Satellite Weather And Climate (SWAC) Cold regions: Permafrost

Dr. Lesley-Ann Dupigny-Giroux Vermont State Climatologist Idupigny@uvm.edu

SWAC Team

Regina Toolin ... rtoolin@uvm.edu John Aleong ... jaleong@uvm.edu Mike Fortney ... mfortney@uvm.edu Lynn Fosher ... lfosher@mtsd-vt.org Steve Hogan ... shogan@uvm.edu Dan Koopman ... dkoopman@uvm.edu Eric Shepard ... edshepar@uvm.edu

Cold Regions Science: PERMAFROST

What are "Cold Regions" and what is the "Cryosphere"?

Video courtesy of NASA Earth Observing System (EOS)

Permafrost: Layer of soil or rock, at some depth beneath the surface, in which the temperature has been continuously below 32°F for at least two years.

Vladimir Romanovsky

Types of Permafrost

Continuous

- Discontinuous
- Isolated
- •Sporadic

Continuous Permafrost

Forms in areas with a MAAT of less than 24°F independent of aspect and topographical influences.

Discontinuous Permafrost

Forms in areas with a MAAT of less than 28°F, but more than 24°F. As the air temperature alone is not enough to cause permafrost formation, this type requires some form of topographical shading, usually mountains with north aspects.

Sporadic Permafrost

Forms in areas with a MAAT of less than 32°F, but more than 28°F. Sporadic Permafrost forms as pockets of ice within peat and under existing ice. This sort of permafrost may also occur in high altitude mountain environments.

Isolated Permafrost

Forms in areas that provide temperatures cold enough for ice production. These patches are often found in higher altitudes that exhibit variability in MAAT, but ultimately support ice retention in certain areas.

Active Layer

Permafrost

Permafrost: Indicator of Climate

Extent: How much area² does permafrost cover?

Noetzli et al. 2008

Depth

Natural Resources Canada

Ground Thermal Regime

Land Surface Change: Permafrost's Response to Climate

•Hydrologic

Ecological

•Geologic / Topographic

1973

2002

- •Surface Hydrology Change (Loss or Gain of Rivers, streams, lakes)
- •Turbidity (Increase in "cloudiness" of water)
- Thermokarst

Thermokarst

Marshy areas that form when permafrost thaws, leaving many small lakes and streams on the surface.

Ecological Changes

Vegetation Changes: reduction in vegetation stress, entrance of new species
Eutrophication: algae and micro bacterial invasion of warming lakes

Geologic / Topographic

- Patterned Ground
- Ground Subsidence
- Rock Glaciers
- Landslides

Université de Fribourg (Sambiel 2006)

Vladimir Romanovsky

Natural Resources Canada

Climate's response to Permafrost

Future Prospectives on Permafrost Thaw

Smith and Burgess 1998

Permafrost Links

http://nsidc.org/frozenground/index.html
http://gsc.nrcan.gc.ca/permafrost/pdf/wkshpsensitivityposter2.pdf
http://www.eoearth.org/article/Permafrost_in_the_Arctic
http://earthobservatory.nasa.gov/Features/FrozenSoils/
http://earthobservatory.nasa.gov/IOTD/view.php?id=5713

National Snow and Ice Data Center Natural Resources Canada Encyclopedia of Earth NASA Earth Observatory NASA Earth Observatory