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Abstract. Recent extensions of occupancy modeling have focused not only on the
distribution of species over space, but also on additional state variables (e.g., reproducing or
not, with or without disease organisms, relative abundance categories) that provide extra
information about occupied sites. These biologist-driven extensions are characterized by
ambiguity in both species presence and correct state classification, caused by imperfect
detection. We first show the relationships between independently published approaches to the
modeling of multistate occupancy. We then extend the pattern-based modeling to the case of
sampling over multiple seasons or years in order to estimate state transition probabilities
associated with system dynamics. The methodology and its potential for addressing relevant
ecological questions are demonstrated using both maximum likelihood (occupancy and
successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo
estimation approaches (changes in relative abundance of green frogs in Maryland). Just as
multistate capture-recapture modeling has revolutionized the study of individual marked
animals, we believe that multistate occupancy modeling will dramatically increase our ability
to address interesting questions about ecological processes underlying population-level
dynamics.
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INTRODUCTION

Issues of imperfect detection have long plagued
studies of species occurrence because of the inability to
separate potentially false and true absences of species at
survey locations. Imperfect detection not only creates
biases in naive estimates of the true level of occurrence
of a species, but also creates biases in estimated
magnitudes of regression coefficients reflecting associa-
tion of occurrence with other factors (e.g., habitat; Tyre
et al. 2003, Gu and Swihart 2004) and in estimated
probabilities of colonization and local extinction (Moi-
lanen 2002, MacKenzie et al. 2006). Unbiased estimates
of colonization and local extinction probabilities are
essential to an understanding of the underlying dynamic
processes of change in the occurrence of a species over
time. Recent methods that allow for direct estimation of
detection probabilities from repeated presence/absence
(or more correctly, detection/nondetection) surveys each
time period (MacKenzie et al. 2003, 2006, Royle and
Kery 2007) have made it possible to obtain more reliable
inferences about the processes of change in species
occurrence.
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These methods were developed for the common
situation in which scientists or managers are simply
interested in the presence or absence of the species across
a landscape. However, in many situations it may be
possible to further classify locations where the species is
present into subcategories that are biologically relevant.
Such subcategories could include breeding/nonbreeding,
presence or absence of a disease or pathogen within the
population, or a categorical index to relative abundance
(few/some/many individuals). From a practical perspec-
tive though, there may be ambiguity not only in the
presence or absence of the species from the field
observations, but also in assignment of the correct
subcategory. For example, observing the species at a
location, but not detecting evidence of breeding, does
not imply breeding is not occurring at that location;
breeding may be occurring but simply was not identified
in that survey. This ambiguity is the result of imperfect
detection of the true state of the occupied locations (e.g.,
breeding/not breeding; imperfect state classification),
and with repeated surveys it is possible to account for
this additional form of imperfect detection.

State misclassification has been recognized by authors
who have been interested in assessing patterns in the
multiple states of species occurrence at a single point in
time. Royle (2004) and Royle and Link (2005) developed
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models for anuran call index data. In their application,
locations were monitored for multiple nights within a
season, and even though a location was capable of
producing a call index of a particular size (due to the size
of the local anuran population), a lower index value may
have been observed on any given night due to breeding
phenology, weather conditions, etc. For example, the
local population may have been of sufficient size to
produce a call index of 2 (e.g., intermediate abundance),
but during the course of the monitoring the maximum
call index reported for that location may have been a 1
(low abundance). Hence, without accounting for imper-
fect detection the maximum observed call indices may
underestimate the true relative abundance level. Nichols
et al. (2007) independently developed a reparameterized
version of the Royle and Link (2005) model to assess the
reproductive success of the California Spotted Owl
(Strix occidentalis occidentalis) in the central Sierra
Nevada, USA. Their interest was not only in whether
the owls were present or absent from potential nesting
territories, but also in whether owls, when present,
successfully reproduced (i.e., further classify presence
into present and breeding or present and not breeding).
As the evidence required to assess successful reproduc-
tion was not guaranteed to be observed on each visit to
an owl territory, naive estimates of reproductive success
(i.e., those that do not account for imperfect detection)
were likely underestimates.

In this paper we briefly note the similarities between
the methods of Royle and Link (2005) and Nichols et al.
(2007) and then extend these methods to allow
estimation of the dynamic processes of change for both
species presence/absence and between states of occur-
rence (e.g., transitioning from breeding to not breeding
between years or from high to low abundance). We
believe our approach will result in a clearer understand-
ing of the dynamic processes governing a particular
system. We begin with a brief description of the assumed
field situation and basic data requirements, provide a
common framework, and detail how the dynamic
processes of such a system could be modeled. We then
apply these methods to two data sets characterized by
imperfect detection and investigator interest in multiple
states: dynamics of occupancy and reproductive success
of the California Spotted Owl in the Sierra Nevada, and
dynamics of the distribution and relative abundance of
green frog (Rana clamitans) populations inhabiting
wetlands in Maryland, USA.

AssUMED FIELD SITUATION AND Basic
DATA REQUIREMENTS

There is some suitably defined geographic unit for
which the intent is to establish the presence or absence of
the species and, conditional on presence, some appro-
priate subcategorization or state classification. These
units may be naturally occurring (e.g., ponds or patches
of habitat) or arbitrarily defined (e.g., quadrats or grid

DARRYL I. MAcKENZIE ET AL.

Ecology, Vol. 90, No. 3

cells). The complete set of units that are of interest
comprises the statistical population (e.g., all ponds or
grid cells within some specified area). There are S units
within this population, of which a sample of s units will
be surveyed for the species. The s units are selected in
such a manner that it is valid to generalize the
conclusions based upon the sample to the greater
population. Note that in some situations S may be
essentially infinite, while in others S may be very close to
s (i.e., the units surveyed for the species represent a
substantial fraction of population of interest).

