, but it is impossible to obtain an unbiased estimate of site oc-
cupancy when sites are only visited once without auxiliary information about detectability
[e.g., from a previous or independent study, as in Bayley and Peterson (2001), or by making
potentially restrictive assumptions].

Bailey, Simons, and Pollock (2004) use the modeling approach developed by
MacKenzie et al. (2002) to estimate occupancy and detection probabilities for a suite of ter-
restrial salamanders in Great Smoky Mountains National Park (GSMNP), USA. The effects
of both habitat (e.g., disturbance, vegetation) and seasonal covariates were explored; how-
ever, inferences are somewhat tenuous because no method was available to assess model
fit. Here we reexamine data collected in GSMNP on the terrestrial salamander complex
Plethodon glutinosus (includes the species Plethodon glutinosus and Plethodon oconluftee)
with the intent of addressing the question “how accurately does the fitted model represent
the data?”

In 1999, count data were collected for these species at 88 sites in the Mt. LeConte USGS
Quadrangle of the GSMNP (Hyde and Simons 2001; Bailey et al. 2004). Sites were located
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Table 1. Detection (1) and Nondetection (0) Data for Members of the Plethodon glutinosus Complex
in Great Smoky Mountains National Park at Five of the Sites, Along with Measured Covari-
ates (disturbance prior to Park formation, D; elevation > 841m, E; predominantly deciduous
vegetation, V; and stream < 50m, S).

Detected in survey Covariates
Site 1 2 3 4 5 D E V S
1 1 0 1 0 O 11 1 1
2 0o 1 0 0 O 1 1 1 0
3 0 0 0 0 O 1 0 1 1
4 1 1 1 0 1 1 0 0 1
5 o o 1 1 o0 1 0 0 O

adjacent to trails and spaced approximately 250 m apart, beginning at a random distance
(>250m) from each trail head. At each site salamanders were detected using both a natural
cover transect (50m X 3m) and a coverboard transect (consisting of 5 coverboard stations
spaced at 10m intervals; see Hyde and Simons (2001) for site and sampling details. Each site
was visited on four or five occasions between mid-April and late-June. For this analysis, we
combined detection/nondetection data from both transects to investigate the effects of four
site-specific characteristics on occupancy and detection probabilities. Dummy variables
were used to indicate whether (1) a site had been disturbed by a settlement or logging prior
to the Parks formation in 1934 (previously undisturbed = 0; D); (2) had an elevation of
greater than 841m (<841m = 0; E); (3) was predominately deciduous vegetation (mixed
pine = 0;V); and (4) proximity to a stream (<50m = 1, otherwise 0;S). For the most
global model considered here, both occupancy and detection probabilities were a function
of these four covariates (with no interactions between factors), plus detection probability
was also allowed to vary with survey occasion. A portion of the dataset is presented in Table
1, and the full dataset may be obtained by contacting the first author.

All modeling exercises should demonstrate that a fitted model adequately describes the
observed data, that is, a model should to be assessed for lack-of-fit (McCullagh and Nelder
1989, p. 8; Lebreton, Burnham, Clobert, and Anderson 1992). Only by examining the
adequacies of the model fit can researchers demonstrate that the model(s) being considered
for the data are realistic, and capture the important features of the system under study.
Substantial lack-of-fit in a model(s) may lead to inaccurate inferences, either in terms of
bias (point estimates may be too large or too small) or in terms of precision (reported
standard errors are too large/small). Clearly, in order to place some degree of faith in the
inferences resulting from an analysis of real data, it is critical that the model fit be assessed.

An increasingly popular approach for analyzing ecological data is to fit a suite or
candidate set of models to the data, and use a model selection technique such as Akaike’s
information criterion (AIC), or similar measures, for choosing the “best” model(s). Given the
rising popularity of using such techniques in the analysis of ecological data, it is important
to realize that they assume that the candidate set contains at least one model that fits the
data adequately (Burnham and Anderson 1998, p. 73), and are not a substitute for assessing
model fit. The selection of a “best” model(s) does not guarantee the selection of a “good”
model.
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Motivated by the practical terrestrial salamander system in GSMNP, we develop a
method to assess the fit of the MacKenzie et al. (2002) model to observed data. Importantly,
the method is flexible enough to incorporate potential model covariates that may vary across
sites. The overdispersion parameter ¢ can also be estimated so that in situations where even
the most global model is found to be a poor fit of the data, the quasi-likelihood version of
AIC (QAIC) may be used for model selection (Burnham and Anderson 1998, p. 53) and
parameter standard errors may be inflated (McCullagh and Nelder 1989, p. 125).

