
CHAPTER 12   MULTIPLE COMPARISONS AMONG 

TREATMENT MEANS       

OBJECTIVES 

To extend the analysis of variance by examining ways of making comparisons within a 

set of means. 
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A significant F in an analysis of variance is simply an indication that not all the 

population means are equal. It does not tell us which means are different from which 

other means. As a result, the overall analysis of variance often raises more questions than 

it answers. We now face the problem of examining differences among individual means, 

or sets of means, for the purpose of isolating significant differences or testing specific 

hypotheses. We want to be able to make statements of the form 1 2 3    , and 4 5  , 

but the first three means are different from the last two, and all of them are different 

from 6 .  
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Many different techniques for making comparisons among means are available; here we 

will consider the most common and useful ones. A thorough discussion of this topic can 

be found in Miller (1981), and in Hochberg and Tamhane (1987), and Toothaker (1991). 

The papers by Games (1978a, 1978b) are also helpful, as is the paper by Games and 

Howell (1976) on the treatment of unequal sample sizes. 

 

12.1. ERROR RATES 

 

The major issue in any discussion of multiple-comparison procedures is the question of 

the probability of Type I errors. Most differences among alternative techniques result 

from different approaches to the question of how to control these errors.
1
 The problem is 

in part technical; but it is really much more a subjective question of how you want to 

define the error rate and how large you are willing to let the maximum possible error rate 

be.  

 

We will distinguish two basic ways of specifying error rates, or the probability of Type I 

errors.
2
 In doing so, we shall use the terminology that has become more or less standard 

since an extremely important unpublished paper by Tukey in 1953. (See also Ryan, 1959; 

O’Neil and Wetherill, 1971.) 

 

                                                           
1
 Some authors choose among tests on the basis of power and are concerned with the probability of finding 

any or all significant differences among pairs of means (any-pairs power and all-pairs power). In this 

chapter, however, we will focus on the probability of Type I errors and the way in which different test 

procedures deal with these error rates. 
2
 There is a third error rate called the error rate per experiment (PE), which is the expected number of Type 

I errors in a set of comparisons. The error rate per experiment is not a probability, and we typically do not 
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Error rate per comparison (PC) 

 

We have used the error rate per comparison (PC) in the past and it requires little 

elaboration. It is the probability of making a Type I error on any given comparison. If, for 

example, we make a comparison by running a t test between two groups and we reject the 

null hypothesis because our t exceeds .05t , then we are working at a per comparison error 

rate of .05. 

 

Familywise error rate (FW) 

 

When we have completed running a set of comparisons among our group means, we will 

arrive at a set (often called a family) of conclusions. For example, the family might 

consist of the statements  

 

1 2

3 4

1 3 4 2

 

 

  





 

 

The probability that this family of conclusions will contain at least one Type I error is 

called the familywise error rate (FW).
3
 Many of the procedures we will examine are 

specifically directed at controlling the FW error rate, and even those procedures that are 

not intended to control FW are still evaluated with respect to what the level of FW is 

likely to be.  

                                                                                                                                                                             

attempt to control it directly. We can easily calculate it, however, as PE = c, where c is the number of 

comparisons and is the per comparison error rate. 
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In an experiment in which only one comparison is made, both error rates will be the 

same. As the number of comparisons increases, however, the two rates diverge. If we let 

 represent the error rate for any one comparison and c represent the number of 

comparisons, then 

 

   

 

Error rate per comparison :

Familywise error rate : 1 1

if comparisons are independent

c

PC

FW

 

 



    

If the comparisons are not independent, the per comparison error rate remains unchanged, 

but the familywise rate is affected. In most situations, however,  1 1
c

  still 

represents a reasonable approximation to FW. It is worth noting that the limits on FW are 

PC < FW < c and in most reasonable cases FW is in the general vicinity of c This fact 

becomes important when we consider the Bonferroni tests. 

