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Abstract. Recent extensions of occupancy modeling have focused not only on the
distribution of species over space, but also on additional state variables (e.g., reproducing or
not, with or without disease organisms, relative abundance categories) that provide extra
information about occupied sites. These biologist-driven extensions are characterized by
ambiguity in both species presence and correct state classification, caused by imperfect
detection. We first show the relationships between independently published approaches to the
modeling of multistate occupancy. We then extend the pattern-based modeling to the case of
sampling over multiple seasons or years in order to estimate state transition probabilities
associated with system dynamics. The methodology and its potential for addressing relevant
ecological questions are demonstrated using both maximum likelihood (occupancy and
successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo
estimation approaches (changes in relative abundance of green frogs in Maryland). Just as
multistate capture–recapture modeling has revolutionized the study of individual marked
animals, we believe that multistate occupancy modeling will dramatically increase our ability
to address interesting questions about ecological processes underlying population-level
dynamics.

Key words: California Spotted Owl; green frog; multiple states; occupancy modeling; Rana clamitans;
relative abundance; reproductive state; state transition probabilities; Strix occidentalis occidentalis; system
dynamics.

INTRODUCTION

Issues of imperfect detection have long plagued

studies of species occurrence because of the inability to

separate potentially false and true absences of species at

survey locations. Imperfect detection not only creates

biases in naı̈ve estimates of the true level of occurrence

of a species, but also creates biases in estimated

magnitudes of regression coefficients reflecting associa-

tion of occurrence with other factors (e.g., habitat; Tyre

et al. 2003, Gu and Swihart 2004) and in estimated

probabilities of colonization and local extinction (Moi-

lanen 2002, MacKenzie et al. 2006). Unbiased estimates

of colonization and local extinction probabilities are

essential to an understanding of the underlying dynamic

processes of change in the occurrence of a species over

time. Recent methods that allow for direct estimation of

detection probabilities from repeated presence/absence

(or more correctly, detection/nondetection) surveys each

time period (MacKenzie et al. 2003, 2006, Royle and

Kery 2007) have made it possible to obtain more reliable

inferences about the processes of change in species

occurrence.

These methods were developed for the common

situation in which scientists or managers are simply

interested in the presence or absence of the species across

a landscape. However, in many situations it may be

possible to further classify locations where the species is

present into subcategories that are biologically relevant.

Such subcategories could include breeding/nonbreeding,

presence or absence of a disease or pathogen within the

population, or a categorical index to relative abundance

(few/some/many individuals). From a practical perspec-

tive though, there may be ambiguity not only in the

presence or absence of the species from the field

observations, but also in assignment of the correct

subcategory. For example, observing the species at a

location, but not detecting evidence of breeding, does

not imply breeding is not occurring at that location;

breeding may be occurring but simply was not identified

in that survey. This ambiguity is the result of imperfect

detection of the true state of the occupied locations (e.g.,

breeding/not breeding; imperfect state classification),

and with repeated surveys it is possible to account for

this additional form of imperfect detection.

State misclassification has been recognized by authors

who have been interested in assessing patterns in the

multiple states of species occurrence at a single point in

time. Royle (2004) and Royle and Link (2005) developed
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models for anuran call index data. In their application,

locations were monitored for multiple nights within a

season, and even though a location was capable of

producing a call index of a particular size (due to the size

of the local anuran population), a lower index value may

have been observed on any given night due to breeding

phenology, weather conditions, etc. For example, the

local population may have been of sufficient size to

produce a call index of 2 (e.g., intermediate abundance),

but during the course of the monitoring the maximum

call index reported for that location may have been a 1

(low abundance). Hence, without accounting for imper-

fect detection the maximum observed call indices may

underestimate the true relative abundance level. Nichols

et al. (2007) independently developed a reparameterized

version of the Royle and Link (2005) model to assess the

reproductive success of the California Spotted Owl

(Strix occidentalis occidentalis) in the central Sierra

Nevada, USA. Their interest was not only in whether

the owls were present or absent from potential nesting

territories, but also in whether owls, when present,

successfully reproduced (i.e., further classify presence

into present and breeding or present and not breeding).

As the evidence required to assess successful reproduc-

tion was not guaranteed to be observed on each visit to

an owl territory, naı̈ve estimates of reproductive success

(i.e., those that do not account for imperfect detection)

were likely underestimates.

In this paper we briefly note the similarities between

the methods of Royle and Link (2005) and Nichols et al.

(2007) and then extend these methods to allow

estimation of the dynamic processes of change for both

species presence/absence and between states of occur-

rence (e.g., transitioning from breeding to not breeding

between years or from high to low abundance). We

believe our approach will result in a clearer understand-

ing of the dynamic processes governing a particular

system. We begin with a brief description of the assumed

field situation and basic data requirements, provide a

common framework, and detail how the dynamic

processes of such a system could be modeled. We then

apply these methods to two data sets characterized by

imperfect detection and investigator interest in multiple

states: dynamics of occupancy and reproductive success

of the California Spotted Owl in the Sierra Nevada, and

dynamics of the distribution and relative abundance of

green frog (Rana clamitans) populations inhabiting

wetlands in Maryland, USA.

ASSUMED FIELD SITUATION AND BASIC

DATA REQUIREMENTS

There is some suitably defined geographic unit for

which the intent is to establish the presence or absence of

the species and, conditional on presence, some appro-

priate subcategorization or state classification. These

units may be naturally occurring (e.g., ponds or patches

of habitat) or arbitrarily defined (e.g., quadrats or grid

cells). The complete set of units that are of interest

comprises the statistical population (e.g., all ponds or

grid cells within some specified area). There are S units

within this population, of which a sample of s units will

be surveyed for the species. The s units are selected in

such a manner that it is valid to generalize the

conclusions based upon the sample to the greater

population. Note that in some situations S may be

essentially infinite, while in others S may be very close to

s (i.e., the units surveyed for the species represent a

substantial fraction of population of interest).