We begin by briefly reviewing the site-occupancy model proposed by MacKenzie et al.
(2002), then present our method that can be used to assess the fit of the model to observed
data. These techniques are then used to attempt accurate modeling of occupancy patterns for
the terrestrial salamander data. To further demonstrate the utility of our approach to other
biological situations, we assess two hypothetical datasets with known assumption violations.
Simulation results are presented to illustrate how the test performs more generally under
the violation of certain model assumptions.

2. METHODS

2.1 SiTE-OccuraNcY MODEL

MacKenzie et al. (2002) envisage a sampling scheme where N sites are each surveyed
T times to establish the presence/absence of the species. Sites are closed to changes in the
occupancy state for the duration of the surveying: no new sites become occupied nor are any
vacated. On each sampling occasion, the investigators used appropriate methods to detect
the species, and there is a chance that the species may go undetected even when present. The
resulting sequence of detections/nondetections for site ¢ can be summarized as a detection
history (X;), and probabilistic arguments may be used to describe the observed stochastic
process.

For example, consider the portion of the detection data for species of the Plethodon
glutinosus complex at five of the sites in GSMNP presented in Table 1. The first site has
the history “10100” denoting that the complex was detected at the site during the first and
third surveys and not detected otherwise. The probability of observing this outcome may
be described as

Pr(X; = 10100) = ¥1p1,1(1 = p12)p13(1 —p1,4)(1 — p15), 2.1)

where 1), is the probability site 1 is occupied by the complex, and p; ; is probability of
detecting the complex, given presence, in the jth survey of site 1. The history at the third
site “00000” would therefore denote that the complex was never detected during the five
surveys, which may arise for one of two possible reasons. Either the complex was present
but went undetected, or the complex was genuinely absent from the site. The probability of
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obtaining this history for site 3 would be

5
Pr (X3 = 00000) = 5 [ ] (1 = ps;) + (1 —s). (2.2)
j=1

The probability of observing each of the IV detection histories can be determined in such a

manner, and assuming the histories are independent, the model likelihood is then

N
L (X1, Xz,..., Xn [ 9,p) = [[ Pr(Xa). (2.3)
i=1

The model likelihood can then be maximized with respect to the parameters, either analyt-
ically or numerically, to obtain maximum likelihood estimates of the model parameters.

Generally, site-specific occupancy and detection probabilities cannot be estimated as the
model would be overparameterized: containing more parameters than could be estimated,
hence a basic model might assume that all probabilities are constant across sites. However,
using the logistic model

o _R(YiB) o
1 + exp(Y,3)
where 6; is the probability of interest for site ¢, Y; is the vector of covariate values for
site ¢ and 3 is the vector of logistic coefficients to be estimated) MacKenzie et al. (2002)
suggested site-specific occupancy and detection probabilities may be expressed as a func-
tion of measured site-specific covariates. Detection probabilities can also be modeled as a
function of covariates that may change with each survey, such as weather conditions.

Missing values (occasions when a site was not surveyed) can be easily accommodated
by their model. If an observation is missing for site ¢ at time j, the corresponding detection
probability is set to zero. In effect this causes the missing observation to have no contribution
to the model likelihood.

In many ways the above occupancy model is analogous to a mark-recapture model with
sites being comparable to individuals; however, there are also some important differences.
The most notable is that, in the current context, the “all zero” history is observable (sites
at which the species was never detected), while it is not in mark-recapture. This has po-
tentially important ramifications if relationships between probabilities and covariates are
being modeled. The relationships (and hence estimates of effects) are conditional on the
individual being captured at least once in mark-recapture, but are unconditional for site-
occupancy studies. Second, in mark-recapture the methodology has not yet been developed
enabling capture/detection probabilities to be functions of an individual covariate that varies
in time (e.g., weight) as the covariate value is unknown when the individual is not recap-
tured. Whereas in the site-occupancy model, a site-specific, time-varying covariate—for
example, air temperature—can be collected regardless of whether the species was detected

at the site during that survey. Finally, the concept of missing values does not generally hold
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in mark-recapture. The closest analogy would be that no effort has been made to recapture
specific individuals at certain times during the study. Such a situation seems unlikely to
occur in practice with the exception of a removal experiment where once an individual has

been captured for the first time it is removed from the population.

2.2 ASSESSING MODEL FIT

One classical measure of model fit is to use a Pearson chi-square statistic

n

2 (0; — E;)?
X? = ; P (2.5)
where O; and F; are the observed and expected numbers of observations for class i, and n
is the total number of classes defined by the current model.