 

The null hypothesis and error rates 

 

We have been speaking as if the null hypothesis in question were what is usually called 

the complete null hypothesis ( 1 2 3 k       ). In fact, this is the null hypothesis 

tested by the overall analysis of variance. In many experiments, however, nobody is 

seriously interested in the complete null hypothesis; rather, people are concerned about a 

few more restricted null hypotheses, such as ( 1 2 3    , 4 5  , 6 7  ), with 

                                                                                                                                                                             
3
 This error rate is frequently referred to, especially in older sources, as the ―experimentwise‖ error rate. 

However, Tukey’s term ―familywise‖ has become more common. In more complex analyses of variance, 

the experiment often may be thought of as comprising several different families of comparisons. 
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differences among the various subsets. If this is the case, the problem becomes more 

complex, and it is not always possible to specify FW without knowing the pattern of 

population means. We will need to take this into account in designating the error rates for 

the different tests we shall discuss. 

 

A priori versus post hoc comparisons 

 

It is often helpful to distinguish between a priori comparisons, which are chosen before 

the data are collected, and post hoc comparisons, which are planned after the 

experimenter has collected the data, looked at the means, and noted which of the latter 

are far apart and which are close together. To take a simple example, consider a situation 

in which you have five means. In this case, there are 10 possible comparisons involving 

pairs of means (e.g., 1X versus 2X , 1X versus 3X , and so on). Assume that the complete 

null hypothesis is true but that by chance two of the means are far enough apart to lead us 

erroneously to reject 0 : i jH   . In other words, the data contain one Type I error. If you 

have to plan your single comparison in advance, you have a probability of .10 of hitting 

on the 1 comparison out of 10 that will involve a Type I error. If you look at the data first, 

however, you are certain to make a Type I error, assuming that you are not so dim that 

you test anything other than the largest difference. In this case, you are implicitly making 

all 10 comparisons in your head, even though you perform the arithmetic for only the 

largest one. In fact, for some post hoc tests, we will adjust the error rate as if you literally 

made all 10 comparisons.  
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This simple example demonstrates that if comparisons are planned in advance (and are a 

subset of all possible comparisons), the probability of a Type I error is smaller than if the 

comparisons are arrived at on a post hoc basis. It should not surprise you, then, that we 

will treat a priori and post hoc comparisons separately. It is important to realize that when 

we speak of a priori tests, we commonly mean a relatively small set of comparisons. If 

you are making all possible pairwise comparisons among several means, for example, it 

won’t make any difference whether that was planned in advance or not. 

 

Significance of the overall F 

 

Some controversy surrounds the question of whether one should insist that the overall F 

on groups be significant before conducting multiple comparisons between individual 

group means. In the past, the general advice was that without a significant group effect, 

individual comparisons were inappropriate. In fact, the rationale underlying the error 

rates for Fisher’s least significant different test, to be discussed in Section 12.4, required 

overall significance.  

 

The logic behind most of our post hoc tests, however, does not require overall 

significance before making specific comparisons. First of all, the hypotheses tested by the 

overall test and a multiple-comparison test are quite different, with quite different levels 

of power. For example, the overall F actually distributes differences among groups across 

the number of degrees of freedom for groups. This has the effect of diluting the overall F 

in the situation where several group means are equal to each other but different from 
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some other mean. Second, requiring overall significance will actually change the FW, 

making the multiple comparison tests conservative. The tests were designed, and their 

significance levels established, without regard to the overall F.  

 

Wilcox (1987a) has considered this issue and suggested that ―there seems to be little 

reason for applying the (overall) F test at all‖ (p. 36). Wilcox would jump straight to 

multiple-comparisons without even computing the F. Others have said much the same 

thing. That position may be a bit extreme, but it does emphasize the point. And perhaps it 

is not all that extreme. If you recognize that typical multiple-comparison procedures do 

not require a significant overall F, you will examine group differences regardless of the 

value of that F. Why, then, do we even need that F except to provide a sense of closure? 