The observed occupancy states of the units are

hierarchical in terms of information content about true
state, where the lowest observed state has the greatest

ambiguity about true state (any true state is possible)

and the highest observed state has no ambiguity about
true state. For example, we could order the possible

states as: 0 ¼ unoccupied or species absence; 1 ¼ occu-

pied and not breeding; and 2¼occupied and breeding. If
evidence of breeding is observed (i.e., we observe state 2

on at least one survey) then a unit cannot be in the

unoccupied or nonbreeding states (i.e., true state¼ 2). If
animals are detected in the absence of evidence of

breeding (i.e., maximum observed state ¼ 1), this

precludes the possibility of the unit being unoccupied,
but not the possibility that the species may actually be

breeding within that unit (i.e., true state may be 1 or 2,

but not 0). That is, the potential misclassification of
units from the observed data only extends in one

direction. Finally, a surveyed site at which the species

is not detected during any survey (i.e., maximum
observed state ¼ 0) allows the possibility of any of the

true states, 0, 1, and 2.

At systematic points in time that correspond with the

timescale at which parameters describing the dynamic

processes are to be estimated (e.g., annually or twice per

year), the s units are repeatedly surveyed within a

relatively short period of time, and the observed

occupancy state of the species is recorded during each

survey. Here we follow MacKenzie et al. (2006) and

refer to each of these shorter time periods as a sampling

‘‘season,’’ which may or may not correspond to a more

biologically relevant definition of a ‘‘season.’’ Within

each season we initially assume that the occupancy state

of each unit does not change; hence the repeated surveys

provide multiple opportunities to observe the true

occupancy state (see Discussion for comments on how

this assumption may be relaxed). For example, if unit i is

surveyed twice per season over three seasons, the

resulting detection history (hi) for that unit could be

denoted as: hi ¼ 10 00 21. This history would be

interpreted as: in season one the species was detected

and state 1 observed in the first survey, and the species

was not detected in the second survey (so true state may

be either 1 or 2), the species was undetected in both

surveys in season two (so true state may be 0, 1, or 2),

then detected in both surveys in season three, with

evidence of state 2 being observed in the first survey and
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state 1 observed in the second (so true state has to be 2).

Note that the study may be conducted for a single

season, in which case only the patterns of occurrence can

be investigated, not the processes underlying dynamics

(e.g., Royle 2004, Royle and Link 2005, Nichols et al.

2007).

A SINGLE-SEASON MODEL

The methods used by Royle (2004), Royle and Link

(2005), and Nichols et al. (2007) have the same basic

data requirements outlined above (e.g., repeated survey

data) and the same underlying model structure. The

main difference is how the models are parameterized.

Royle and Link (2005) begin by outlining a very general

model parameterization, before reparameterizing the

structure of the detection probabilities to suit their

application. Nichols et al. (2007) begin with a less

general parameterization, but one that is developed to

address their biological questions of interest. Here we

briefly outline the general approach described by Royle

and Link (2005) for single-season data, then demon-

strate how the model can be tailored to address specific

questions of interest through some reparameterizations.

For simplicity, we develop the modeling in terms of

three possible states (unoccupied and two occupied

states), but note the modeling could be extended to a

greater number of states in an obvious manner.

Let u[m] be the probability that a unit is in occupancy

state m. As these states are mutually exclusive there is

the natural constraint that these probabilities must sum

to 1; hence, two of the probabilities may be inde-

pendently estimated, with the final one obtained by

subtraction. For convenience we shall rewrite the

probability of a state being unoccupied, u[0], as 1 �
u[1] � u[2]. We can therefore write a state probability

vector /0 denoting the probability of being in each state

immediately before the first season of surveying (i.e., at

time t ¼ 0) as

/0 ¼ 1� u½1� � u½2� u½1� u½2�
h i

:

Next, let pl;m
j be the probability of observing unit i in

occupancy state l during survey j given the true

occupancy state is m (this was denoted as pmi by Royle

and Link [2005]). Because we assume that the ambiguity

of the observations only extends in the one direction and

that for any given true state a survey must result in one

of the observed states (i.e., Rm
l¼0 pl;m

j ¼ 1), we have the

following state detection probabilities:

Observed state

True state

0

1

2

$
& 0 1 2

1 0 0

1� p1;1
j p1;1

j 0

1� p1;2
j � p2;2

j p1;2
j p2;2

j

%
’

which in this format we could define as the detection

probability matrix pj or, using these detection probabil-

ities, a state-dependent detection probability vector (ph)

can be defined that expresses the probability of

observing any particular detection history given the true

state of the sampling unit. For example, if hi¼ 120, then,

p120 ¼
0

0

p1;2
1 p2;2

2 ð1� p1;2
3 � p2;2

3 Þ

2
4

3
5

where the first element is the probability of obtaining

this detection history when the true state is 0 (i.e., the

sampling unit is unoccupied) and the final element for

when the true state ¼ 2. Note that as state 2 was

observed in one of the three surveys, this precludes the

possibility that the unit may be unoccupied or in state 1;

hence the respective elements in the vector are 0.

Further, if hi ¼ 010, then

p010 ¼
0

ð1� p1;1
1 Þp

1;1
2 ð1� p1;1

3 Þ

ð1� p1;2
1 � p2;2

1 Þp
1;2
2 ð1� p1;2

3 � p2;2
3 Þ

2
664

3
775

and if hi ¼ 000,

p000 ¼

1

ð1� p1;1
1 Þð1� p1;1

2 Þð1� p1;1
3 Þ

ð1� p1;2
1 � p2;2

1 Þð1� p1;2
2 � p2;2

2 Þð1� p1;2
3 � p2;2

3 Þ

2
664

3
775:

Note that when there is ambiguity as to the true

occupancy state, there is more than one nonzero element

in the detection probability vector. The zero elements in

the detection probability vectors indicate the states that

are not possible for a site, given the observed detection

history.

Rather than use the more general multinomial

structure of the occurrence and/or detection probabili-

ties when there are greater than two true states, in their

applications Royle and Link (2005) and Nichols et al.

(2007) both reparameterized this general model in terms

of a series of conditional binomial probabilities. Royle

and Link (2005) reparameterized the detection proba-

bilities as follows (note that subscripts denoting survey

number have been removed for simplicity):

Observed state

True state

0

1

2

$
& 0 1 2

1 0 0

1� p½1� p½1� 0

ð1� b1;2Þð1� p½2�Þ b1;2ð1� p½2�Þ p½2�

%
’

where p[m] is the probability of correctly observing the

true state m and bl,m is the probability of observing state

l, conditional upon the observed state being less than or

equal to l and the true state m (note that the parameters

have been denoted slightly differently here to that used

by Royle and Link [2005]). Nichols et al. (2007) used a

slightly different parameterization, with the multinomial

detection probabilities redefined as follows:
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Observed state

True state

0

1

2

$&
0 1 2

1 0 0

1� p½1� p½1� 0

1� p½2� p½2�ð1� dÞ p½2�d

%’

where p[m] is now the probability of detecting the species

(i.e., the observed state is �1) given the true state is m,

and d is the probability of observing the true state given

the species has been detected and the true state¼ 2 (i.e.,

in their application, the probability of observing

evidence of successful reproduction in a survey, given

owls have been detected).