X? would then be compared to the chi-square distribution with appropriate degrees
of freedom to determine whether there was any evidence of poor fit. Traditionally in log-
linear modeling, and similarly in mark-recapture, individuals would be partitioned into
homogeneous cohorts according to measured covariates or factors, for example, gender or
age. The “significance” of a factor could be determined by the change in the value of X2, or
alternatively using the change in deviance, due to collapsing the cohorts and model across
the factor of interest.

Therefore, the widespread opinion among most mark-recapture experts is when testing
for model fit, all individuals that have a unique combination of covariate values must be
treated as a separate cohort. As a result, when a continuous covariate is used in a model that
varies between individuals (such as weight) a large number of cohorts may be required, to
the extreme point where each cohort contains only one individual. In such situations, the
above approach is no longer appropriate because data becomes too sparse. In the following,
we show that solely for the purpose of assessing model fit, all individuals can be treated as
a single cohort and the Pearson chi-square statistic can be used as a suitable metric.

Let Oy, be the number of sites observed to have detection history &, and Ej, be the
expected number of sites with history A according to the current model. Generally, Ej,
equates to the sum of the estimated probabilities of observing h

N
E), = ZPr(Xi = h). (2.6)
i=1
obtained by substituting the estimated parameter values into equations similar to (2.1) and
(2.2). These probabilities may be site-specific depending upon the model that has been fit
to the data.
Assuming no missing observations, there are 27" possible detection histories that may
be observed. The test statistic for assessing the fit of the model can be calculated as

2T

_ 2
X2 — Z % (2.7)
h=1
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Note that because we are pooling across all sites in (2.6), the usual distributional arguments
used to justify the chi-square distribution of X? are unlikely to hold unless the estimated
probabilities are constant across all sites. Furthermore, many of the Ej, may be relatively
small (< 2) for even moderate values of T (say > 5), again suggesting that X2 will not
have a chi-square distribution. As an alternative, the parametric bootstrap may be used to
determine whether the observed value is unusually large.

By using the parametric bootstrap, we assume that the fitted model is correct; hence it
is an ideal technique for assessing the model’s structure. In this setting, parametric boot-
strapping may be implemented as follows:

1. Fit model to the observed data and estimate parameters 1/31 and p;; (which may be
functions of covariates).

2. Calculate the test statistic for the observed data, X3, , using the model fit in Step 1.

3. For each site generate a pseudo-random number (7) between 0 and 1. If r < 1[%, then
the site is occupied, hence generate 7" further pseudo-random numbers (7;) between
0 and 1. If r; < py;, then the species was “detected” and the corresponding boot-
strapped observation is a ““1”, otherwise “0”. If r > 1;, then the site is unoccupied
and the bootstrapped observations will all be “0” for that site.

4. Fit a model with the same structure as in Step 1 to the bootstrapped dataset.

5. Calculate the test statistic for the bootstrapped data, X jzg, using the model fit in Step
4, and store the result.

6. Repeat Steps 35 a large number of times to approximate the distribution of the test
statistic, given the fitted model is correct.

7. Compare X3, to the values of X% to determine the probability of observing a larger
value (the p value).

We note that this general testing procedure has strong similarities with a parametric
bootstrap test for model fit in the mark-recapture context, suggested by White, Burnham, and
Anderson (2002) and implemented in Program MARK. However, there are two important
differences between our method and the test in Program MARK: (1) individuals (or sites in
the present setting) with unique combinations of covariates are pooled; and (2) a Pearson’s
chi-square statistic is used rather than the deviance statistic. We defer further discussion of
these differences to later in the article.

Following White et al. (2002), the overdispersion parameter ¢ may be estimated using

R —2
&= X3/ X 5> (2.8)

where Y; is the average of the test statistics obtained from the parametric bootstrap. The
estimate of ¢ may then be used as a variance inflation factor, using quasi-likelihood theory,
to adjust our model selection procedures and standard errors.

If the model is an adequate description of the data, then ¢ should be approximately 1.
Values greater than 1 suggest there is more variation in the observed data than expected by
the model, with values less than 1 suggesting less variation.
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To accommodate missing values in the detection/nondetection data, we suggest that it
is necessary to treat sites with different combinations of missing observations as separate
cohorts, as each cohort will have a different set of possible detection histories. For example,
in our terrestrial salamander data, sites were usually surveyed 5 times, thus there are a total
of 32 possible detection histories, assuming no missing observations. However, 12 of the
88 sites were not sampled on the first occasion, therefore these sites have only 16 possible
detection histories. If a site was not sampled on the last occasion, it would have a different
set of 16 possible histories. An extra level of summation would therefore be required in
(2.7) to aggregate the test statistic over cohorts.