The only reason I can think of is ―tradition,‖ and that is a powerful force. 

 

12.2. MULTIPLE COMPARISONS IN A SIMPLE EXPERIMENT ON MORPHINE 

TOLERANCE 

 

In discussing the various procedures, it will be helpful to have a data set to which each of 

the approaches can be applied. We will take as an example a study similar to an 

important experiment on morphine tolerance by Siegel (1975). Although the data are 

fictitious and a good deal of liberty has been taken in describing the conditions, the 

means (and the significance of the differences among the means) are the same as those in 

Siegel’s paper. It will be necessary to describe this study in some detail, but the example 
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is worth the space required. It will be to your advantage to take the time to understand the 

hypotheses and the treatment labels.  

 

Morphine is a drug that is frequently used to alleviate pain. Repeated administrations of 

morphine, however, lead to morphine tolerance, in which morphine has less and less of 

an effect (pain reduction) over time.  (You may have experienced the same thing if you 

eat spicy food very often. You will find that the more you eat it, the hotter you have to 

make it to taste the way it did when you started.) A common experimental task that 

demonstrates morphine tolerance involves placing a rat on an uncomfortably warm 

surface. When the heat becomes too uncomfortable, the rat will lick its paws, and the 

latency of the paw-lick is used as a measure of the rat’s sensitivity to pain. A rat that has 

received a morphine injection typically shows a longer paw-lick latency, indicating a 

reduced pain sensitivity. The development of morphine tolerance is indicated by a 

progressive shortening of paw-lick latencies (indicating increased sensitivity) with 

repeated morphine injections.  

 

Siegel noted that there are a number of situations involving drugs other than morphine in 

which conditioned (learned) drug responses are opposite in direction to the unconditioned 

(natural) effects of the drug. For example, an animal injected with atropine will usually 

show a marked decrease in salivation. If, however, after repeated injections of atropine, 

physiological saline (which should have no effect whatsoever) is suddenly injected (in the 

same physical setting), the animal will show an increase in salivation. It is as if the 

animal were compensating for the anticipated effect of atropine. In such studies, it 
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appears that a learned compensatory mechanism develops over trials and counterbalances 

the effect of the drug. (You experience the same thing if you leave the seasoning out of  

food that you normally add seasoning to. It will taste unusually bland, though the Grape 

Nuts you eat for breakfast does not taste bland.)  

 

Siegel theorized that such a process might help to explain morphine tolerance. He 

reasoned that if you administered a series of pretrials in which the animal was injected 

with morphine and placed on a warm surface, morphine tolerance would develop. Thus, 

if you again injected the subject with morphine on a subsequent test trial, the animal 

would be as sensitive to pain as would be a naive animal (one who had never received 

morphine) because of the tolerance that has developed. Siegel further reasoned that if on 

the test trial you instead injected the animal with physiological saline in the same test 

setting as the normal morphine injections, the conditioned hypersensitivity that results 

from the repeated administration of morphine would not be counterbalanced by the 

presence of morphine, and the animal would show very short paw-lick latencies. Siegel 

also reasoned that if you gave the animal repeated morphine injections in one setting but 

then tested it in a new setting, the new setting would not elicit the conditioned 

compensatory hypersensitivity to counterbalance the morphine. As a result, the animal 

would respond as would an animal that was being injected for the first time. Heroin is a 

morphine derivative. Imagine a heroin addict who is taking large doses of heroin because 

he has built up tolerance to it. If his response to this large dose were suddenly that of a 

first-time (instead of a tolerant) user, because of a change of setting, the result could be, 

and often is, lethal. We’re talking about a serious issue here.  
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Our version of Siegel’s experiment is based on the prediction just outlined. The 

experiment involved five groups of rats. Each group received four trials, but the data for 

the analysis come from only the critical fourth (test) trial. The groups are designated by 

indicating the treatment on the first three trials and then the treatment on the fourth trial. 