The observed occupancy states of the units are
hierarchical in terms of information content about true
state, where the lowest observed state has the greatest
ambiguity about true state (any true state is possible)
and the highest observed state has no ambiguity about
true state. For example, we could order the possible
states as: 0 = unoccupied or species absence; 1 = occu-
pied and not breeding; and 2 = occupied and breeding. If
evidence of breeding is observed (i.e., we observe state 2
on at least one survey) then a unit cannot be in the
unoccupied or nonbreeding states (i.e., true state = 2). If
animals are detected in the absence of evidence of
breeding (i.e., maximum observed state = 1), this
precludes the possibility of the unit being unoccupied,
but not the possibility that the species may actually be
breeding within that unit (i.e., true state may be 1 or 2,
but not 0). That is, the potential misclassification of
units from the observed data only extends in one
direction. Finally, a surveyed site at which the species
is not detected during any survey (i.e., maximum
observed state = 0) allows the possibility of any of the
true states, 0, 1, and 2.

At systematic points in time that correspond with the
timescale at which parameters describing the dynamic
processes are to be estimated (e.g., annually or twice per
year), the s units are repeatedly surveyed within a
relatively short period of time, and the observed
occupancy state of the species is recorded during each
survey. Here we follow MacKenzie et al. (2006) and
refer to each of these shorter time periods as a sampling
“season,” which may or may not correspond to a more
biologically relevant definition of a “season.” Within
each season we initially assume that the occupancy state
of each unit does not change; hence the repeated surveys
provide multiple opportunities to observe the true
occupancy state (see Discussion for comments on how
this assumption may be relaxed). For example, if unit i is
surveyed twice per season over three seasons, the
resulting detection history (h;) for that unit could be
denoted as: h; = 10 00 21. This history would be
interpreted as: in season one the species was detected
and state 1 observed in the first survey, and the species
was not detected in the second survey (so true state may
be either 1 or 2), the species was undetected in both
surveys in season two (so true state may be 0, 1, or 2),
then detected in both surveys in season three, with
evidence of state 2 being observed in the first survey and
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state 1 observed in the second (so true state has to be 2).
Note that the study may be conducted for a single
season, in which case only the patterns of occurrence can
be investigated, not the processes underlying dynamics
(e.g., Royle 2004, Royle and Link 2005, Nichols et al.
2007).

A SINGLE-SEASON MODEL

The methods used by Royle (2004), Royle and Link
(2005), and Nichols et al. (2007) have the same basic
data requirements outlined above (e.g., repeated survey
data) and the same underlying model structure. The
main difference is how the models are parameterized.
Royle and Link (2005) begin by outlining a very general
model parameterization, before reparameterizing the
structure of the detection probabilities to suit their
application. Nichols et al. (2007) begin with a less
general parameterization, but one that is developed to
address their biological questions of interest. Here we
briefly outline the general approach described by Royle
and Link (2005) for single-season data, then demon-
strate how the model can be tailored to address specific
questions of interest through some reparameterizations.
For simplicity, we develop the modeling in terms of
three possible states (unoccupied and two occupied
states), but note the modeling could be extended to a
greater number of states in an obvious manner.

Let ¢ be the probability that a unit is in occupancy
state m. As these states are mutually exclusive there is
the natural constraint that these probabilities must sum
to 1; hence, two of the probabilities may be inde-
pendently estimated, with the final one obtained by
subtraction. For convenience we shall rewrite the
probability of a state being unoccupied, ¢, as 1 —
oM — . We can therefore write a state probability
vector ¢y denoting the probability of being in each state
immediately before the first season of surveying (i.e., at
time ¢ =0) as

b = [1 ol — o @It (pm],

Next, let pjl."" be the probability of observing unit i in
occupancy state / during survey j given the true
occupancy state is m (this was denoted as m,,; by Royle
and Link [2005]). Because we assume that the ambiguity
of the observations only extends in the one direction and
that for any given true state a survey must result in one
of the observed states (i.e., X}, pj’m = 1), we have the
following state detection probabilities:

Observed state

0 1 2
T tat
rueosae 1 0 0
1,1 1,1
1 I=p~ p7 O
S S e A

which in this format we could define as the detection
probability matrix p; or, using these detection probabil-
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ities, a state-dependent detection probability vector (pp)
can be defined that expresses the probability of
observing any particular detection history given the true
state of the sampling unit. For example, if h; =120, then,

0

Pi2o = 0
12 22 12 2,2
PPy (1 =p3" —p37)

where the first element is the probability of obtaining
this detection history when the true state is 0 (i.e., the
sampling unit is unoccupied) and the final element for
when the true state = 2. Note that as state 2 was
observed in one of the three surveys, this precludes the
possibility that the unit may be unoccupied or in state 1;
hence the respective elements in the vector are O.
Further, if h; =010, then

0

LIy 11 11

Poio = (I=py)py (1 =p37)
1,
L

(1=pi? = p1?)py (1 = p3* = p3?)
and if h, = 000,
1
(1=pyH(1 = py")(1 =pi)
(1=p? =) (1 =py? = p3?)(1 = p3? = p3?)

Note that when there is ambiguity as to the true
occupancy state, there is more than one nonzero element
in the detection probability vector. The zero elements in
the detection probability vectors indicate the states that
are not possible for a site, given the observed detection
history.

Rather than use the more general multinomial
structure of the occurrence and/or detection probabili-
ties when there are greater than two true states, in their
applications Royle and Link (2005) and Nichols et al.
(2007) both reparameterized this general model in terms
of a series of conditional binomial probabilities. Royle
and Link (2005) reparameterized the detection proba-
bilities as follows (note that subscripts denoting survey
number have been removed for simplicity):

Pooo =

Observed state

True state 0 1 2

0 1 0 0

1 1—pltl pll 0

2 La=pH-p?) pE1-pP) pP
where p™ is the probability of correctly observing the

I.m

true state m and B is the probability of observing state
[, conditional upon the observed state being less than or
equal to / and the true state m (note that the parameters
have been denoted slightly differently here to that used
by Royle and Link [2005]). Nichols et al. (2007) used a
slightly different parameterization, with the multinomial
detection probabilities redefined as follows:
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Observed state

True state 0 1 2
1 0 0
1 1 —plll plll 0

where p' is now the probability of detecting the species
(i.e., the observed state is >1) given the true state is m,
and 9§ is the probability of observing the true state given
the species has been detected and the true state =2 (i.e.,
in their application, the probability of observing
evidence of successful reproduction in a survey, given
owls have been detected).