3. FIELD DATA COLLECTED ON TERRESTRIAL
SALAMANDERS

We wish to investigate the potential effects of the four covariates (disturbance prior
to Park formation, D; elevation > 841m, E'; predominantly deciduous vegetation, V'; and
stream < 50m, S) on occupancy and detection probabilities, and in addition we wish to allow
detection probability to vary with survey occasion (). A model selection procedure will be
used to rank the models, and our inference will be based upon the most parsimonious models.
Considering only models with no interactions between factors, there are 2* x 2° = 512
possible models that could be fit to the data. Usually, with such a large number of possible
models we would restrict the set of candidate models before attempting some form of model
selection, however, here we do not believe there is a sound biological reason for doing so,
therefore we considered all 512 models.

Performing the above test for model fit on the most global model considered, ¥ (D +
E+V +8)p(t+ D+ E+V +5), there is some evidence of poor fit (X2 = 63.1, p value
= 0.056, ¢ = 1.43) hence QAIC was used for the model selection procedure and standard
errors inflated by a factor of v/¢ = 1.20. By considering the contribution of each observed
detection history to the test-statistic, it appears the poor fit is caused by an unusually large
number of sites where the salamanders were detected on each sampling occasion. This
may be due to an unmeasured site characteristic that also affects detection probabilities, or
possibly caused by the species occurring at higher densities at those sites (probability of
detecting at least one member of the species could be higher at sites where the species is
more abundant). We suggest that this should be kept in mind when drawing conclusions
about the affects of the available covariates from this analysis.

Table 2 contains the top ten ranked models upon the basis of QAIC, which account for
53% of the total QAIC model weights (Burnham and Anderson 1998). Based upon these
top ten models, we could approximate the model averaged covariate coefficients (on the
logistic scale) by adjusting the QAIC model weights such that the ten modified weights
sum to 100%. The approximate values (£ 1 standard error; inflated for poor model fit) are
given in the parentheses below.

Common features of these models are that disturbance (3.60 £ 0.92), elevation
(1.6e — 3 £ 0.6e — 3) and vegetation type (—3.02 £ 1.58) seem to be important covari-
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Table 2. Top Ten Ranked Models According to QAIC for the Terrestrial Salamander Example. AQAIC
is the relative difference in QAIC values from the model with the smallest QAIC value; w is
the QAIC model weight; and K'is the number of parameters.

Model AQAIC w
WD+ E+ V)p(E+ S) 0.00 0.13
WD+ E+ V)p(D+ S) 053  0.10
WD+ E+ V)p(D+E+S) 097 008
WD+ V+ S)p(E+ S) 230  0.04
WD+ E+ V)p(S) 246  0.04

W(D+E+V+S)p((E+S) 247 004
¢(D+E+ V)p(E+V+S) 278 003
WD+ V)p(D+ S) 313 0.03
¢W(D+E+V)p(D+V+S) 317 003
WD+ E+V+S)p(D+S) 322 003

OO O NN | X

ates for the occupancy probability, while stream proximity (—0.79 £ 0.38) appears to be
the most important covariate for detection probability, with some suggestion that elevation
(—0.40 £ 0.44) and/or disturbance (0.53 4 0.73) may also be important. Interpreting the
coefficient values suggests that the odds of a site being occupied were: 36 times larger for a
disturbed site; marginally (but significantly) larger for sites above 84 1m; and 20 times larger
for site with mixed pine vegetation. The odds of detecting a member of the P. glutinosus
complex were: 2.2 times smaller at sites within 50m of a stream; 1.5 times smaller at higher
elevations (> 841m); and 1.7 times smaller at undisturbed sites. It should be noted that
there is some degree of correlation between the disturbance and elevation covariates, with
disturbed sites being more common at lower elevations. This may cause multicollinearity,
explaining why there is no clear outcome, with respect to detection probabilities, as to which
of these variables is preferential in a model.