Group M-M received morphine on the first three trials in the test setting and then again 

on the fourth trial in the same test setting. This is the standard morphine-tolerant group, 

and, because morphine tolerance develops very quickly, we would expect to see normal 

levels of pain sensitivity on that fourth trial. Group M-S received morphine (in the test 

setting) on the first three trials but then received saline on the fourth trial. These animals 

would be expected to be hypersensitive to the pain stimulus because the conditioned 

hypersensitivity would not be balanced by any compensating effects of morphine. Group 

M(cage)-M (abbreviated Mc-M) received morphine on the first three trials in their home 

cage but then received morphine on the fourth trial in the standard test setting, which was 

new to them. For this group, cues originally associated with morphine injection were not 

present on the test trial, and therefore, according to Siegel’s model, the animals should 

not exhibit morphine tolerance on that trial. The fourth group (group S-M) received saline 

on the first three trials (in the test setting) and morphine on the fourth trial. These animals 

would be expected to show the least sensitivity to pain because there has been no 

opportunity for morphine tolerance to develop. Finally, group S-S received saline on all 

four trials.  
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If Siegel’s model is correct, group S-M should show the longest latencies (indicating least 

sensitivity), whereas group M-S should show the shortest latency (most sensitivity). 

Group Mc-M should resemble group S-M, because cues associated with group Mc-M’s 

first three trials would not be present on the test trial. Groups M-M and S-S should be 

intermediate. Whether group M-M will be equal to group S-S will depend on the rate at 

which morphine tolerance develops. The pattern of anticipated results is 

S-M = Mc-M > M-M ? S-S > M-S 

The ―?‖ indicates no prediction. The dependent variable is the latency (in seconds) of 

paw-licking. 

 

Table 12.1 Data and analysis on morphine tolerance 

(a) Data 

 M-S M-M S-S S-M Mc-M 

 3 

5 

1 

8 

1 

1 

4 

9 

2 

12 

13 

6 

10 

7 

11 

19 

14 

6 

12 

4 

19 

3 

9 

21 

29 

20 

36 

21 

25 

18 

26 

17 

24 

26 

40 

32 

20 

33 

27 

30 

Mean 

St. Dev 

4.00 

3.16 

10.00 

5.13 

11.00 

6.72 

24.00 

6.37 

29.00 

6.16 

 

 (b) Summary Table 

Source df SS MS F 

Treatment 

Error 

4 

35 

3497.60 

1120.00 

874.40 

32.00 

27.33* 

 

Total 39 4617.60   

 P < .05 
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The results of this experiment are presented in Table 12.1a, and the overall analysis of 

variance is presented in Table 12.1b. Notice that the within-group variances are more or 

less equal (a test for heterogeneity of variance was not significant), and there are no 

obvious outliers. The overall analysis of variance is clearly significant, indicating 

differences among the five treatment groups. 

 

12.3. A PRIORI COMPARISONS 

 

There are two reasons for starting our discussion with t tests. In the first place, standard 

t tests between pairs of means can, in a limited number of situations, be a perfectly 

legitimate method of comparison. Second, the basic formula for t, and minor 

modifications on it, are applicable to a large number of procedures, and a review at this 

time is useful.  

 

As we have seen, a priori comparisons (also called contrasts) are planned before the data 

have been collected. There are several different kinds of a priori comparison procedures, 

and we will discuss them in turn. 

 

Multiple t tests 

 

One of the simplest methods of running preplanned comparisons is to use individual 

t tests between pairs of groups. In running individual t tests, if the assumption of 

homogeneity of variance is tenable, we usually replace the individual variances, or the 
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pooled variance estimate, with errorMS from the overall analysis of variance and evaluate 

the t on errordf  degrees of freedom. When the variances are heterogeneous but the sample 

sizes are equal, we do not use errorMS , but instead use the individual sample variances 

and evaluate t on 2(n-1) degrees of freedom. Finally, when we have heterogeneity of 

variance and unequal sample sizes, we use the individual variances and correct the 

degrees of freedom using the Welch–Satterthwaite approach (see Chapter 7). (For an 

evaluation of this approach, albeit for a slightly different test statistic, see Games and 

Howell, 1976.)  