Nichols et al. (2007) also reparameterized the

multinomial occupancy probabilities, as their objective

was to estimate the probability of successful reproduc-

tion occurring at a potential territory, given that the

territory was occupied. Hence they defined the prob-

ability of occupancy as w ¼ u[1] þ u[2] and the

probability of being in state 2, given the site is occupied

(i.e., the conditional probability of successful repro-

duction), as R ¼ u[2]/w; hence the state probability

vector becomes

/0 ¼ ½1� w wð1� RÞ wR�:

We believe that in many situations the conditional

binomial parameterizations may be more natural and

advantageous, particularly when exploring covariate

relationships. However, it is useful to consider the more

general formulation of the problem as this provides a

framework upon which other reparameterizations or

constraints on parameters might be imposed.

EXTENDING TO MULTIPLE SEASONS

Within any given season, conditional upon the true

state of a unit, detection probabilities can be defined as

noted previously. The most important issue is to

consider the transition of a unit from one true state to

another between seasons, which can be done by defining

a transition probability matrix (TPM). The TPM

determines the probability of a unit being in each

possible true state at time t þ 1 given the true state at

time t. For example, this could be defined as

TPM ¼
0! 0 0! 1 0! 2

1! 0 1! 1 1! 2

2! 0 2! 1 2! 2

2
4

3
5

where rows represent the true state of a unit at time t

and columns the true state of the unit at time tþ 1. This

can be considered as an extension of the MacKenzie et

al. (2003) approach, where rather than just two states

(presence/absence), there are more than two. Hence, if

the probability of a unit transitioning from state m at

time t to n at time t þ 1 is denoted as u½m;n�t , then the

TPM with three possible states could be defined as

follows:

/t ¼
u½0;0�t u½0;1�t u½0;2�t

u½1;0�t u½1;1�t u½1;2�t

u½2;0�t u½2;1�t u½2;2�t

2
64

3
75:

Note that each row of the TPM must sum to 1, so in

practice one value in each row would have to be

obtained by subtraction. Further, when there are only

two possible states (e.g., presence/absence), then u½0;1�t is

the probability a unit becomes colonized by the species

and u½1;0�t is the probability of the species going locally

extinct at the unit.

Once again, dependent upon the biological questions

of interest, it may be reasonable to reparameterize the

TPM. For example, if state 2 represents occupied with

breeding, state 1 occupied with no breeding, and state 0

unoccupied, then the TPM could be defined as

/t ¼
1� w½0�tþ1 w½0�tþ1ð1� R

½0�
tþ1Þ w½0�tþ1R

½0�
tþ1

1� w½1�tþ1 w½1�tþ1ð1� R
½1�
tþ1Þ w½1�tþ1R

½1�
tþ1

1� w½2�tþ1 w½2�tþ1ð1� R
½2�
tþ1Þ w½2�tþ1R

½2�
tþ1

2
664

3
775

where w½m�tþ1 is the probability of a unit being occupied in

season tþ 1 given the unit was in state m in season t and

R
½m�
tþ1 is the probability of reproduction occurring at a

unit in season t þ 1 given the unit was in state m in

season t. Such a reparameterization might be advanta-

geous to investigate hypotheses about whether the

probability of reproduction occurring in a unit depends

on whether reproduction occurred there in the previous

year. Finally we note that the TPM can be used as the

basis for a population model of occupancy dynamics

(Martin et al. 2009), with the transpose of the TPM

being analogous to a stage-based population projection

matrix in abundance-based population models (e.g.,

Caswell 2001).

MODELING DATA AND PARAMETER ESTIMATION

To apply the modeling to data, two general approach-

es are available. The first approach considers the

unconditional probability of observing each particular

detection history and then determines the joint proba-

bility for all units. This joint probability may then be

used within a Bayesian method of analysis or considered

as the model likelihood, in which case, maximum

likelihood estimates of the model parameters could be

obtained.

For any observed detection history, the unconditional

probability of observing the data simply considers all

possible outcomes for the observed data and sums the

probabilities for each possible outcome (formally this is

known as integrating across the possible outcomes). For

example, suppose in a single-season study a unit was

surveyed four times. Three possible detection histories

are given in Table 1, along with their verbal descriptions

and the unconditional probabilities of observing them.

Note that to obtain the probability we are simply

translating the verbal description into a mathematical
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expression using the defined model parameters. When-

ever an ‘‘or’’ occurs in the verbal description, another

term is added to the probability statement.

This same principle can be extended to multiseason

data as well. For example, consider the detection history

hi ¼ 10 21 00 representing a unit that was surveyed for

three seasons, with two surveys per season. In the first

season, the unit may have been in state 1 with state 1

detected in the first survey and the species undetected in

the second survey or the unit was actually in state 2 with

state 1 detected in the first survey and nondetection in

the second survey. In season two, the unit must have

been in state 2, with state 2 being detected in the first

survey and state 1 detected in the second survey (so

the possible state transitions between seasons are

1 ! 2 or 2 ! 2). In the final season, the unit may be

in any of the three possible states as the species was not

detected in either survey (so possible state transitions are

2 ! 0, 2 ! 1, and 2 ! 2). To obtain the probability of

observing this detection history we again translate this

verbal description of the history using the model

parameters (for the more general formulation) defined

above, i.e.,

Prðhi ¼ ½10 21 00�Þ

¼
�
u½1�p1;1

1 ð1� p1;1
1 Þu

½1;2�
1 þ u½2�p1;2

1 ð1� p1;2
1 � p2;2

1 Þu
½2;2�
1 �

3 p2;2
2 p1;2

2

3½u½2;0�2 þ u½2;1�2 ð1� p1;1
3 Þ

2 þ u½2;2�2 ð1� p1;2
3 � p2;2

3 Þ
2

�
:

Note that the term in the first square brackets represents

the probabilities of the unit being in either state 1 or 2 in

season one, then transitioning to state 2 in season two.