4. HYPOTHETICAL EXAMPLES

To explore how well the proposed method for assessing model fit performs when the
data contain specific, known violations of the model assumptions, we now consider two
hypothetical datasets. The first hypothetical example represents the type of data that might
arise from a metapopulation study (for instance) where sites are discrete patches of habitat,
and at least one of the models in the candidate set is a good fit for the observed data. We
envisage the second hypothetical example as a situation where sites represent study quadrats
within a less fragmented landscape (such as a bird point count study) and sites are located
such that the detection of the species is no longer independent between sites. In such a case,
all of the fitted models describe the observed data poorly; hence model selection procedures
and parameter standard errors need to be adjusted. Contemplating hypothetical datasets is
useful here as we can introduce known violations of the model assumptions, and evaluate
how well our test for model fit identifies these violations.
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Table 3. Summary of Model Selection Procedure for the First Hypothetical Example. AAIC is the
relative difference in AIC values from the model with the smallest AIC value; wis the AIC model
weight; Kis the number of parameters; ¢ is the estimated overall occupancy probability; SE (1))
is the associated standard error for the estimate; X? is the test statistic for model fit; p value
is the probability of observing a test statistic > X2 based upon 999 parametric bootstraps;
and ¢ is the estimated overdispersion parameter.

Model AAIC w K ¢ SE() X2 pvalue &
¥(-)p(Size) 000 068 3 064 011 238 0694 0.81
¥(Size)p(Size) 170 029 4 070 015 230 0719 0.80
W(-)(t + Size) 6.66 002 7 064 011 245 0503 0.93
¥(Size)p(t + Size) 837 001 8 070 015 237 0483 0.94
W(Size)p(") 5315 0.00 3 032 006 590 0002 207
»()p() 5958 0.00 2 0.32 007 594 0003 2.04
¥(Size) p(t) 60.32 000 7 0.32 006 555 0006 215
() p(t) 66.75 000 6 0.32 007 557 0008 219

4.1 HYPOTHETICAL DATASET 1

Data were generated such that occupancy and detection probabilities were a function
of a site-specific covariate, patch size (say). Both probabilities increased with increasing
patch size, representing a mechanism where the species prefers larger habitat patches and
within such a patch the species is more detectable, possibly because of higher abundances
or densities of individuals.

Fifty patches were each surveyed on five successive days, with the species being de-
tected at least once at 16 of the patches, giving a naive occupancy estimate of 0.32. Table 3
summarizes the results of the model selection procedure for eight candidate models, ranging
from the most global model in which occupancy and detection probabilities are functions of
patch size, and detection probabilities also have an additive time effect (¢)(Size)p(t+Size)),
to the most restrictive model where occupancy and detection probabilities are both constant
(¥()p(+)). The test of model fit for the most global model, 1 (Size)p(t + Size), provides
no cause for concern, suggesting that model selection using AIC should be reasonable.
Based upon AIC, the most parsimonious model is ¢ (-)p(Size) suggesting patch occupancy
is constant (0.64) and detection probabilities are a function of patch size. Overall there is
very strong evidence that patch size is an important covariate for detection probabilities as
all models involving such a term have substantially smaller AIC values than those without.
In addition, for all models without the patch size covariate for detection probabilities there
is very strong evidence of poor model fit. In the face of uncertainty about which model pro-
vides the best description of the data, a model averaged estimate of overall patch occupancy
is 0.66 with standard error 0.12.

4.2 HYPOTHETICAL DATASET 2

In this example, data were generated such that the detection of the species at pairs of
sites was no longer independent. If the species was present at the first site, then the second
site was also occupied, and if the species was detected at the first site there was a 90% chance
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Table 4. Summary of Model Selection Procedures for the Second Hypothetical Example, With Models
Being Ranked According to AIC or QAIC. AIC is the relative difference in information criterion
values (IC; AIC or QAIC) from the model with the smallest respective IC value; wis the model

weight based on the respective @’s; Kis the number of parameters; 1 is the estimated overall
occupancy probability; and SE(qZ;) is the associated standard error for the estimate.

Ranking method ~ Model ~ AIC ~w K @  SE@)

AIC ¥()p(t) 0.00 064 5 066 0.15
Y(p() 116 036 2 069 0.16
QAIC Y()p(-) 000 073 2 069 022

¥(J)p(t) 1.95 027 5 066 0.20

of also detecting the species at the second site. Such a situation may result in a study where
sites are placed too close together with respect to the territorial patterns of the target species
(e.g., the home range of one or more individuals overlap with more than one monitoring
sites), or when two nearby sites are being surveyed simultaneously and observers are likely
to record the same event (e.g., bird call) as a detection of the species at both sites.