 

The indiscriminate use of multiple t tests is typically brought up as an example of a 

terrible approach to multiple comparisons. In some ways, this is an unfair criticism. It is a 

terrible thing to jump into a set of data and lay waste all around you with t tests on each 

and every pair of means that looks as if it might be interesting. The familywise error rate 

will be outrageously high. However, if you have only one or two comparisons to make 

and if those comparisons were truly planned in advance (you cannot cheat and say, ―Oh 

well, I would have planned to make them if I had thought about it‖), the t-test approach 

has much to recommend it. With only two comparisons, for example, the maximum FW 

would be approximately 0.10 if each comparison were run at  = .05, and would be 

approximately 0.02 if each comparison were run at  = .01.  

 

In the study on morphine tolerance described previously, we would probably not use 

multiple t tests simply because too many important comparisons should be considered. 

(In fact, we would probably use one of the post hoc procedures for making all pairwise 
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comparisons.) For the sake of an example, however, consider two fundamental 

comparisons that were clearly predicted by the theory and that can be tested easily with a 

t test. The theory predicted that a rat that had received three previous morphine trials and 

was then tested in the same environment using a saline injection would show greater pain 

sensitivity than would an animal that had always been tested using saline. This involves a 

comparison of group M-S with group S-S. Furthermore, the theory predicted that group 

Mc-M would show less sensitivity to pain than would group M-M, because the former 

would be tested in an environment different from the one in which it had previously 

received morphine. Because the sample variances are similar and the sample sizes are 

equal, we will use errorMS as the pooled variance estimate and will evaluate the result on 

errordf  degrees of freedom.  

 

Our general formula for t, replacing individual variances with errorMS , will then be 

1 2 1 2

error error errorMS MS 2MS

X X X X
t

n n n

 
 



 

Substituting the data from our example, group M-S versus group S-S yields 

4.00M SX    11.00S SX    errorMS 32.00  

 

 error

4.00 11.00 7
2.47

2MS 82 32.00

8

M S S SX X
t

n

   
      
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And group Mc-M versus group M-M yields 

29.00Mc MX  

 

10.00M MX    errorMS 32.00  

 error

29.00 10.00 19
6.72

2MS 82 32.00

8

Mc M M MX X
t

n

  
     

 

Both of these obtained values of t would be evaluated against t.025 (35) = + 2.03, and both 

would lead to rejection of the corresponding null hypothesis. We can conclude that with 

two groups of animals tested with saline, the group that had previously received 

morphine in the same situation will show a heightened sensitivity to pain. We can also 

conclude that changing the setting in which morphine is given significantly reduces, if it 

does not eliminate, the conditioned morphine-tolerance effect. Because we have tested 

two null hypotheses, each with  = .05 per comparison, the FW will approach .10 if both 

null hypotheses are true, which seems quite unlikely. 

 

The basic t test that we have just used is the basis for almost everything to follow. I may 

tweak the formula here or there, and I will certainly use a number of different tables and 

decision rules, but it remains your basic t test—even when I change the formula and call 

it q. 
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Linear contrasts 

 

The use of individual t tests is a special case of a much more general technique involving 

what are known as linear contrasts. In particular, t tests allow us to compare one group 

with another group, whereas linear contrasts allow us to compare one group or set of 

groups with another group or set of groups. Although we can use the calculational 

procedures of linear contrasts with post hoc tests as well as with a priori tests, they are 

discussed here under a priori tests because that is where they are most commonly used.  