Nichols et al. (2007) also reparameterized the
multinomial occupancy probabilities, as their objective
was to estimate the probability of successful reproduc-
tion occurring at a potential territory, given that the
territory was occupied. Hence they defined the prob-
ability of occupancy as { = ¢!l + ¢ and the
probability of being in state 2, given the site is occupied
(i.e., the conditional probability of successful repro-
duction), as R = ¢P/\; hence the state probability
vector becomes

Go=[1—V Y(1—-R) VR].

We believe that in many situations the conditional
binomial parameterizations may be more natural and
advantageous, particularly when exploring covariate
relationships. However, it is useful to consider the more
general formulation of the problem as this provides a
framework upon which other reparameterizations or
constraints on parameters might be imposed.

EXTENDING TO MULTIPLE SEASONS

Within any given season, conditional upon the true
state of a unit, detection probabilities can be defined as
noted previously. The most important issue is to
consider the transition of a unit from one true state to
another between seasons, which can be done by defining
a transition probability matrix (TPM). The TPM
determines the probability of a unit being in each
possible true state at time 7z + 1 given the true state at
time ¢. For example, this could be defined as

0—-0 0—1 0—2
TPM=|1—-0 1—-1 1—->2
2—-0 2—-1 2—-2

where rows represent the true state of a unit at time ¢
and columns the true state of the unit at time ¢+ 1. This
can be considered as an extension of the MacKenzie et
al. (2003) approach, where rather than just two states
(presence/absence), there are more than two. Hence, if
the probability of a unit transitioning from state m at
time ¢ to n at time ¢ + 1 is denoted as ™", then the
TPM with three possible states could be defined as
follows:
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o =g o ¢
(2,0] (2,1] (2,2]

Oy Py Py

Note that each row of the TPM must sum to 1, so in
practice one value in each row would have to be
obtained by subtraction. Further, when there are only
two possible states (e.g., presence/absence), then (pEO"l] is
the probability a unit becomes colonized by the species
and (pl'*"] is the probability of the species going locally
extinct at the unit.

Once again, dependent upon the biological questions
of interest, it may be reasonable to reparameterize the
TPM. For example, if state 2 represents occupied with
breeding, state 1 occupied with no breeding, and state 0
unoccupied, then the TPM could be defined as

0 0 0 0 0

L=l (=R WRY

_ 1 1 1 1 1
o= 1=y, wlho-rY) iRl
2 2 2 2 2

L=l vl a—rY) P RP

where Wﬂl is the probability of a unit being occupied in
season ¢+ 1 given the unit was in state m in season ¢ and
RETI is the probability of reproduction occurring at a
unit in season ¢ + 1 given the unit was in state m in
season ¢. Such a reparameterization might be advanta-
geous to investigate hypotheses about whether the
probability of reproduction occurring in a unit depends
on whether reproduction occurred there in the previous
year. Finally we note that the TPM can be used as the
basis for a population model of occupancy dynamics
(Martin et al. 2009), with the transpose of the TPM
being analogous to a stage-based population projection
matrix in abundance-based population models (e.g.,
Caswell 2001).

MODELING DATA AND PARAMETER ESTIMATION

To apply the modeling to data, two general approach-
es are available. The first approach considers the
unconditional probability of observing each particular
detection history and then determines the joint proba-
bility for all units. This joint probability may then be
used within a Bayesian method of analysis or considered
as the model likelihood, in which case, maximum
likelihood estimates of the model parameters could be
obtained.

For any observed detection history, the unconditional
probability of observing the data simply considers all
possible outcomes for the observed data and sums the
probabilities for each possible outcome (formally this is
known as integrating across the possible outcomes). For
example, suppose in a single-season study a unit was
surveyed four times. Three possible detection histories
are given in Table 1, along with their verbal descriptions
and the unconditional probabilities of observing them.
Note that to obtain the probability we are simply
translating the verbal description into a mathematical
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TABLE 1.
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Example multistate detection histories (h;) from a single-season study with associated verbal descriptions and the

unconditional probabilities of observing them (probability statement).

h; Verbal description Probability statement
1201 The unit was in state 2, with state 1 being observed 01?3 (1 = py* — p37)py?

in the first and fourth survey, state 2 observed in the
second survey, and the species was undetected in the

third survey.
0110

The unit may have been in state 2, with the species

12 12

(1 —pi? +p77 )y Py (1 = py* = pi?)

undetected in the first and fourth surveys and state 1

observed in the second and third surveys,
or

the unit may have been in state 1, with the species

+ ol (1 —pypypy ! (1= pih)

undetected in the first and fourth surveys and state 1

observed in the second and third surveys.

0000
undetected in all four surveys,
or

the unit may have been in state 1, with the species

undetected in all four surveys,
or

the species may be absent from the unit (state 0).

The unit may have been in state 2, with the species o

(1=l = p}?)

-

J=1

4
+olTJ(—p")
=1

Note: See A single-season model for parameter definitions.

expression using the defined model parameters. When-
ever an “or” occurs in the verbal description, another
term is added to the probability statement.