Fifty sites were each monitored on four occasions for the presence of the species, with
the species being detected at least once at 22 sites. No covariates were available for the
analysis resulting in only two possible models that could be considered, the most global
model ¥(-)p(t) and ¥(-)p(-). From the test described above, there is some evidence of
lack-of-fit for the model 1 (-)p(t)(X? = 17.3, p value = 0.079, & = 1.77) suggesting QAIC
should be used for model selection. Table 4 presents the results of the model selection using
both AIC and QAIC. Note that by using QAIC, the (- )p(-) model is now ranked as the most
parsimonious and the adjusted standard errors are substantially larger, reflecting that due
to the lack of independence, less information has actually been gathered about the model
parameters. Using model averaging, based upon AIC an overall estimate of the occupancy
probability is 0.67 with standard error 0.16, while based upon QAIC the overall estimate is
0.68 with standard error 0.21. Here we can see that while accounting for lack-of-fit has had
little effect on our point estimate of occupancy, the associated uncertainty in the estimate
has greatly increased.

S. SIMULATION STUDY

To investigate the properties of the test more generally, a Monte Carlo simulation study
was undertaken using a wide variety of scenarios. The effect of up to four factors were
considered (N, T, v, and p) within four broad scenarios: (a) all sites had common values
of ¥ and p; (b) the sites were comprised of two groups with different ¢ or p values; (c)
p varied between sites according to a site-specific covariate; and (d) detection histories
for the sites were not independent. For each combination of factors 2,000 simulated sets
of data were generated, and the proportion of datasets where the fitted model displayed
a “significant” lack of fit (at an « level of 5%), was recorded. When the fitted model is
correct, the proportion of simulations with “significant” lack of fit should be equal to the
nominal size of the test (5%), while if the fitted model is incorrect, the proportion should be
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something larger and is referred to as the power of the test. All tests were performed using
199 bootstrap resamples, which should be an adequate number for simulation studies of this
type, but for the analysis of real data one should consider using many more (generally at
least 999) depending upon the complexity of the model being analyzed. The average value
of ¢ was also recorded, and for all scenarios p was kept constant across time.

5.1 SCENARIO A

The following factor levels were investigated.

— N =50, 100, or 200

— T =50r10
— ¢ =0.5 0r09
— p=03o0r0.8.

A site-occupancy model with ¢ and p constant across sites (1(+)p(-)) was fit to each dataset.
For this scenario, the ¥(-)p(-) model is correct, hence the size of the test (probability of a
Type I error) should be at the nominal level of & = 5% and ¢ should be estimated at close
to 1.0, which was confirmed by the simulations.

5.2 ScCENARIO B

The same values of IV and 7" as above were used in this scenario, where study sites
comprise of two groups of equal size. Each group had either (1) different occupancy prob-
abilities; or (2) different detection probabilities.

5.2.1 Scenario B(i)

Occupancy and detection probabilities were set at the following levels (where subscripts
denote groups).

— (¥1,1) = (0.5,0.2) or (0.9,0.7)
— p=030r0.8.

Occupancy probabilities were chosen such that the odds of a site being occupied for group 1
was approximately 4 times greater than the odds of a site being occupied for group 2. When
the incorrect ¥ (-)p(-) model, which ignores group membership, is fit to each simulated
dataset, the test has no power to detect the poor fit of the model with the power remaining
at the nominal level of 5% and ¢ estimated at close to 1.0. Not presented are the results of
fitting the correct ¢ (G)p(-) model, where occupancy probabilities are group specific, which
confirmed the test had the desired properties when the correct model was fit to the data.
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Figure 1. Power of the test for modelfit (at o = 5%) and average of the overdisperison parameter estimate (&) from
fitting the incorrect Y(-)p(-) model to 2,000 simulated datasets for Scenario B(ii), where (- )p(G) was the correct
model. Gray symbols represent situations where (py, p2) = (0.3,0.1) and black symbols represent situations where
(p1,p2) = (0.8,0.5), with circles denoting scenarios with T = 5 and squares where T = 10.

5.2.2 Scenario B(ii)

For this scenario occupancy and detection probabilities were set at the following levels.

— ¢ =0.5 0r0.9
— (p1,p2) = (0.3,0.1) or (0.8,0.5).

Similar to above, detection probabilities were chosen such that the odds of the species
being detected was approximately 4 times greater for group 1 than for group 2. Figure 1
summarizes the results for this scenario, where the incorrect ¢ (-)p(-) model is fit to each
simulated set of data. The test clearly has the ability to detect model lack-of-fit with respect
to detection probabilities. Power is low to moderate for most of the factor combinations
considered, and high when detection probabilities are higher with 10 surveys of each site.
On average, estimates of ¢ are generally much greater than 1.0, even when the test has
only moderate power. Not presented are the results of fitting the correct ¢ (-)p(G) model,
where detection probabilities are group specific, which confirmed the test had the desired
properties when the correct model was fit to the data.
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Figure 2. Power of the test for model fit (at « = 5%) and average of the overdisperison parameter estimate (&)
from fitting the incorrect 1(-)p(-) model to 2,000 simulated datasets for Scenario C, where (- )p(cov) was the
correct model. Circles denote scenarios with T = 5 and squares where T = 10.