The middle term represents the probability of the

observations, given the unit must have been in state 2

in season two, while the final term in the second set of

square brackets is the probability of transitioning to any

of the three states from state 2 between seasons two and

three and the respective probabilities of nondetection.

Following MacKenzie et al. (2003), the unconditional

probability can be expressed succinctly using matrix

notation, i.e.,

PrðhjhÞ ¼ /0

YT�1

t¼1

Dðph;tÞ/t

" #
ph;T

where ph,t is the detection probability vector for the

portion of the full detection history observed in season t,

and D(ph,t) is a diagonal matrix with the elements of ph,t
on the main diagonal (top left to bottom right) and zero

elsewhere. Assuming the detection histories are inde-

pendent for each unit, the joint probability for the data

(and the model likelihood) is

Prðh1; h2; . . . hsjhÞ ¼ Lðhjh1; h2; . . . hsÞ ¼
Ys

i¼1

PrðhijhÞ

where h denotes all the parameters in the model.

The second approach is to consider the true state of a

unit each season to be a latent (unknown) variable and

use a state-space approach to predict or impute the true

state each season wherever there is ambiguity in the

observed data. Practically this necessitates the use of

Markov chain Monte Carlo (MCMC) approaches and

Bayesian methods of statistical inference. To aid the

development of this approach it is convenient to

reformulate the model in terms of random variables.

In season t, the true state of unit i is a random variable

(zi,t) from one trial of a multinomial distribution. In

season one, the probability of being in each possible

state is defined by the vector /0, while in subsequent

seasons (t ¼ 2, 3, . . . , T ) it is the vector given by row

TABLE 1. Example multistate detection histories (hi) from a single-season study with associated verbal descriptions and the
unconditional probabilities of observing them (probability statement).

hi Verbal description Probability statement

1201 The unit was in state 2, with state 1 being observed
in the first and fourth survey, state 2 observed in the
second survey, and the species was undetected in the
third survey.

u½2�p1;2
1 p2;2

2 ð1� p1;2
3 � p2;2

3 Þp
1;2
4

0110 The unit may have been in state 2, with the species
undetected in the first and fourth surveys and state 1
observed in the second and third surveys,

u½2�ð1� p1;2
1 þ p2;2

1 Þp
1;2
2 p1;2

3 ð1� p1;2
4 � p2;2

4 Þ

or
the unit may have been in state 1, with the species
undetected in the first and fourth surveys and state 1
observed in the second and third surveys.

þ u½1�ð1� p1;1
1 Þp

1;1
2 p1;1

3 ð1� p1;1
4 Þ

0000 The unit may have been in state 2, with the species
undetected in all four surveys,

u½2�
Y4

j¼1

ð1� p1;2
j � p2;2

j Þ

or
the unit may have been in state 1, with the species
undetected in all four surveys,

þ u½1�
Y4

j¼1

ð1� p1;1
j Þ

or
the species may be absent from the unit (state 0). þ 1� u½1� � u½2�

Note: See A single-season model for parameter definitions.
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zi,t–1 of /t�1(/t�1[zi,t�1, . . .]), i.e.,

zi;1 ; multð/0; 1Þ zi;tjzi;t�1 ; multð/t�1½zi;t�1; . . .�; 1Þ:

Then, given the (imputed) true state of a unit in

season t, the observed state in survey j of unit i is a

random variable (hi,t,j) from one trial of a multinomial

distribution with probabilities given by the appropriate

row (based on true state, row zi,t) of the detection

probability matrix pt,j, i.e.,

hi;t;j ; multðpt;j½zi;t; . . .�; 1Þ:

One advantage of the state-space approach is that as

the true state of each unit is predicted each season (with

different true states being predicted when there is

ambiguity as the Markov chain progresses), relevant

summaries of the system, such as number of units in

state 2, can be calculated relatively easily. Similar

approaches have been used by Dupuis (1995) and

Schofield et al. (2009) for multistate capture–recapture

data, Royle and Kery (2007) for single-occupancy state

dynamics problems, and Dorazio et al. (2006) for

estimating species richness and accumulation. It is

important to realize that the state-space and uncondi-

tional probability approaches are equivalent, as the

latter also can be developed in terms of latent variables,

with the unconditional probability resulting from

integrating the probability of observing the detection

history across the possible values for the latent variable.

Therefore, both approaches yield the same results,

although with more complex models the state-space

approach will be much easier to implement.

To illustrate that either approach may be used to

implement this model, in the following examples we use

the unconditional probability approach with maximum

likelihood theory to analyze data on California Spotted

Owls and the state-space approach on call index data of

green frogs from the North American Amphibian

Monitoring Program (NAAMP). The maximum likeli-

hood approach can be implemented using Program

PRESENCE (available online),6 and we provide our

WinBUGS code for implementing the state-space

approach as a Supplement to this paper.

COVARIATES AND ‘‘MISSING’’ OBSERVATIONS

Relevant information on factors that may affect

occurrence-related and detection-related probabilities

may be incorporated through various link functions

(functions that transform a regression equation with

covariates from the 6 infinity scale to the interval [0, 1]).

There is a range of possible link functions available,

although we note the logit and multinomial-logit link

functions may often be preferred, as these correspond to

logistic and multinomial-logistic regression. The exact

choice of link function depends on parameterization of

the model, which is likely to be application-specific.

Hence, rather than discuss these options, we simply note

that the inclusion of covariates is easily accomplished.

The basic sampling methodology is that within each

season, each sampling unit will be surveyed multiple

times. MacKenzie et al. (2006) show that there is no

requirement of an equal sampling effort across all units,

in all seasons. Field logistics may preclude surveying all

sites an equal number of times, the study may have been

designed such that some units are surveyed more

intensively than others, changes in funding may result

in more/fewer units being surveyed in certain years, or

other unpredicted events (e.g., weather or vehicle

breakdowns) may result in some planned surveys not

being completed. We consider these possibilities as

examples of situations that result in ‘‘missing’’ observa-

tions. Essentially the survey occasions that correspond

to the missing observations at a unit are skipped with

neither a p nor a 1 � p being included in the detection

probability vector, as there is no information regarding

the detection or nondetection of the species. An

alternative mathematical explanation for how the

modeling deals with missing observations is that for

that survey occasion the species was not detected in any

state (which occurs with probability 1� p), but because

no survey was conducted, detection probability for that

unit at that occasion was zero, so the probability of

nondetection was 1� 0¼ 1. Provided that the cause for

the missing observation is independent of the parameters

and quantities of interest in the model, it is not necessary

to explicitly account for the missing observations within

the analysis. An example in which such a dependency

exists (and hence should be avoided) is if budget cuts

necessitate a reduction in the number of sampling units

being monitored and investigators respond by discon-

tinuing monitoring of those units they think are

unoccupied by the species (i.e., knowledge about the

likely occupancy state of units is used to determine

which ones will become ‘‘missing’’ observations).