 

To define linear contrasts, we must first define a linear combination. A linear 

combination of means takes the form 

1 1 2 2 k k j jL a X a X a X a X      

This equation simply states that a linear combination is a weighted sum of treatment 

means. If, for example, the ja were all equal to 1, L would just be the sum of the means. 

If, on the other hand, the ja were all equal to 1/k, then L would be the mean of the means.  

 

When we impose the restriction that ja = 0, a linear combination becomes what is 

called a linear contrast. With the proper selection of the ja , a linear contrast is very 

useful. It can be used, for example, to compare one mean with another mean, or the mean 

of one condition with the combined mean of several conditions. As an example, consider 

three means ( 1X , 2X , and 3X ). Letting 1a = 1, 2a =-1, and 3a = 0, ja = 0, 

   1 2 3 1 21 1 0L X X X X X       
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In this case, L is simply the difference between the means of group 1 and group 2, with 

the third group left out. If, on the other hand, we let 1a = 1/2, 2a = 1/2, and 3a =-1, then 

      1 2
1 2 3 31 2 1 2 1

2

X X
L X X X X


       

in which case L represents the difference between the mean of the third treatment and the 

average of the means of the first two treatments.  

 

Sum of squares for contrasts 

 

One of the advantages of linear contrasts is that they can be converted to sums of squares 

very easily and can represent the sum of squared differences between the means of sets of 

treatments. If we let 

1 1 2 2 k k j jL a X a X a X a X      

it can be shown that 

 
2

2

contrast 2 2
SS

j j

j j

n a XnL

a a


 
 

   

is a component of the overall treatSS on 1 df, where n represents the number of scores per 

treatment.
4
  

 

Suppose we have three treatments such that 

n = 10 
1 1.5X   2 2.0X   3 3.0X   

For the overall analysis of variance, 
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     

 

2 2 22

..( ) 10 1.5 2.167 2 2.167 3 2.167

10 0.4449 0.0278 0.6939 11.667

treat jSS n X X          
 

   
 

 

Suppose we wanted to compare the average of treatments 1 and 2 with treatment 3. Let 

1a = 1, 2a = 1, 3a = -2. Then 

        

 
2

2

contrast 2

1 1.5 1 2.0 2 3.0 2.5

10 2.5 62.5
SS 10.417

6 6

j j

j

L a X

nL

a

      


   





 

This sum of squares is a component of the overall treatSS on 1 df. We have 1 df because we 

are really comparing two quantities (the mean of the first two treatments with the mean of 

the third treatment).  

 

Now suppose we obtain an additional linear contrast comparing treatment 1 with 

treatment 2. Let 1a = 1, 2a = -1, and 3a = 0. Then 

        

 
2

2

contrast 2

1 1.5 1 2.0 0 3.0 0.5

10 0.5 2.5
SS 1.25

2 2

j j

j

L a X

nL

a

      


   





 

This contrastSS is also a component of treatSS on 1 df. In addition, because of the particular 

contrasts that we chose to run, 

1 2treat contrast contrastSS SS SS

11.667 10.417 1.25

 

 
 

                                                                                                                                                                             

4
 For unequal sample sizes, 

 

2

contrast 2
SS

j j

L

a n


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and thus the two contrasts account for all of the treatSS and all of the df attributable to 

treatments. We say that we have completely partitioned treatSS . 

 

The choice of coefficients 

 

In the previous example, it should be reasonably clear why we chose the coefficients we 

did. They weight the treatment means in what seems to be a logical way to perform the 

contrast in question. Suppose, however, that we have five groups of equal size and wish 

to compare the first three with the last two. We need a set of coefficients ( ja ) that will 

accomplish this task and for which ja = 0. The simplest rule is to form the two sets of 

treatments and to assign as weights to one set the number of treatment groups in the other 

set, and vice versa. One arbitrary set of coefficients is then given a minus sign. For 

example, take the means 

1X  2X  3X  4X  5X  

 