5.3 ScenaArio C

Factors N, T, and 1) were maintained at the same levels as those used in Scenario
A, while p was a function of a site-specific covariate. For each site a random value was
generated from the standard normal distribution to represent a measured covariate, and
p was calculated using the logistic model with slope and intercept terms of 1.0 and 0.0,
respectively. This created a distribution of p’s where the central 95% of values lay between
0.12 and 0.88. New random covariate values were generated for each simulated set of data.
Figure 2 presents the results for this scenario where the incorrect ¥(-)p(-) model has been
fit to the data. The test clearly has moderate to good power to detect that the fitted model
is inadequate for the observed data. Interestingly, in most cases, the average estimate of
¢ does not vary substantially from 1.0, even when the test has high power. Also, ¢ tends
to be estimated with a smaller value when 10 rather than 5 surveys are conducted at each
site, even though the test tends to have greater power in the former situation. Again, the
results of fitting the correct model 1 (-)p(cov), where detection probabilities are a function
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Figure 3. Power of the test for model fit (at oo = 5%) from fitting the incorrect (- )p(-) model to 2,000 simulated
datasets for Scenario D, where pairs of sites had identical detection histories. Gray symbols represent situations
where p = 0.3 and black symbols for p = 0.8, with circles denoting scenarios with T = 5 and squares where T =
10. The average of the overdisperison parameter estimate () is not presented because it was near the true value
of 2.0 in all scenarios.

of a covariate, are not presented here, although they confirm that the test has the desired
properties (power = 5% and ¢ ~ 1.0) when the correct model is fit to the data.

5.4 SceENARIOD

All factors were maintained at the same levels as in Scenario A; however, here every
second site was given a detection history that was an exact copy of the one previous. In
effect this creates a dataset with N/2 independent detection histories rather than N, and
¢ is therefore known to be 2.0. The ¢ (-)p(-) is not correct in this scenario as now there is
some correlation structure between the “twin” sites. Figure 3 shows that in this situation,
the above test has moderate to excellent power to detect this lack of independence between
sites. Results for the estimation of ¢ are not presented because (on average) it was estimated
to be very near 2.0.

6. DISCUSSION

Terrestrial salamanders have gained increasing attention in conservation and manage-
ment arenas because they possess unique attributes (e.g., longevity, sensitivity to environ-
mental perturbation) which are believed to make them good indicators of forest biodiversity
and integrity (Welsh and Droege 2001). These claims, together with apparent worldwide
declines in numerous amphibian fauna, have prompted studies to explore the distribution
and habitat associations of various salamander species (e.g., Hyde and Simons 1999). Mod-
els such as those developed by MacKenzie et al. (2002) are vital to studies of salaman-
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der habitat requirements because salamander detection probabilities are imperfect (<1),
species-specific, and vary across time, space, and sampling method (Bailey et al. 2004).
Here, we enhanced the utility of the MacKenzie model by providing a method that allows
researchers to determine if the model(s) being considered is a realistic representation of
observed detection/nondetection data.

Our analysis of the Plethodon glutinosus complex in GSMNP showed evidence of lack-
of-fit for the most global model containing all covariates, suggesting model selection should
be evaluated using QAIC values. Our method allows us to estimate a variance inflation
factor, ¢, by which we adjusted standard errors. Members of the Plethodon glutinosus
complex had higher occupancy probabilities on previously disturbed sites with mixed pine
vegetation, and lower detection probabilities on sites near streams. Interestingly, an increase
in overall occupancy or detection probability for the Plethodon glutinosus complex may
actually represent a degradation of forest habitat as the relationship of these covariates to
model parameters indicate that the Plethodon glutinosus complex favors drier, disturbed
forest habitat. The model set we explored here was much more comprehensive than the one
presented by Bailey et al. (2004) (512 models vs. 10 models, respectively), but qualitatively
both analyses identified the same covariates important in both occupancy and detection
probabilities for the Plethodon glutinosus complex. By assessing the fit of our global model
and adjusting model weights and ranks accordingly, we are more confident in both the model
selection procedure and resulting model-averaged estimates, which form the basis of our
biological inferences. Any presentation that focuses on estimates of occupancy should use
model-averaged estimates based on the full model set presented in this article. Our analysis
revealed that the simple models explored by Bailey et al. (2004) are not as likely as the
more complex models in the larger model set.