EXAMPLE 1: CALIFORNIA SPOTTED OWLS

We apply the above model to data from daytime visits

to potential California Spotted Owl territories from

April to August 1997–2004 at the Eldorado study area in

the central Sierra Nevada, California, USA. Seamans et

al. (2001) and Franklin et al. (2004) describe Spotted

Owl population dynamics and sampling protocols for

this study area. The protocols include locating adult and

subadult owls on each visit to a potential territory. Once

located, an owl is offered a live mouse and then visually

followed after the mouse is taken. Definitive evidence of

reproductive activity is provided when owls take mice to

a nest or to young and young are observed. Non-

reproducing owls usually eat or cache mice, but such

behavior during a single visit may not be indicative of a

failure to reproduce.

We used the same parameterization as Nichols et al.

(2007), in which the probability of a territory being

unoccupied, occupied without reproduction, or occupied6 hhttp://www.mbr-pwrc.usgs.gov/software.htmli
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with reproduction was modeled using two parameters:

the probability a site was occupied (w) and the

probability of successful reproduction occurring at the

territory given that the territory was occupied (R). We

used this structure for both the initial state vector

(probabilistic statement for the state of a site the first

year of the study) and for the state transition matrix,

TPM, where the occupancy and reproduction probabil-

ities may depend on the true state in the previous year

(e.g., probability of a territory being occupied with no

reproduction in year t þ 1 could be different if the

territory was unoccupied in year t vs. occupied with

reproduction in year t). Detection probabilities were also

parameterized as in Nichols et al. (2007), with p[2]

defined as the probability of detecting owls in a survey of

a territory that was occupied with reproduction, and d as

the probability of observing the evidence of reproduc-

tion in a survey given that owls were detected. For

simplicity, p[2] and p[1] were assumed to vary among

years but not within years (although within-year

variation could be allowed), while d was allowed to

have a different value for surveys conducted early in the

season (dE) vs. late in the season (dL). From preliminary

modeling, dE was found to be essentially zero in all years

so only a single value was estimated in the models

reported below, while dL was allowed to vary among

years.

To illustrate the ecological relevance of this type of

modeling, here we examine whether the occupancy and

reproduction probabilities vary annually and/or depend

upon the state of the territory in the previous year. Lack

of annual variation in occupancy may suggest the system

has reached some point of dynamic equilibrium (as time

constancy in the Markovian vital rates results in a

stationary distribution), and that was indeed an a priori

hypothesis for the owl population, as habitat conditions

were relatively stable over the course of the study.

Dependency on previous territory state would indicate

that system vital rates follow some type of Markov

process, although the exact nature of the process would

depend upon parameter estimates. Based on the general

fidelity of California Spotted Owls to territories, we

hypothesized that occupancy would be more likely for

territories occupied the previous season. We also

predicted that occupancy would be somewhat more

likely for territories in which successful reproduction

occurred the previous season than for territories in

which successful reproduction did not occur. This

prediction is based on general evidence for many avian

species that fidelity to nesting locations is reduced

following unsuccessful reproductive attempts (Green-

wood and Harvey 1982, Johnson et al. 1992) and on

specific observations of California Spotted Owls (Bla-

kesley et al. 2006). We also predicted that territories that

were occupied with reproduction in year t would tend to

have higher probabilities of reproduction in year t þ 1

than territories in the other states in year t. The

mechanisms underlying this hypothesis include the

possibilities that such territories were of high quality

(e.g., they were ‘‘sources’’ [Pulliam 1988]; or they made

relatively large contributions to system growth [Runge

et al. 2006]) and that high-quality owls show fidelity to

territory sites, especially sites at which they were

successful the previous season. In contrast, if the

probability of reproduction in year t þ 1 was lower in

territories where reproduction occurred in year t

compared to other territories, that might suggest a

biennial breeding cycle (e.g., see Franklin et al. 2004) or

perhaps a ‘‘cost’’ of successful reproduction imposed on

subsequent breeding attempts (e.g., energetic costs).

Reproductive success is believed to be more sensitive to

environmental variation than is occupancy; hence, we

did not expect the time constancy models for reproduc-

tion to be well supported.

Twenty-four models involving various constraints on

the occupancy and reproductive probabilities were fit to

the owl data. Note that these constraints were not

applied to the occupancy and reproductive probabilities

associated with the first year’s data because the state of

territory in the previous year was unknown. Models

were ranked using Akaike’s Information Criterion

(AIC), with the top two models accounting for 99% of

the AIC model weight (Appendix A). Both models had

the probability of occupancy in year t þ 1 depending

only on the state of a territory in year t and the

probability of reproduction varying by both state in year

t and time. In the second-ranked model, with 8% AIC

weight, the effect of state on reproduction was consistent

in each year (i.e., an additive model) while in the top-

ranked model, with 91% AIC model weight, the effect of

state on reproduction was different in each year (i.e., an

interaction model). All other models had essentially no

support, providing very strong evidence that occupancy

dynamics were at some point of equilibrium (as time was

not an important factor in either model), but reproduc-

tion dynamics were not. To account for model selection

uncertainty we obtained model-averaged estimates of

parameters (Burnham and Anderson 2002). We estimat-

ed approximate 95% confidence intervals by calculating

symmetric intervals on the logit scale (as 62 SE), then

back-transforming the resulting estimates to the prob-

ability scale. This resulted in confidence intervals that

were appropriately asymmetric and bounded by 0 and 1;

however, if the estimated probability was very near 0 or

1, the resulting confidence interval might be unreliable.