This same principle can be extended to multiseason
data as well. For example, consider the detection history
h; =10 21 00 representing a unit that was surveyed for
three seasons, with two surveys per season. In the first
season, the unit may have been in state 1 with state 1
detected in the first survey and the species undetected in
the second survey or the unit was actually in state 2 with
state 1 detected in the first survey and nondetection in
the second survey. In season two, the unit must have
been in state 2, with state 2 being detected in the first
survey and state 1 detected in the second survey (so
the possible state transitions between seasons are
1 — 2 or 2 — 2). In the final season, the unit may be
in any of the three possible states as the species was not
detected in either survey (so possible state transitions are
2 — 0,2 —1,and 2 — 2). To obtain the probability of
observing this detection history we again translate this
verbal description of the history using the model
parameters (for the more general formulation) defined
above, i.e.,
Pr(h;=[10 21 00))

= (ol (1 = p)ol P + 0Pl (1 = pi? — p1?) o)

% p%‘zpé 2
2.0 2.1 . 22 s y
X[ + o1 = pi"y? + 0P (1 — py? — p2)?.

Note that the term in the first square brackets represents
the probabilities of the unit being in either state 1 or 2 in
season one, then transitioning to state 2 in season two.
The middle term represents the probability of the
observations, given the unit must have been in state 2

in season two, while the final term in the second set of
square brackets is the probability of transitioning to any
of the three states from state 2 between seasons two and
three and the respective probabilities of nondetection.

Following MacKenzie et al. (2003), the unconditional
probability can be expressed succinctly using matrix
notation, i.e.,

Pr(h|0) = ¢,

T—1
H D(ph,t)¢[:| Pnr

t=1

where py, is the detection probability vector for the
portion of the full detection history observed in season ¢,
and D(py,) is a diagonal matrix with the elements of py, ,
on the main diagonal (top left to bottom right) and zero
elsewhere. Assuming the detection histories are inde-
pendent for each unit, the joint probability for the data
(and the model likelihood) is

Pr(hy, ha, ... by[0) = L(OJh,, ha. ... hy) = [ Pr(hi/6)
i=1

where 0 denotes all the parameters in the model.

The second approach is to consider the true state of a
unit each season to be a latent (unknown) variable and
use a state-space approach to predict or impute the true
state each season wherever there is ambiguity in the
observed data. Practically this necessitates the use of
Markov chain Monte Carlo (MCMC) approaches and
Bayesian methods of statistical inference. To aid the
development of this approach it is convenient to
reformulate the model in terms of random variables.
In season ¢, the true state of unit i is a random variable
(z;,) from one trial of a multinomial distribution. In
season one, the probability of being in each possible
state is defined by the vector ¢, while in subsequent
seasons (t =2, 3, ..., T) it is the vector given by row
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Zip1 of d1(dmilziimr, .. D) Lee,

zi1 ~ mult(dy, 1) J, 1.

Then, given the (imputed) true state of a unit in
season 7, the observed state in survey j of unit 7 is a
random variable (4;,;) from one trial of a multinomial
distribution with probabilities given by the appropriate
row (based on true state, row z;,) of the detection
probability matrix p,, i.e.,

Zi.r‘Zu—l ~ mult(¢,71 [ZL/—M ..

hi s~ mult(p, [z, -

1, 0).

One advantage of the state-space approach is that as
the true state of each unit is predicted each season (with
different true states being predicted when there is
ambiguity as the Markov chain progresses), relevant
summaries of the system, such as number of units in
state 2, can be calculated relatively easily. Similar
approaches have been used by Dupuis (1995) and
Schofield et al. (2009) for multistate capture-recapture
data, Royle and Kery (2007) for single-occupancy state
dynamics problems, and Dorazio et al. (2006) for
estimating species richness and accumulation. It is
important to realize that the state-space and uncondi-
tional probability approaches are equivalent, as the
latter also can be developed in terms of latent variables,
with the unconditional probability resulting from
integrating the probability of observing the detection
history across the possible values for the latent variable.
Therefore, both approaches yield the same results,
although with more complex models the state-space
approach will be much easier to implement.

To illustrate that either approach may be used to
implement this model, in the following examples we use
the unconditional probability approach with maximum
likelihood theory to analyze data on California Spotted
Owls and the state-space approach on call index data of
green frogs from the North American Amphibian
Monitoring Program (NAAMP). The maximum likeli-
hood approach can be implemented using Program
PRESENCE (available online),® and we provide our
WinBUGS code for implementing the state-space
approach as a Supplement to this paper.

COVARIATES AND “MISSING” OBSERVATIONS

Relevant information on factors that may affect
occurrence-related and detection-related probabilities
may be incorporated through various link functions
(functions that transform a regression equation with
covariates from the = infinity scale to the interval [0, 1]).
There is a range of possible link functions available,
although we note the logit and multinomial-logit link
functions may often be preferred, as these correspond to
logistic and multinomial-logistic regression. The exact
choice of link function depends on parameterization of
the model, which is likely to be application-specific.

6 (http://www.mbr-pwrc.usgs.gov/software.html)
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Hence, rather than discuss these options, we simply note
that the inclusion of covariates is easily accomplished.

The basic sampling methodology is that within each
season, each sampling unit will be surveyed multiple
times. MacKenzie et al. (2006) show that there is no
requirement of an equal sampling effort across all units,
in all seasons. Field logistics may preclude surveying all
sites an equal number of times, the study may have been
designed such that some units are surveyed more
intensively than others, changes in funding may result
in more/fewer units being surveyed in certain years, or
other unpredicted events (e.g., weather or vehicle
breakdowns) may result in some planned surveys not
being completed. We consider these possibilities as
examples of situations that result in “missing” observa-
tions. Essentially the survey occasions that correspond
to the missing observations at a unit are skipped with
neither a p nor a 1 — p being included in the detection
probability vector, as there is no information regarding
the detection or nondetection of the species. An
alternative mathematical explanation for how the
modeling deals with missing observations is that for
that survey occasion the species was not detected in any
state (which occurs with probability 1 — p), but because
no survey was conducted, detection probability for that
unit at that occasion was zero, so the probability of
nondetection was 1 — 0 = 1. Provided that the cause for
the missing observation is independent of the parameters
and quantities of interest in the model, it is not necessary
to explicitly account for the missing observations within
the analysis. An example in which such a dependency
exists (and hence should be avoided) is if budget cuts
necessitate a reduction in the number of sampling units
being monitored and investigators respond by discon-
tinuing monitoring of those units they think are
unoccupied by the species (i.e., knowledge about the
likely occupancy state of units is used to determine
which ones will become “missing” observations).

