
The Sampling Distribution of Regression 
Coefficients. 

David C. Howell 

Last revised 11/29/2012 

 

This whole project started with a query about the sampling distribution of the 

standardized regression coefficient, . I had a problem because one argument was that  

is a linear transformation of b, and the sampling distribution of b is normal. From that it 

followed that the sampling distribution of  should be normal. On the other hand, with 

only one predictor,  is equal to r, and it is well known that the sampling distribution of r 

is skewed whenever  is unequal to zero. From that it follows that the sampling 

distribution of  would be skewed. 

 

To make a long story short, my error was in thinking of  as a linear transformation of 

b—it is not. The formula for  is 
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where si is the standard deviation of the i
th

  independent variable, and s0 is the standard 

deviation of the dependent (criterion) variable. 

 

But in creating the sampling distribution of , these two standard deviations are random 

variables, differing from sample to sample. If I computed  using the corresponding 

population parameters that would be a different story. But that’s not the way you do it. So 

my statement about  being a linear transformation of was wrong. The unstandardized 

coefficient (b) is normally distributed, but the standardized coefficient () is not normally 

distributed. It has the same distribution as r. 

 

But all is not right in the world. There is something wrong out there, and I can’t figure 

out what. I recently received an e-mail from Alessio Toraldo, at Università di Pavia, Italy. 

He pointed out that when he did a sampling study similar to the one described below, 

using a sample size of n = 10, the distribution of b was distinctly leptokurtic. That should 

not be! Hogg and Craig (1978) clearly state that b will be normally distributed. And if 

Hogg and Craig say so, it is so! The one thing that I can say is that the distribution, 

whatever its shape, is so close to normal that it would not be worth worrying about if it 

weren’t for the fact that I had been looking for something to worry about. 

 

The following is an empirical demonstration of these sampling distributions. The first 

attempt at looking at the empirical sampling distribution of b was done using a program 

called Resampling Stats by Bruce and Simon (http://resample.com/). This program draws 

repeated samples from defined populations and plots the resulting sampling distributions. 

http://resample.com/


That is a very good program, but I haven’t used it in a long time and I had trouble 

deciphering what I had done. So I redid it in R (similar to S_PLUS) and that is given 

below. 

 

My program makes use of a simple algorithm for generating data from a population with 

a specified correlation (). 

 

 Draw two large pseudo-populations of X and Y. (I used 10,000 cases.) 

 

 Standardize the two variables. 

 

 Compute 
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, where r is the desired correlation 

 

 Compute Z = aY + X 

 

 Now Y and Z have a correlation = r. 

 

From a population consisting of 10,000 X and Z pairs, I drew 10,000 samples of 50 

observations each. For each sample I computed b0 and b1, and beta (the standardized 

regression coefficient) and plotted their sampling distributions. I also plotted the 

sampling distribution of r for purposes of comparison. I then plotted the results as 

histograms and again as Q-Q plots. 

 

The R program that does the sampling follows. In the first run of this program I set rho to 

.60 and n to 50. I drew 1000 samples with replacement. 

 

 

 

# Sampling distribution of standardized regression coefficient 

 

# Plot sampling distribution of b and beta 

 

# Plot sampling distribution of b and beta 

 

r_array <- c(10000); b_array <- c(10000); beta_array <- c(10000) #Create some arrays  

x <- rnorm(10000,0,1) 

y <- rnorm(10000, 0, 1) 

zx <- (x - mean(x))/sd(x)   #Standardize the variables  

zy <- (y - mean(y))/sd(y) 

rho <- .60  # Choose a value for rho  

a <- rho/(sqrt(1-rho^2)) 

zz <- a*zy + zx  

cor(zy,zz) 

# the correlation between zy and zz is r = .60  



data <- cbind(zy, zz) 

# Now create functions to calculate skewness and kurtosis  

skew <- function(x) { 

m3 <- sum((x - mean(x))^3/length(x)) 

s3 <- sd(x)^3  

m3/s3 

} 

 

kurtosis <- function(x) { 

   m4 <- sum((x - mean(x))^4/length(x)) 

   s4 <- var(x)^2 

   m4/s4  - 3   #Subtract 3 so kurtosis = 0 for normal distribution 

} 

 

# Now do the resampling  

for (i in 1:1000) { 

   samp <- data.frame(data[sample(1:10000,50, replace = T),])  #Draw a n = 50 cases 

from data  

   r_array[i] <- cor(samp[,1],samp[,2])   #calculate r 

   regression <- lm(zy ~ zz, data = samp) 

   b_array[i] <- regression$coefficients[2]      #calculate b = the regression slope  

   beta_array[i] <- b_array[i]*sd(samp[,2])/sd(samp[,1]) #calculate beta 

}  # This will repeat 1000 times 

 