In 1997, the estimated probability of a territory being

occupied was 0.89 (95% CI ¼ 0.77, 0.95) and the

estimated probability of reproduction occurring was

0.47 (0.31, 0.62). The estimated probability of a territory

being occupied in year tþ 1 given its state in year t were

0.17 (0.11, 0.26), 0.87 (0.79, 0.92), and 0.91 (0.83, 0.95)

for territories that were unoccupied, occupied without

reproduction, and occupied with reproduction in year t,

respectively. As predicted, the probabilities of occupan-

cy were much higher for territories occupied the

previous year, although the occurrence of reproduction
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in the previous year did not appear to be an important

determinant of occupancy given the similarity of the

latter two estimates.

Fig. 1 presents the estimated probabilities of

successful reproduction in each year given the occu-

pancy state of the territories in the previous year. For

sites that were unoccupied in year t, the estimated

probability of successful reproduction in year t þ 1

approached 0 for most years, except for R̂
½0�
1999, when

one territory was observed to have successful repro-

duction without the species having been detected there

in the previous year. This pattern indicated the relative

rarity of colonizing a territory and successfully

reproducing the same season. Note that the very wide

confidence intervals when the estimated probability

was 0 should be ignored and was an artifact of first

calculating them on the logit scale. In each case the

standard error for each estimate was essentially 0. The

probability of successful reproduction for territories

that were occupied the previous year showed an

interesting tendency to alternate between higher values

for territories with and without successful reproduction

the previous year. That is, during some years the

probability of successful reproduction was higher for

territories that were successful the previous year,

whereas in other years it was higher for territories that

were unsuccessful the previous year. These results were

consistent with previous studies of Spotted Owls that

show territory quality varies within owl populations

(Franklin et al. 2000, Seamans and Gutiérrez 2007a)

and variability in annual reproduction is highly

correlated to environmental variation (Seamans and

Gutiérrez 2007b).

Estimated detection probabilities (Table 2) were

relatively high and tended to be greater for territories

in which successful reproduction occurred. The proba-

bility of correctly classifying a state when successful

reproduction occurs was estimated to be zero for all

early-season surveys, but was estimated to be generally

high for late-season surveys, except in 1999 and 2003,

which highlights the need to consider time specificity of

classification probability.

EXAMPLE 2: GREEN FROGS IN MARYLAND

In this second example we fit models to chorus index

data gathered under the North American Amphibian

Monitoring Program (NAAMP; see Weir and Mossman

[2005] for sampling protocol details) for the green frog,

Rana clamitans, in Maryland, USA, from 2001 to 2005.

Royle and Link (2005) present an analysis of the 2001

NAAMP data for the green frog. The NAAMP is an

amphibian sampling program consisting of 24.1-km

routes along secondary or smaller roads. Each route

includes 10 listening stations spaced at least 0.8 km

apart. Some routes have assigned equidistant (0.8 km)

listening stations, whereas others have listening stations

within hearing distance of wetland habitat. Observers

FIG. 1. Model-averaged estimates of the probability of successful reproduction (R) in each year given the occupancy state of a
territory in the previous year for California Spotted Owls in Sierra Nevada, California, USA. Squares indicate the probability for
territories that were unoccupied in the previous year, triangles for territories that were occupied without successful reproduction,
and circles for territories that were occupied with successful reproduction. Error bars indicate approximate 95% confidence
intervals.
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begin surveys no earlier than 30 min after sunset; they

proceed along the route stopping to listen for amphib-

ians for 5 min at each listening station or ‘‘stop.’’

Observers record chorus indices of ‘‘0’’ for species that

are not detected at a stop, ‘‘1’’ if individuals can be

counted, ‘‘2’’ if individual calls can be distinguished with

some overlapping, and ‘‘3’’ if a full chorus is present with

constant, overlapping calls. It is assumed that each stop

is capable of generating a maximum chorus index of

either 0, 1, 2, or 3 during a season, which represents the

true state of a stop. However, on any given evening

when a stop may be surveyed, the level of green frog

activity recorded by an observer may be less than or

equal to this true maximal value, e.g., local abundance is

sufficient to generate a maximum chorus index of 2

during the breeding season, but the level of calling

activity at the time of the survey may result in either a 0,

1, or 2 being observed. The number of stops surveyed

each year was 240, 280, 250, 270, and 250 from 2001 to

2005, respectively. Each stop was surveyed three times

annually with one survey early, middle, and late in the

breeding season. We expected within-season variation in

detection probabilities because of the frog’s breeding

phenology.

We implemented the modeling using the state-space

(or latent variable) approach described using the

software WinBUGS. Rather than using a series of

conditional binomial probabilities to model the occu-

pancy state-related probabilities (as in the previous

example), we used a general parameterization in which

both the initial occupancy state vector u0 and each row

of the TPM ut have a multinomial structure (i.e., we are

estimating the parameters u[m] and u½m;n�t defined earlier).

In this context u[m] represented the probability that a

stop supported a population of green frogs capable of

producing a maximum call index of size m in 2001, and

u½m;n�t represented the probability that the green frog

population at a stop that was capable of producing a

maximum call index of size m in year t was capable of

producing a maximum call index of size n in year tþ 1.

We also maintained a general multinomial structure for

detection probabilities in which the probabilities were

allowed to vary both within a season and among years

without any constraints. Naturally simpler models for

detection probabilities could be investigated in a detailed

analysis, and the influence of such constraints on the

results could be assessed.

We specified a uniform prior distribution (equivalent

to a beta(1,1) distribution) for probabilities associated

with events that have only two possible outcomes and a

Dirichlet prior distribution with all parameters equal to

1 for probabilities associated with events with more than

two outcomes. The Dirichlet distribution is a multivar-

iate extension of the beta distribution. Two chains of

50 000 iterations were used to approximate the posterior

distributions of the model parameters after discarding

an initial 10 000 iterations of each chain as the burn-in

period. The chains demonstrated good mixing and

convergence was achieved rapidly.