We have shown that the test of model fit proposed above has some power to detect lack-
of-fit in site-occupancy models caused by an incorrectly specified structure for detection
probabilities or by detection histories that are not independent. Even though all sites are
treated as a single cohort, the test has the desired properties when a model that includes site
covariates is fit to the data. This is an important finding as the general consensus of many
mark-recapture experts is that separate cohorts are required for each unique combination of
covariate values. However, for the scenarios considered in the simulation study, the power
of the test tends to be low, with only five surveys per site and 50 sites. This may limit the
usefulness of the test for small datasets, although we stress that while the results of the
simulation study give some overall view of the tests properties, assessing the fit of a model
for a given small set of data may still be informative.

Failure of the test to detect poor model fit caused by occupancy probabilities is not
unexpected. When the model is misspecified with respect to detection probabilities, then
some sites will have an unusually large (or small) number of species detections. However,
for occupancy probabilities there is no such outward indication that the model may be
inadequately describing the data. This is similar to the problem of assessing the fit of
logistic regression models for binary data, where the actual binary observation conveys little
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information regarding model fit. In logistic regression this has led to the development of the
Hosmer-Lemeshow Test (Hosmer and Lemeshow 1989, p. 140) which uses the predicted
probabilities of a success to classify the observations into k groups. Such an approach could
possibly be modified to detect poor model fit with respect to occupancy probabilities.

It is generally recommended (e.g., Lebreton et al. 1992; Burnham and Anderson 1998,
p. 54) that the fit of the most global model be assessed first and that any estimate of ¢ be
based upon those results. In some cases, however, if the number of parameters in the global
model is large, then poor precision of the estimates may hamper the tests ability of detect
lack-of-fit. In such a case one may also wish to test the fit of a more parsimonious model.

In practice, one would not assess the fit of all models as done in the first hypothet-
ical example, but this was done to illustrate that those models with large AAIC values
also showed very strong evidence of lack-of-fit. This lack-of-fit is undoubtedly caused by
the exclusion of the patch size covariate for detection probabilities, which accounted for
the heterogeneity in detectability. Note that by not accounting for this heterogeneity, the
occupancy estimates were substantially underestimated.

This raises an important point. If a model is found to fit the data poorly, it may be
caused by an inadequate model structure (as in hypothetical example 1) or by a violation
of the model assumptions such as independence of the sampling units (as in hypothetical
example 2). When lack-of-fit is caused by a lack of independence, parameter estimates
remain unbiased but standard errors are too small (McCullagh and Nelder 1989, p. 125);
however, a structural lack-of-fit may cause parameter estimates to be badly biased. Expert
knowledge of the system under study should be used to determine what may be causing
poor model fit.

One of the most topical subjects in mark-recapture research at present is how to assess
the fit of models with individual covariates, and because of the basic similarities between
mark-recapture and site-occupancy models, it seems likely that the above test should perform
admirably with such models. Currently, a similar test for model fit has been implemented in
Program MARK (White et al. 2002). The parametric bootstrap is used to determine whether
the observed deviance statistic is unusually large with respect to the values obtained from a
large number of bootstrap samples, and the variance-inflation factor ¢ is calculated as sug-
gested by White et al. (2002; as in Equation (2.8)), although based upon the deviance rather
than a Pearson’s chi-square statistic. However, there are some important differences. First,
the test in Program MARK subscribes to the philosophy that each combination of individual
covariate values should be treated as separate cohorts. If groups have been defined in the
input data (such as gender or age), then each group is treated as a separate cohort, whereas
the test described above would pool across such groupings. Also, the test in Program MARK
is not available for models with individual covariates. Second, the value of ¢ based upon
the deviance statistic and parametric bootstrap has been found to be biased (Gary White,
personal communication). Subsequent investigations of mark-recapture data suggest that
using the Pearson’s chi-square statistic, as we have above, may give unbiased estimates of
¢. Although, a large number of bootstraps is required (> 10,000) to adequately approximate
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the distribution of the test statistic if there are a large number of capture occasions (> 10),
due to the distribution having a very long right-hand tail in such situations. This is an area
of ongoing research.

All analyses in this article were conducted using Program PRESENCE, software specif-
ically developed for analyzing site-occupancy data. Program PRESENCE may be down-
loaded from http://www.proteus.co.nz. The datasets used here and detailed results from the

simulation study may be obtained by contacting the first author.
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