EXAMPLE 1: CALIFORNIA SPOTTED OWLS

We apply the above model to data from daytime visits
to potential California Spotted Owl territories from
April to August 1997-2004 at the Eldorado study area in
the central Sierra Nevada, California, USA. Seamans et
al. (2001) and Franklin et al. (2004) describe Spotted
Owl population dynamics and sampling protocols for
this study area. The protocols include locating adult and
subadult owls on each visit to a potential territory. Once
located, an owl is offered a live mouse and then visually
followed after the mouse is taken. Definitive evidence of
reproductive activity is provided when owls take mice to
a nest or to young and young are observed. Non-
reproducing owls usually eat or cache mice, but such
behavior during a single visit may not be indicative of a
failure to reproduce.

We used the same parameterization as Nichols et al.
(2007), in which the probability of a territory being
unoccupied, occupied without reproduction, or occupied
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with reproduction was modeled using two parameters:
the probability a site was occupied (V) and the
probability of successful reproduction occurring at the
territory given that the territory was occupied (R). We
used this structure for both the initial state vector
(probabilistic statement for the state of a site the first
year of the study) and for the state transition matrix,
TPM, where the occupancy and reproduction probabil-
ities may depend on the true state in the previous year
(e.g., probability of a territory being occupied with no
reproduction in year ¢ + 1 could be different if the
territory was unoccupied in year ¢ vs. occupied with
reproduction in year ¢). Detection probabilities were also
parameterized as in Nichols et al. (2007), with p*
defined as the probability of detecting owls in a survey of
a territory that was occupied with reproduction, and 6 as
the probability of observing the evidence of reproduc-
tion in a survey given that owls were detected. For
simplicity, p* and p"! were assumed to vary among
years but not within years (although within-year
variation could be allowed), while & was allowed to
have a different value for surveys conducted early in the
season (dg) vs. late in the season (3 ). From preliminary
modeling, 5g was found to be essentially zero in all years
so only a single value was estimated in the models
reported below, while &; was allowed to vary among
years.

To illustrate the ecological relevance of this type of
modeling, here we examine whether the occupancy and
reproduction probabilities vary annually and/or depend
upon the state of the territory in the previous year. Lack
of annual variation in occupancy may suggest the system
has reached some point of dynamic equilibrium (as time
constancy in the Markovian vital rates results in a
stationary distribution), and that was indeed an a priori
hypothesis for the owl population, as habitat conditions
were relatively stable over the course of the study.
Dependency on previous territory state would indicate
that system vital rates follow some type of Markov
process, although the exact nature of the process would
depend upon parameter estimates. Based on the general
fidelity of California Spotted Owls to territories, we
hypothesized that occupancy would be more likely for
territories occupied the previous season. We also
predicted that occupancy would be somewhat more
likely for territories in which successful reproduction
occurred the previous season than for territories in
which successful reproduction did not occur. This
prediction is based on general evidence for many avian
species that fidelity to nesting locations is reduced
following unsuccessful reproductive attempts (Green-
wood and Harvey 1982, Johnson et al. 1992) and on
specific observations of California Spotted Owls (Bla-
kesley et al. 2006). We also predicted that territories that
were occupied with reproduction in year ¢ would tend to
have higher probabilities of reproduction in year ¢ + 1
than territories in the other states in year ¢. The
mechanisms underlying this hypothesis include the
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possibilities that such territories were of high quality
(e.g., they were “sources” [Pulliam 1988]; or they made
relatively large contributions to system growth [Runge
et al. 2006]) and that high-quality owls show fidelity to
territory sites, especially sites at which they were
successful the previous season. In contrast, if the
probability of reproduction in year ¢ + 1 was lower in
territories where reproduction occurred in year ¢
compared to other territories, that might suggest a
biennial breeding cycle (e.g., see Franklin et al. 2004) or
perhaps a “cost” of successful reproduction imposed on
subsequent breeding attempts (e.g., energetic costs).
Reproductive success is believed to be more sensitive to
environmental variation than is occupancy; hence, we
did not expect the time constancy models for reproduc-
tion to be well supported.

Twenty-four models involving various constraints on
the occupancy and reproductive probabilities were fit to
the owl data. Note that these constraints were not
applied to the occupancy and reproductive probabilities
associated with the first year’s data because the state of
territory in the previous year was unknown. Models
were ranked using Akaike’s Information Criterion
(AIC), with the top two models accounting for 99% of
the AIC model weight (Appendix A). Both models had
the probability of occupancy in year ¢ + 1 depending
only on the state of a territory in year ¢ and the
probability of reproduction varying by both state in year
¢t and time. In the second-ranked model, with 8% AIC
weight, the effect of state on reproduction was consistent
in each year (i.e., an additive model) while in the top-
ranked model, with 91% AIC model weight, the effect of
state on reproduction was different in each year (i.e., an
interaction model). All other models had essentially no
support, providing very strong evidence that occupancy
dynamics were at some point of equilibrium (as time was
not an important factor in either model), but reproduc-
tion dynamics were not. To account for model selection
uncertainty we obtained model-averaged estimates of
parameters (Burnham and Anderson 2002). We estimat-
ed approximate 95% confidence intervals by calculating
symmetric intervals on the logit scale (as =2 SE), then
back-transforming the resulting estimates to the prob-
ability scale. This resulted in confidence intervals that
were appropriately asymmetric and bounded by 0 and 1;
however, if the estimated probability was very near 0 or
1, the resulting confidence interval might be unreliable.