We want to compare 1X , 2X , and 3X combined with 4X and 5X combined. The first set 

contains three means, so for 4X and 5X the ja = 3. The second set contains two means, and 

therefore for 1X , 2X , and 3X the ja = 2. We will let the 3s be negative.  Then we have 

Means: 
1X  2X  3X  4X  5X   

ja : 2 2 2 -3 -3 
ja = 0 

 

Then j ja X reduces to    1 2 3 4 52 3X X X X X    .  
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(If you go back to Siegel’s experiment on morphine, lump the first three groups together 

and the last two groups together, and look at the means of the combined treatments, you 

will get an idea of why this system makes sense.) 
5
 

 

 

One final word about coefficients. If you are doing the computations by hand, you can 

save yourself a lot of arithmetic if you divide through by a common factor. For example, 

suppose that the steps we took had left us with 

ja = 2 2 -2 -2 

 

You can divide through by 2 and have 

ja = 1 1 -1 -1 

 

which simplifies the arithmetic considerably. In a similar vein, some authors use 

fractional coefficients, which make it clearer that we are really averaging sets of means. 

However, I think the arithmetic is cumbersome, and that it is easier to work with whole 

numbers. Take your choice. 

 

                                                           

5 If we have different numbers of subjects in the several groups, we may need to obtain our coefficients 

somewhat differently. If the sample sizes differ in non-essential ways, such as when a few subjects are 

missing at random, the approach above will be the appropriate one. It will not weight one group mean more 

than another just because the group happens to have a few more subjects. However, if the sample sizes are 

systematically different, not just different at random, and if we want to give more weight to the means from 

the larger groups, then we need to do something different. Because there really are very few cases where I 

can imagine wanting the different sample sizes to play an important role, I have dropped that approach 

from this edition of the book. However, you can find it in earlier editions and on the Web pages referred to 

earlier. (You may even send me a note if you need the information, and I will send it to you.)  
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The test of significance 

 

We have seen that linear contrasts can be easily converted to sums of squares on 1 degree 

of freedom. These sums of squares can be treated exactly like any other sums of squares. 

They happen also to be mean squares because they always have 1 degree of freedom, and 

can thus be divided by errorMS to produce an F. Because all contrasts have 1 degree of 

freedom 

2 2 2

contrast

2

error error error

MS

MS MS MS

j

j

nL a nL
F

a
  




 

This F will have one and errordf  degrees of freedom.  

 

For our example, suppose we had planned (a priori) to compare the two groups receiving 

saline on trial 4 with three groups receiving morphine on trial 4. We also planned to 

compare group Mc-M with group M-M, and group M-S with group S-S, for the same 

reasons given in the discussion of individual t tests. Finally, we planned to compare 

group M-M with group S-S to see whether morphine tolerance developed to such an 

extent that animals that always received morphine were no different after only four trials 

from animals that always received saline. (As we will see shortly, this contrast is not 

independent of the first three contrasts.) 
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Groups: M-S M-M S-S S-M Mc-M   

Means: 4.00 10.00 11.00 24.00 29.00   

   

Coefficient 

2

ja
 

j jL a X
 

ja  -3 2 -3 2 2 30 81 

jb  0 -1 0 0 1 2 19 

jc  -1 0 1 0 0 2 7 

jd  0 1 -1 0 0 2 -1 

 

   
1

2 2

contrast 2

contrast

error

8 81 52488
SS 1749.60

30 30

MS 1749.6
54.675

MS 32.00

j j

j

n a X

a

F

   

  


  

   
2

2 2

contrast 2

contrast

error

8 19 2888
SS 1444.00

2 2

MS 1444.00
45.125

MS 32.00

j j

j

n b X

b

F

   

  


  

   
3

2 2

contrast 2

contrast

error

8 7 392
SS 196.00

2 2

MS 196.00
6.125

MS 32.00

j j

j

n c X

c

F

   

  


  

