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This whole project started with a query about the sampling distribution of the 

standardized regression coefficient, . I had a problem because one argument was that  

is a linear transformation of b, and the sampling distribution of b is normal. From that it 

followed that the sampling distribution of  should be normal. On the other hand, with 

only one predictor,  is equal to r, and it is well known that the sampling distribution of r 

is skewed whenever  is unequal to zero. From that it follows that the sampling 

distribution of  would be skewed. 

 

To make a long story short, my error was in thinking of  as a linear transformation of 

b—it is not. The formula for  is 
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where si is the standard deviation of the i
th

  independent variable, and s0 is the standard 

deviation of the dependent (criterion) variable. 

 

But in creating the sampling distribution of , these two standard deviations are random 

variables, differing from sample to sample. If I computed  using the corresponding 

population parameters that would be a different story. But that’s not the way you do it. So 

my statement about  being a linear transformation of was wrong. The unstandardized 

coefficient (b) is normally distributed, but the standardized coefficient () is not normally 

distributed. It has the same distribution as r. 

 

But all is not right in the world. There is something wrong out there, and I can’t figure 

out what. I recently received an e-mail from Alessio Toraldo, at Università di Pavia, Italy. 

He pointed out that when he did a sampling study similar to the one described below, 

using a sample size of n = 10, the distribution of b was distinctly leptokurtic. That should 

not be! Hogg and Craig (1978) clearly state that b will be normally distributed. And if 

Hogg and Craig say so, it is so! The one thing that I can say is that the distribution, 

whatever its shape, is so close to normal that it would not be worth worrying about if it 

weren’t for the fact that I had been looking for something to worry about. 

 

The following is an empirical demonstration of these sampling distributions. The first 

attempt at looking at the empirical sampling distribution of b was done using a program 

called Resampling Stats by Bruce and Simon (http://resample.com/). This program draws 

repeated samples from defined populations and plots the resulting sampling distributions. 

http://resample.com/


That is a very good program, but I haven’t used it in a long time and I had trouble 

deciphering what I had done. So I redid it in R (similar to S_PLUS) and that is given 

below. 

 

My program makes use of a simple algorithm for generating data from a population with 

a specified correlation (). 

 

 Draw two large pseudo-populations of X and Y. (I used 10,000 cases.) 

 

 Standardize the two variables. 

 

 Compute 
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, where r is the desired correlation 

 

 Compute Z = aY + X 

 

 Now Y and Z have a correlation = r. 

 

From a population consisting of 10,000 X and Z pairs, I drew 10,000 samples of 50 

observations each. For each sample I computed b0 and b1, and beta (the standardized 

regression coefficient) and plotted their sampling distributions. I also plotted the 

sampling distribution of r for purposes of comparison. I then plotted the results as 

histograms and again as Q-Q plots. 

 

The R program that does the sampling follows. In the first run of this program I set rho to 

.60 and n to 50. I drew 1000 samples with replacement. 

 

 

 

# Sampling distribution of standardized regression coefficient 

 

# Plot sampling distribution of b and beta 

 

# Plot sampling distribution of b and beta 

 

r_array <- c(10000); b_array <- c(10000); beta_array <- c(10000) #Create some arrays  

x <- rnorm(10000,0,1) 

y <- rnorm(10000, 0, 1) 

zx <- (x - mean(x))/sd(x)   #Standardize the variables  

zy <- (y - mean(y))/sd(y) 

rho <- .60  # Choose a value for rho  

a <- rho/(sqrt(1-rho^2)) 

zz <- a*zy + zx  

cor(zy,zz) 

# the correlation between zy and zz is r = .60  



data <- cbind(zy, zz) 

# Now create functions to calculate skewness and kurtosis  

skew <- function(x) { 

m3 <- sum((x - mean(x))^3/length(x)) 

s3 <- sd(x)^3  

m3/s3 

} 

 

kurtosis <- function(x) { 

   m4 <- sum((x - mean(x))^4/length(x)) 

   s4 <- var(x)^2 

   m4/s4  - 3   #Subtract 3 so kurtosis = 0 for normal distribution 

} 

 

# Now do the resampling  

for (i in 1:1000) { 

   samp <- data.frame(data[sample(1:10000,50, replace = T),])  #Draw a n = 50 cases 

from data  

   r_array[i] <- cor(samp[,1],samp[,2])   #calculate r 

   regression <- lm(zy ~ zz, data = samp) 

   b_array[i] <- regression$coefficients[2]      #calculate b = the regression slope  

   beta_array[i] <- b_array[i]*sd(samp[,2])/sd(samp[,1]) #calculate beta 

}  # This will repeat 1000 times 

 