# Now plot the three statistics  

par(mfrow = c(3,2))  

hist(r_array, breaks = 50)  

qqnorm(r_array)  

hist(beta_array, breaks = 50)  

qqnorm(beta_array)  

hist(b_array, breaks = 50)  

qqnorm(b_array) 

cat("\nSkew statistic for r = ", skew(r_array)) 

cat("\nSkew statistic for b = ",skew(b_array)) 

cat("\nSkew statistic for beta ",skew(beta_array)) 

cat("\nKurtosis statistic for r = ",kurtosis(r_array)) 

cat("\nKurtosis statisc for b = ",kurtosis(b_array)) 

cat("\nKurtosis statistic for beta = ",kurtosis(beta_array)) 

 

The printout for this program follows. 

 



 
 

 

 r beta b 

Mean .598 .598 .482 

St. Dev. .091 .091 .092 

skewness -.566 -.566 .071 

kurtosis .276 .276 .172 

 

If you look at the table you will see that the mean r = .598, which is nicely close to rho = 

.60. You will also notice that the distribution is negatively skews and somewhat 

leptokurtic. Again this is as it should be. With only one predictor, r and beta are equal, 

and we see that here. Looking at b we see that it has a skewness of only .07, but it does 

look a bit leptokuric in the table. But in the figures above, the Q-Q plot for b is 

remarkably straight with only a tiny bit of bumpiness at the extremes. 

 

Now let’s do the same thing but with a much smaller sample size. I well let n = 10 

instead of to. 

 



Rho = .60, n = 10 
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Histogram of beta_array
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Histogram of b_array
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 r beta b 

Mean .580 .580 .482 

St. Dev. .237 .237 .247 

skewness -1.232 -1.232 -.046 

kurtosis 1.823 1.823 1.066 

 

Oh Dear!  This is not nice. With such a small sample size the mean correlation stayed 

close to .60, but the skewness of r and beta just about doubled and it is clear that the 

distributions are quite leptokurtic. The same goes for b, and a look at the Q-Q plot shows 

that the line is distinctly not straight. It looks like things fall apart for small n’s. 

 

Now we will repeat the two analyses above, but with rho = 0. Here I would expect all 

three statistics to be centered on 0.00, and, because n = 50, things shouldn’t look too bad. 

Below is what we found. 

 



 
 

 

 r beta b 

Mean -.002 -.002 -.002 

St. Dev. .143 .143 .145 

skewness -.010 -.010 -.012 

kurtosis -.119 -.119 -.058 

 

That’s not too bad. I can live with that. But what happens if we do the same but drop 

down to n = 10? 

 



 
 

 

 r beta b 

Mean -.015 -.015 -.027 

St. Dev. .336 .336 .366 

skewness .046 .046 .046 

kurtosis -.529 -.529 .471 

 

That is definitely not good! The mean r is -.015, which is OK. The standard error of r 

(and the other statistics) are elevated, simply reflecting the smaller n. But look at the 

kurtosis. All three distributions should be normal, but two are platykurtic and one is 

leptokurtic. I suspected that what we are seeing here was just a huge amount of random 

error, so I repeated this last example 10 times. The kurtosis for b was always positive, 

ranging from 0.296 to 10.729, with a mean of 2.003. Something is weird. 

 

A Possible Explanation 
 

Perhaps when Hogg and Craig (and many other people) say that b is normally distributed, 

what they really mean is that b is asymptotically normally distributed. In other words if 

each sample were infinitely large the distribution would be normal.  

 

So I did it one last time, but this time with n = 500. I have not shown the graphics, but the 

table is below. 



 

 

 r beta b 

Mean .012 .012 .012 

St. Dev. .045 .045 .045 

skewness .086 .086 .078 

kurtosis -.003 -.003 -.008 

 

And if I set n = 10,000 things are even better.  

 

Alessio Toraldo offered another explanation which I have not had the time to pursue. He 

suggested that instead of treating X and Y as random variables, I should examine the case 

where X is fixed. This is more in line with the regression approach (as opposed to 

correlation) and by removing one source of variance we might in fact find a normal 

distribution for b. I want to try that. 

 

Another thought:  I am using the random number generator in R. No random number 

generator is perfect, and I notice that the kurtosis of the normally distributed random 

variables is not 0 either. Perhaps that is part of the problem. 

 

But Don’t Give Up! 
 

This exercise gave me something to do when I needed something to do, and I believe that 

the results are correct. But for all practical purposes the kurtosis in the distribution of b 

will not make the slightest difference to any practical analysis you want to do. You can 

just go ahead and believe the t test on b.  

 

 

 