We assume that the state variables of interest in this

example are the number of stops capable of generating

call indices of 0, 1, 2, and 3, with the intent of using this

as an index of trends in relative abundance. Note that

the numbers of stops within each state each season are

not parameters of the model described above; however,

these could be obtained by using the output of the

model, applying appropriate algebra, and invoking

(further) asymptotic approximations to derive standard

errors for the resulting estimates. Alternatively, recall

that when using the state-space approach with MCMC

methods, the true state of a sampling unit is imputed for

each iteration of the Markov chain as a useful by-

product of estimating the transition probabilities and

other parameters. Hence, using the state-space approach

to obtain estimates of the number of stops within each

state each season requires just a simple summation. The

uncertainty in these quantities associated with estima-

tion of the underlying vital rates (transition probabili-

ties) and imperfect detection is automatically accounted

for by the MCMC machinery and does not require any

asymptotic assumptions. Therefore, it is possible to

directly obtain posterior distributions for the estimated

number of stops capable of generating each index value

each year.

Fig. 2 presents summaries of the posterior distribution

for the number of NAAMP stops in Maryland predicted

to be capable of generating chorus indices of 0, 1, 2, or 3

from 2001 to 2005. Note that even though a different

number of stops were surveyed each year, predictions

about the likely state of unsurveyed stops have been

made as part of the estimation procedure so no

TABLE 2. Model-averaged estimates of detection and classification probabilities (with SE in parentheses) for the California
Spotted Owl example.

Parameter

Year

1997 1998 1999 2000 2001 2002 2003 2004

p
½1�
t 0.75 (0.04) 0.56 (0.06) 0.89 (0.08) 0.55 (0.06) 0.66 (0.04) 0.55 (0.08) 0.48 (0.09) 0.62 (0.04)

p
½2�
t 0.91 (0.03) 0.79 (0.04) 0.30 (0.07) 0.87 (0.03) 0.97 (0.03) 0.79 (0.03) 0.74 (0.05) 0.80 (0.04)

dE;t 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

dL;t 0.93 (0.04) 0.79 (0.06) 0.17 (0.15) 0.83 (0.05) 0.85 (0.08) 0.84 (0.04) 0.26 (0.10) 0.85 (0.05)
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adjustment is needed to account for the unequal sample

sizes. From these results, there is little indication of a

strong trend in the number of stops of each type,

suggesting that perhaps the system is relatively stable,

with a reasonably consistent pattern of the number of

stops decreasing as the maximum chorus index increases

(i.e., most stops are predicted to generate a chorus index

of 0, or green frogs are essentially absent, with few stops

capable of generating a chorus index of size 3).

However, these results are characterized by a relatively

large degree of uncertainty about the estimated number

of stops in each state. This is due to only three surveys

being conducted at each stop per year and the

probability of detection generally being fairly low

(Appendix B). A greater number of surveys per year

would improve the precision on the estimated number of

stops capable of generating each chorus index for green

frogs. The probability of detection and correct state

classification is low in period one and increases in the

later periods, reflecting the relatively late breeding of

green frogs. Finally note that the probability of

nondetection tends to decrease as the true state

increases, which is what would be expected if the chorus

index is a reasonable indication of relative abundance

and if there is abundance-induced heterogeneity in the

probability of detection of green frogs (at the species

level) among stops.

DISCUSSION

Scientists and managers are often interested in more

than just occurrence of a species on a landscape, such as

specific types or categories of occupancy (e.g., breed-

ing/nonbreeding or some index of relative abundance).

The ability to reliably estimate and model the dynamic

processes of change in occupancy states through time,

while accounting for imperfect detection, should lead to

better scientific understanding of systems and greater

information for management decisions. The method we

detail above is one approach for situations in which

there is ambiguity about the true occupancy state of a

sampling unit.

As with all estimation problems, the reliability of

parameter estimates depends upon the amount of

information contained in the data about those param-

eters. Obtaining reliable estimates of the probabilities

for infrequent transitions will require a larger sample

size compared to transitions that occur more frequently.

Therefore, as one increases the number of possible

FIG. 2. Posterior distribution for the number of North American Amphibian Monitoring Program (NAAMP) stops in
Maryland, USA (from the 280 surveyed), with populations of green frogs capable of generating chorus indices of 0, 1, 2, and 3.
Darker shading indicates bars that are within the central 50% of the posterior distribution. The widths of the bars indicate relative
frequencies that are comparable between years within each chorus index, but not between indices.
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occupancy states, required sample sizes will also

increase. This is clearly a design issue that should be

considered (ideally) before fieldwork commences to

determine the level of sampling required that will

provide sufficient information for the objectives at hand.

However we note that because of imperfect detection,

greater improvements to parameter estimates may be

obtained by increasing the number of repeated surveys

before increasing the number of units sampled. Our

examples partially illustrate this point. For the Cal-

ifornia Spotted Owl we were able to make reasonable

inferences about occupancy and reproductive dynamics

based on only 66 sampling units (potential territories)

but relatively high detection probabilities. Whereas for

the green frogs, despite a larger number of sampling

units (280), because detection probabilities were low and

only three repeat surveys were conducted, resulting

estimates still had a relatively high degree of uncertainty.

Although we view the primary use of these models as

a means of asking interesting ecological questions, we

note that even in the absence of interesting ecology, the

use of multistate occupancy models can be viewed as a

means of dealing with heterogeneous probabilities of

detection, occupancy, and transition parameters (e.g.,

local extinction and colonization). The basic dynamic

occupancy models of MacKenzie et al. (2003, 2006)

assume constancy of parameters for all units or at least

constant relationships between parameters and sampling

unit covariates. Multistate models can be viewed as an

approach for dealing with heterogeneity among occu-

pied units by admitting the possibility of different

parameter values depending upon occupancy state. Such

heterogeneity cannot be dealt with using typical

covariate modeling because of the uncertainty associated

with the correct covariate value (i.e., true state).

The motivation for developing this modeling ap-

proach has come from biologists, and we believe that the

approach provides an especially useful framework for

assessing questions associated with important ecological

concepts such as source–sink dynamics, dynamics of

disease spread, and changes in the (relative) abundance

distribution of a species. For example, most consider-

ations of source–sink systems view source and sink

locations as fixed, with some patches being inherently

productive and others inherently unproductive, with

status constant over time. Such a view is reasonable for

situations in which habitat is the primary determinant of

reproductive success at a location and habitat is

relatively static. However, if there is temporal variation

in habitat quality with respect to reproductive output,

then similar temporal variation in the identity of

locations that are and are not productive would also

be expected. If animals exhibit fidelity to sites of

previous breeding, then certain phenotypic ‘‘costs of

reproduction’’ (reduced probability of successful repro-

duction in years following successful reproduction)

would be expected to yield specific patterns in state

transition parameters: higher probabilities of sites

moving from reproductively successful to unsuccessful

and unsuccessful to successful. The combination of

temporal variation in habitat quality and the existence

of reproductive costs could produce patterns of oscilla-

tion in state transition probabilities such as those

observed for the California Spotted Owls.