In 1997, the estimated probability of a territory being
occupied was 0.89 (95% CI = 0.77, 0.95) and the
estimated probability of reproduction occurring was
0.47 (0.31, 0.62). The estimated probability of a territory
being occupied in year ¢+ 1 given its state in year ¢ were
0.17 (0.11, 0.26), 0.87 (0.79, 0.92), and 0.91 (0.83, 0.95)
for territories that were unoccupied, occupied without
reproduction, and occupied with reproduction in year ¢,
respectively. As predicted, the probabilities of occupan-
cy were much higher for territories occupied the
previous year, although the occurrence of reproduction
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in the previous year did not appear to be an important
determinant of occupancy given the similarity of the
latter two estimates.

Fig. 1 presents the estimated probabilities of
successful reproduction in each year given the occu-
pancy state of the territories in the previous year. For
sites that were unoccupied in year ¢z, the estimated
probability of successful reproduction in year ¢ + 1
approached 0 for most years, except for Ié1999, when
one territory was observed to have successful repro-
duction without the species having been detected there
in the previous year. This pattern indicated the relative
rarity of colonizing a territory and successfully
reproducing the same season. Note that the very wide
confidence intervals when the estimated probability
was 0 should be ignored and was an artifact of first
calculating them on the logit scale. In each case the
standard error for each estimate was essentially 0. The
probability of successful reproduction for territories
that were occupied the previous year showed an
interesting tendency to alternate between higher values
for territories with and without successful reproduction
the previous year. That is, during some years the
probability of successful reproduction was higher for
territories that were successful the previous year,
whereas in other years it was higher for territories that
were unsuccessful the previous year. These results were
consistent with previous studies of Spotted Owls that
show territory quality varies within owl populations

(Franklin et al. 2000, Seamans and Gutiérrez 2007a)
and variability in annual reproduction is highly
correlated to environmental variation (Seamans and
Gutiérrez 2007b).

Estimated detection probabilities (Table 2) were
relatively high and tended to be greater for territories
in which successful reproduction occurred. The proba-
bility of correctly classifying a state when successful
reproduction occurs was estimated to be zero for all
early-season surveys, but was estimated to be generally
high for late-season surveys, except in 1999 and 2003,
which highlights the need to consider time specificity of
classification probability.

ExAMPLE 2: GREEN FROGS IN MARYLAND

In this second example we fit models to chorus index
data gathered under the North American Amphibian
Monitoring Program (NAAMP; see Weir and Mossman
[2005] for sampling protocol details) for the green frog,
Rana clamitans, in Maryland, USA, from 2001 to 2005.
Royle and Link (2005) present an analysis of the 2001
NAAMP data for the green frog. The NAAMP is an
amphibian sampling program consisting of 24.1-km
routes along secondary or smaller roads. Each route
includes 10 listening stations spaced at least 0.8 km
apart. Some routes have assigned equidistant (0.8 km)
listening stations, whereas others have listening stations
within hearing distance of wetland habitat. Observers
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TaABLE 2.
Spotted Owl example.
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Model-averaged estimates of detection and classification probabilities (with SE in parentheses) for the California

Year
Parameter 1997 1998 1999 2000 2001 2002 2003 2004
pEl] 0.75 (0.04) 0.56 (0.06) 0.89 (0.08) 0.55 (0.06) 0.66 (0.04) 0.55 (0.08) 0.48 (0.09) 0.62 (0.04)
pP] 0.91 (0.03) 0.79 (0.04) 0.30 (0.07) 0.87 (0.03) 0.97 (0.03) 0.79 (0.03) 0.74 (0.05) 0.80 (0.04)
Ok 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
O 0.93 (0.04) 0.79 (0.06) 0.17 (0.15) 0.83 (0.05) 0.85 (0.08) 0.84 (0.04) 0.26 (0.10) 0.85 (0.05)

begin surveys no earlier than 30 min after sunset; they
proceed along the route stopping to listen for amphib-
ians for 5 min at each listening station or “stop.”
Observers record chorus indices of “0” for species that
are not detected at a stop, “1” if individuals can be
counted, “2” if individual calls can be distinguished with
some overlapping, and “3” if a full chorus is present with
constant, overlapping calls. It is assumed that each stop
is capable of generating a maximum chorus index of
either 0, 1, 2, or 3 during a season, which represents the
true state of a stop. However, on any given evening
when a stop may be surveyed, the level of green frog
activity recorded by an observer may be less than or
equal to this true maximal value, e.g., local abundance is
sufficient to generate a maximum chorus index of 2
during the breeding season, but the level of calling
activity at the time of the survey may result in either a 0,
1, or 2 being observed. The number of stops surveyed
each year was 240, 280, 250, 270, and 250 from 2001 to
2005, respectively. Each stop was surveyed three times
annually with one survey early, middle, and late in the
breeding season. We expected within-season variation in
detection probabilities because of the frog’s breeding
phenology.

We implemented the modeling using the state-space
(or latent variable) approach described using the
software WinBUGS. Rather than using a series of
conditional binomial probabilities to model the occu-
pancy state-related probabilities (as in the previous
example), we used a general parameterization in which
both the initial occupancy state vector @, and each row
of the TPM @, have a multinomial structure (i.e., we are
estimating the parameters o and (plm’"] defined earlier).
In this context @ represented the probability that a
stop supported a population of green frogs capable of
producing a maximum call index of size m in 2001, and
@™ represented the probability that the green frog
population at a stop that was capable of producing a
maximum call index of size m in year ¢t was capable of
producing a maximum call index of size » in year ¢ + 1.
We also maintained a general multinomial structure for
detection probabilities in which the probabilities were
allowed to vary both within a season and among years
without any constraints. Naturally simpler models for
detection probabilities could be investigated in a detailed

analysis, and the influence of such constraints on the
results could be assessed.

We specified a uniform prior distribution (equivalent
to a beta(1,1) distribution) for probabilities associated
with events that have only two possible outcomes and a
Dirichlet prior distribution with all parameters equal to
1 for probabilities associated with events with more than
two outcomes. The Dirichlet distribution is a multivar-
iate extension of the beta distribution. Two chains of
50000 iterations were used to approximate the posterior
distributions of the model parameters after discarding
an initial 10000 iterations of each chain as the burn-in
period. The chains demonstrated good mixing and
convergence was achieved rapidly.