# Now plot the three statistics  

par(mfrow = c(3,2))  

hist(r_array, breaks = 50)  

qqnorm(r_array)  

hist(beta_array, breaks = 50)  

qqnorm(beta_array)  

hist(b_array, breaks = 50)  

qqnorm(b_array) 

cat("\nSkew statistic for r = ", skew(r_array)) 

cat("\nSkew statistic for b = ",skew(b_array)) 

cat("\nSkew statistic for beta ",skew(beta_array)) 

cat("\nKurtosis statistic for r = ",kurtosis(r_array)) 

cat("\nKurtosis statisc for b = ",kurtosis(b_array)) 

cat("\nKurtosis statistic for beta = ",kurtosis(beta_array)) 

 

The printout for this program follows. 

 



 
 

 

 r beta b 

Mean .598 .598 .482 

St. Dev. .091 .091 .092 

skewness -.566 -.566 .071 

kurtosis .276 .276 .172 

 

If you look at the table you will see that the mean r = .598, which is nicely close to rho = 

.60. You will also notice that the distribution is negatively skews and somewhat 

leptokurtic. Again this is as it should be. With only one predictor, r and beta are equal, 

and we see that here. Looking at b we see that it has a skewness of only .07, but it does 

look a bit leptokuric in the table. But in the figures above, the Q-Q plot for b is 

remarkably straight with only a tiny bit of bumpiness at the extremes. 

 

Now let’s do the same thing but with a much smaller sample size. I well let n = 10 

instead of to. 

 



Rho = .60, n = 10 
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Histogram of beta_array
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Histogram of b_array
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 r beta b 

Mean .580 .580 .482 

St. Dev. .237 .237 .247 

skewness -1.232 -1.232 -.046 

kurtosis 1.823 1.823 1.066 

 

Oh Dear!  This is not nice. With such a small sample size the mean correlation stayed 

close to .60, but the skewness of r and beta just about doubled and it is clear that the 

distributions are quite leptokurtic. The same goes for b, and a look at the Q-Q plot shows 

that the line is distinctly not straight. It looks like things fall apart for small n’s. 

 

Now we will repeat the two analyses above, but with rho = 0. Here I would expect all 

three statistics to be centered on 0.00, and, because n = 50, things shouldn’t look too bad. 

Below is what we found. 

 



 
 

 

 r beta b 

Mean -.002 -.002 -.002 

St. Dev. .143 .143 .145 

skewness -.010 -.010 -.012 

kurtosis -.119 -.119 -.058 

 

That’s not too bad. I can live with that. But what happens if we do the same but drop 

down to n = 10? 

 



 
 

 

 r beta b 

Mean -.015 -.015 -.027 

St. Dev. .336 .336 .366 

skewness .046 .046 .046 

kurtosis -.529 -.529 .471 

 

That is definitely not good! The mean r is -.015, which is OK. The standard error of r 

(and the other statistics) are elevated, simply reflecting the smaller n. But look at the 

kurtosis. All three distributions should be normal, but two are platykurtic and one is 

leptokurtic. I suspected that what we are seeing here was just a huge amount of random 

error, so I repeated this last example 10 times. The kurtosis for b was always positive, 

ranging from 0.296 to 10.729, with a mean of 2.003. Something is weird. 

 

A Possible Explanation 
 

Perhaps when Hogg and Craig (and many other people) say that b is normally distributed, 

what they really mean is that b is asymptotically normally distributed. In other words if 

each sample were infinitely large the distribution would be normal.  

 

So I did it one last time, but this time with n = 500. I have not shown the graphics, but the 

table is below. 



 

 

 r beta b 

Mean .012 .012 .012 

St. Dev. .045 .045 .045 

skewness .086 .086 .078 

kurtosis -.003 -.003 -.008 

 

And if I set n = 10,000 things are even better.  

 

Alessio Toraldo offered another explanation which I have not had the time to pursue. He 

suggested that instead of treating X and Y as random variables, I should examine the case 

where X is fixed. This is more in line with the regression approach (as opposed to 

correlation) and by removing one source of variance we might in fact find a normal 

distribution for b. I want to try that. 

 

Another thought:  I am using the random number generator in R. No random number 

generator is perfect, and I notice that the kurtosis of the normally distributed random 

variables is not 0 either. Perhaps that is part of the problem. 

 

But Don’t Give Up! 
 

This exercise gave me something to do when I needed something to do, and I believe that 

the results are correct. But for all practical purposes the kurtosis in the distribution of b 

will not make the slightest difference to any practical analysis you want to do. You can 

just go ahead and believe the t test on b.  

 

 

 