In many avian species that are not colonial breeders,

an individual’s reproductive success in one breeding

season is believed to serve as a predictor of reproductive

success the next season. Such ‘‘predictions’’ lead to the

pattern of higher fidelity to breeding sites for individuals

that are successful than for those that are not (e.g.,

Greenwood and Harvey 1982, Johnson et al. 1992).

Even in the absence of substantial habitat variation over

time, such behavior would tend to induce a relationship

between reproductive state and occupancy. Sites with

successful reproduction in one year would tend to be

occupied the next, whereas sites without successful

reproduction would be less likely to be occupied the

next year.

One stated assumption of the modeling is that units

are closed to changes in occupancy such that a unit is in

the same occupancy state for the period of repeated

surveys within a season. This is clearly not true in many

situations. However, based on our experience with

occupancy and capture-recapture modeling we believe

that it is reasonable to relax this assumption provided

the interpretation of the parameters is modified accord-

ingly. Note that the consequences of violating the

closure assumption is an ongoing area of research;

hence our following comments are somewhat specula-

tive. When the occupancy state changes within a season,

then detectability is now a combination of the proba-

bility the unit is in a particular state at the time of the

survey and, given it is in that state, the probability of

observing that or a lower order state. When such

changes occur at random (i.e., probability of the unit

being in each state at the time of surveying does not

depend on the true state of the unit at the last survey)

then we believe the interpretation of the state-specific

occupancy-related probabilities is the probability that

that state is the highest reached during the season (i.e.,

the state of a unit may not always be 2, but 2 is the

highest state reached at some point during the survey-

ing). When changes in the occupancy state are expected

to be in one direction during the season (e.g., breeding

may not commence or evidence of breeding may not be

obvious until mid-way through the season, as in the case

with the California Spotted Owls), then the occupancy-

related probabilities should be interpreted as the

probability of being in each state at either the beginning

or end of the season, depending upon the nature of the

changes. We do not know what effect other types of

changes in occupancy state within a season may have on

interpretation of the model parameters, and we suspect

they may introduce some bias. Importantly, if it is

suspected that the closure assumptions are potentially

being violated, that suggests a ‘‘season’’ (from the
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perspective of the modeling) has been defined inappro-

priately (MacKenzie et al. 2006). Good study design

should help avoid such pitfalls. In the case of violation

of closure, reduction of the time between surveys within

a season is a reasonable design response.

Another assumption is that there is no spatial

correlation between units, implying that the occupan-

cy-related vital rates at one unit do not depend upon the

current occupancy state at neighboring or nearby units.

The extension of these methods to account for such

spatial correlation is a current area of research, and

while we agree that such spatial correlations will often

be present in many situations, we also note that such

spatial correlations may not necessarily preclude the use

of these and similar methods. Often such spatial

correlations may be accounted for by using appropriate

covariates, either as a mechanistic explanation for the

correlation or as a surrogate for the possible correlation

structure. For example, occupancy may appear to be

correlated on the landscape, but that is in fact caused by

the distribution of habitat on the landscape, i.e., it is the

habitat that is spatially correlated and units are

relatively independent within habitat types; hence using

habitat as a covariate would account for the apparent

correlation. In another situation one would often expect

different dynamics at units near the edge of a species’

range compared to units near its center. This could be

expressed as a form of spatial correlation, or it may also

be approximated using distance from center of the range

as a covariate for the vital rates of change. We also note

that if inference is primarily at the population (of sample

units) level, provided one has a random sample of units

from the population, even if spatial correlation exists

then resulting estimates from methods that do not

account for it may still be useful if interpreted as average

values for the population.

In addition to addressing ecological questions, we

believe that multistate occupancy modeling has great

potential for use in wildlife management and conserva-

tion. Monitoring is an important component of

informed management, in general, and adaptive man-

agement, in particular (Yoccoz et al. 2001, Williams et

al. 2002, 2007). Specifically, population monitoring is

used in management to estimate system state for the

purpose of (1) making state-dependent decisions, (2)

assessing progress towards management objectives, and

(3) discriminating among competing hypotheses about

population response to management actions (Williams

et al. 2002, 2007, Nichols and Williams 2006). However,

demographic monitoring (e.g., Franklin et al. 2004) is

often not conducted by management agencies because of

the cost in terms of the total personnel required, the

effort required to obtain suitable measures of response

(e.g., survival, reproduction), the requirement of special

technical expertise to obtain some forms of data, the

overall cost, and the time (both short- and long-term

time horizons) required to collect detailed demographic

data. If a species can be reliably detected using sign,

sight, or sound, then estimation of state-specific

occupancy is a potentially useful tool for population

monitoring, especially for geographically extensive
management and conservation programs. State-specific

occupancy (state variables are proportions or numbers

of units occupied with and without reproduction; vital

rates are the state transition probabilities) is not
equivalent to demographic monitoring (state variable

is abundance; vital rates are rates of survival, reproduc-

tion, and movement), but actually may be more

appropriate for some management and conservation
programs.

The usual approaches to testing ecological predictions

such as those noted here use inference methods that do

not deal adequately with nondetection or state misclas-
sification. We thus view models such as those developed

here to be important to the progression of ecological

science. Multistate capture-recapture models have be-

come enormously useful since their reintroduction to
ecologists in the early 1990s (e.g., see reviews in

Lebreton and Pradel 2002, White et al. 2006), and this

utility is largely attributable to their flexibility in dealing

with interesting ecological phenomena. We believe that
multistate occupancy models should be similarly attrac-

tive to ecologists and expect them to become widely

used.
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APPENDIX A

Summary of the model selection process on California Spotted Owl data (Ecological Archives E090-056-A1).

APPENDIX B

Posterior distribution summaries for detection probabilities in the green frog example (Ecological Archives E090-056-A2).

SUPPLEMENT

WinBUGS 2.2.0 code for the green frog example (Ecological Archives E090-056-S1).

March 2009 835MULTISTATE OCCUPANCY DYNAMICS MODEL