We assume that the state variables of interest in this
example are the number of stops capable of generating
call indices of 0, 1, 2, and 3, with the intent of using this
as an index of trends in relative abundance. Note that
the numbers of stops within each state each season are
not parameters of the model described above; however,
these could be obtained by using the output of the
model, applying appropriate algebra, and invoking
(further) asymptotic approximations to derive standard
errors for the resulting estimates. Alternatively, recall
that when using the state-space approach with MCMC
methods, the true state of a sampling unit is imputed for
each iteration of the Markov chain as a useful by-
product of estimating the transition probabilities and
other parameters. Hence, using the state-space approach
to obtain estimates of the number of stops within each
state each season requires just a simple summation. The
uncertainty in these quantities associated with estima-
tion of the underlying vital rates (transition probabili-
ties) and imperfect detection is automatically accounted
for by the MCMC machinery and does not require any
asymptotic assumptions. Therefore, it is possible to
directly obtain posterior distributions for the estimated
number of stops capable of generating each index value
each year.

Fig. 2 presents summaries of the posterior distribution
for the number of NAAMP stops in Maryland predicted
to be capable of generating chorus indices of 0, 1, 2, or 3
from 2001 to 2005. Note that even though a different
number of stops were surveyed each year, predictions
about the likely state of unsurveyed stops have been
made as part of the estimation procedure so no
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adjustment is needed to account for the unequal sample
sizes. From these results, there is little indication of a
strong trend in the number of stops of each type,
suggesting that perhaps the system is relatively stable,
with a reasonably consistent pattern of the number of
stops decreasing as the maximum chorus index increases
(i.e., most stops are predicted to generate a chorus index
of 0, or green frogs are essentially absent, with few stops
capable of generating a chorus index of size 3).
However, these results are characterized by a relatively
large degree of uncertainty about the estimated number
of stops in each state. This is due to only three surveys
being conducted at each stop per year and the
probability of detection generally being fairly low
(Appendix B). A greater number of surveys per year
would improve the precision on the estimated number of
stops capable of generating each chorus index for green
frogs. The probability of detection and correct state
classification is low in period one and increases in the
later periods, reflecting the relatively late breeding of
green frogs. Finally note that the probability of
nondetection tends to decrease as the true state
increases, which is what would be expected if the chorus
index is a reasonable indication of relative abundance

and if there is abundance-induced heterogeneity in the
probability of detection of green frogs (at the species
level) among stops.

DiscussioN

Scientists and managers are often interested in more
than just occurrence of a species on a landscape, such as
specific types or categories of occupancy (e.g., breed-
ing/nonbreeding or some index of relative abundance).
The ability to reliably estimate and model the dynamic
processes of change in occupancy states through time,
while accounting for imperfect detection, should lead to
better scientific understanding of systems and greater
information for management decisions. The method we
detail above is one approach for situations in which
there is ambiguity about the true occupancy state of a
sampling unit.

As with all estimation problems, the reliability of
parameter estimates depends upon the amount of
information contained in the data about those param-
eters. Obtaining reliable estimates of the probabilities
for infrequent transitions will require a larger sample
size compared to transitions that occur more frequently.
Therefore, as one increases the number of possible
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occupancy states, required sample sizes will also
increase. This is clearly a design issue that should be
considered (ideally) before fieldwork commences to
determine the level of sampling required that will
provide sufficient information for the objectives at hand.
However we note that because of imperfect detection,
greater improvements to parameter estimates may be
obtained by increasing the number of repeated surveys
before increasing the number of units sampled. Our
examples partially illustrate this point. For the Cal-
ifornia Spotted Owl we were able to make reasonable
inferences about occupancy and reproductive dynamics
based on only 66 sampling units (potential territories)
but relatively high detection probabilities. Whereas for
the green frogs, despite a larger number of sampling
units (280), because detection probabilities were low and
only three repeat surveys were conducted, resulting
estimates still had a relatively high degree of uncertainty.

Although we view the primary use of these models as
a means of asking interesting ecological questions, we
note that even in the absence of interesting ecology, the
use of multistate occupancy models can be viewed as a
means of dealing with heterogeneous probabilities of
detection, occupancy, and transition parameters (e.g.,
local extinction and colonization). The basic dynamic
occupancy models of MacKenzie et al. (2003, 2006)
assume constancy of parameters for all units or at least
constant relationships between parameters and sampling
unit covariates. Multistate models can be viewed as an
approach for dealing with heterogeneity among occu-
pied units by admitting the possibility of different
parameter values depending upon occupancy state. Such
heterogeneity cannot be dealt with using typical
covariate modeling because of the uncertainty associated
with the correct covariate value (i.e., true state).

The motivation for developing this modeling ap-
proach has come from biologists, and we believe that the
approach provides an especially useful framework for
assessing questions associated with important ecological
concepts such as source-sink dynamics, dynamics of
disease spread, and changes in the (relative) abundance
distribution of a species. For example, most consider-
ations of source-sink systems view source and sink
locations as fixed, with some patches being inherently
productive and others inherently unproductive, with
status constant over time. Such a view is reasonable for
situations in which habitat is the primary determinant of
reproductive success at a location and habitat is
relatively static. However, if there is temporal variation
in habitat quality with respect to reproductive output,
then similar temporal variation in the identity of
locations that are and are not productive would also
be expected. If animals exhibit fidelity to sites of
previous breeding, then certain phenotypic “costs of
reproduction” (reduced probability of successful repro-
duction in years following successful reproduction)
would be expected to yield specific patterns in state
transition parameters: higher probabilities of sites
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moving from reproductively successful to unsuccessful
and unsuccessful to successful. The combination of
temporal variation in habitat quality and the existence
of reproductive costs could produce patterns of oscilla-
tion in state transition probabilities such as those
observed for the California Spotted Owls.

In many avian species that are not colonial breeders,
an individual’s reproductive success in one breeding
season is believed to serve as a predictor of reproductive
success the next season. Such “predictions” lead to the
pattern of higher fidelity to breeding sites for individuals
that are successful than for those that are not (e.g.,
Greenwood and Harvey 1982, Johnson et al. 1992).
Even in the absence of substantial habitat variation over
time, such behavior would tend to induce a relationship
between reproductive state and occupancy. Sites with
successful reproduction in one year would tend to be
occupied the next, whereas sites without successful
reproduction would be less likely to be occupied the
next year.

One stated assumption of the modeling is that units
are closed to changes in occupancy such that a unit is in
the same occupancy state for the period of repeated
surveys within a season. This is clearly not true in many
situations. However, based on our experience with
occupancy and capture-recapture modeling we believe
that it is reasonable to relax this assumption provided
the interpretation of the parameters is modified accord-
ingly. Note that the consequences of violating the
closure assumption is an ongoing area of research;
hence our following comments are somewhat specula-
tive. When the occupancy state changes within a season,
then detectability is now a combination of the proba-
bility the unit is in a particular state at the time of the
survey and, given it is in that state, the probability of
observing that or a lower order state. When such
changes occur at random (i.e., probability of the unit
being in each state at the time of surveying does not
depend on the true state of the unit at the last survey)
then we believe the interpretation of the state-specific
occupancy-related probabilities is the probability that
that state is the highest reached during the season (i.e.,
the state of a unit may not always be 2, but 2 is the
highest state reached at some point during the survey-
ing). When changes in the occupancy state are expected
to be in one direction during the season (e.g., breeding
may not commence or evidence of breeding may not be
obvious until mid-way through the season, as in the case
with the California Spotted Owls), then the occupancy-
related probabilities should be interpreted as the
probability of being in each state at either the beginning
or end of the season, depending upon the nature of the
changes. We do not know what effect other types of
changes in occupancy state within a season may have on
interpretation of the model parameters, and we suspect
they may introduce some bias. Importantly, if it is
suspected that the closure assumptions are potentially
being violated, that suggests a “season” (from the
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perspective of the modeling) has been defined inappro-
priately (MacKenzie et al. 2006). Good study design
should help avoid such pitfalls. In the case of violation
of closure, reduction of the time between surveys within
a season is a reasonable design response.

Another assumption is that there is no spatial
correlation between units, implying that the occupan-
cy-related vital rates at one unit do not depend upon the
current occupancy state at neighboring or nearby units.
The extension of these methods to account for such
spatial correlation is a current area of research, and
while we agree that such spatial correlations will often
be present in many situations, we also note that such
spatial correlations may not necessarily preclude the use
of these and similar methods. Often such spatial
correlations may be accounted for by using appropriate
covariates, either as a mechanistic explanation for the
correlation or as a surrogate for the possible correlation
structure. For example, occupancy may appear to be
correlated on the landscape, but that is in fact caused by
the distribution of habitat on the landscape, i.e., it is the
habitat that is spatially correlated and units are
relatively independent within habitat types; hence using
habitat as a covariate would account for the apparent
correlation. In another situation one would often expect
different dynamics at units near the edge of a species’
range compared to units near its center. This could be
expressed as a form of spatial correlation, or it may also
be approximated using distance from center of the range
as a covariate for the vital rates of change. We also note
that if inference is primarily at the population (of sample
units) level, provided one has a random sample of units
from the population, even if spatial correlation exists
then resulting estimates from methods that do not
account for it may still be useful if interpreted as average
values for the population.

In addition to addressing ecological questions, we
believe that multistate occupancy modeling has great
potential for use in wildlife management and conserva-
tion. Monitoring is an important component of
informed management, in general, and adaptive man-
agement, in particular (Yoccoz et al. 2001, Williams et
al. 2002, 2007). Specifically, population monitoring is
used in management to estimate system state for the
purpose of (1) making state-dependent decisions, (2)
assessing progress towards management objectives, and
(3) discriminating among competing hypotheses about
population response to management actions (Williams
et al. 2002, 2007, Nichols and Williams 2006). However,
demographic monitoring (e.g., Franklin et al. 2004) is
often not conducted by management agencies because of
the cost in terms of the total personnel required, the
effort required to obtain suitable measures of response
(e.g., survival, reproduction), the requirement of special
technical expertise to obtain some forms of data, the
overall cost, and the time (both short- and long-term
time horizons) required to collect detailed demographic
data. If a species can be reliably detected using sign,

Ecology, Vol. 90, No. 3

sight, or sound, then estimation of state-specific
occupancy is a potentially useful tool for population
monitoring, especially for geographically extensive
management and conservation programs. State-specific
occupancy (state variables are proportions or numbers
of units occupied with and without reproduction; vital
rates are the state transition probabilities) is not
equivalent to demographic monitoring (state variable
is abundance; vital rates are rates of survival, reproduc-
tion, and movement), but actually may be more
appropriate for some management and conservation
programs.

The usual approaches to testing ecological predictions
such as those noted here use inference methods that do
not deal adequately with nondetection or state misclas-
sification. We thus view models such as those developed
here to be important to the progression of ecological
science. Multistate capture-recapture models have be-
come enormously useful since their reintroduction to
ecologists in the early 1990s (e.g., see reviews in
Lebreton and Pradel 2002, White et al. 2006), and this
utility is largely attributable to their flexibility in dealing
with interesting ecological phenomena. We believe that
multistate occupancy models should be similarly attrac-
tive to ecologists and expect them to become widely
used.
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APPENDIX A
Summary of the model selection process on California Spotted Owl data (Ecological Archives E090-056-Al).

APPENDIX B
Posterior distribution summaries for detection probabilities in the green frog example (Ecological Archives E090-056-A2).

SUPPLEMENT
WinBUGS 2.2.0 code for the green frog example (Ecological Archives E090-056-S1).