   
4

2 2

contrast 2

contrast

error

8 1 8
SS 4.00

2 2

MS 4.00
0.125

MS 32.00

j j

j

n d X

d

F


   

  


  

 

Each of these F values can be evaluated against  .05 1,35 4.12F  . As expected, the first 

three contrasts are significant. The fourth contrast, comparing M-M with S-S, is not 

significant, indicating that complete morphine tolerance seems to develop in as few as 
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four trials. Note that contrasts 2 and 3 test the same hypotheses that we tested using 

individual t tests—and, as you should recall, when there is 1 df between groups, 2F t . If 

you take the square root of the Fs for these two contrasts, they will equal 6.72 and 2.47, 

which are precisely the values we obtained for t earlier. This simply illustrates the fact 

that t tests are a special case of linear contrasts.  

 

With four contrasts, we have an FW approaching .20. This error rate is uncomfortably 

high, although some experimenters would accept it, especially for a priori contrasts. One 

way of reducing the error rate would be to run each comparison at a more stringent level 

of ; for example, = .01. Another alternative would be to use a different a priori 

procedure, the Bonferroni procedure, which amounts to almost the same thing as the first 

alternative but is conducted in a more precise manner. We will consider this procedure 

after we briefly discuss a special type of linear contrast, called orthogonal contrasts. Yet a 

third way to control FW is to run fewer contrasts. For example, the comparison of M-M 

with S-S is probably not very important. Whether complete tolerance develops on the 

fourth trial or on the sixth or seventh trial is of no great theoretical interest. By 

eliminating that contrast, we could reduce the maximum FW to .15. You should never 

choose to run contrasts the way you eat peanuts or climb mountains—just because they 

are there. In general, if a contrast is not important, do not run it. 
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Orthogonal contrasts 

 

Linear contrasts as they have been defined allow us to test a series of hypotheses about 

treatment differences. Sometimes contrasts are independent of one another, and 

sometimes they are not. For example, knowing that 1X is greater than the average 

of 2X and 3X tells you nothing about whether 4X is likely to be greater than 5X . These two 

contrasts are independent. However, knowing that 1X is greater than the average of 2X and 

3X suggests that there is a better than 50:50 chance that 1X is greater than 2X . These two 

contrasts are not independent. When members of a set of contrasts are independent of one 

another, they are called orthogonal contrasts, and the sums of squares of a complete set 

of orthogonal contrasts sum to treatSS . (If the contrasts are not orthogonal, they contain 

overlapping amounts of information and do not have this additivity property.) From a 

calculational point of view, what sets orthogonal contrasts apart from other types of 

contrasts we might choose is the relationship between the coefficients for one contrast 

and the coefficients for other contrasts in the set. 

 

Orthogonal coefficients 

 

Given that sample sizes are equal, for contrasts to be orthogonal the coefficients must 

meet the following criteria: 

1. ja = 0 

2. 0j ja b   
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where ja and jb  are the sets of coefficients for different contrasts. Furthermore, for 

the contrastSS to sum to treatSS , we need to add a third criterion: 

3. Number of comparisons = number of df for treatments 

 

The first restriction has been discussed already; it results in the contrast’s being a sum of 

squares. The second restriction ensures that the contrasts are independent of (or 

orthogonal to) one another, and thus that we are summing nonoverlapping components. 

The third restriction says nothing more than that if you want the parts to sum to the 

whole, you need to have all the parts.  

 

At first glance, it would appear that finding sets of coefficients satisfying the 

requirement 0j ja b   would require that we either undertake a frustrating process of trial 

and error or else solve a set of simultaneous equations. In fact, a simple rule exists for 

finding orthogonal sets of coefficients; although the rule will not find all possible sets, it 

will lead to most of them. The rule for forming the coefficients visualizes the process of 

breaking down treatSS in terms of a tree diagram. The overall F for five treatments deals 

with all five treatment means simultaneously. That is the trunk of the tree. If we then 

compare the combination of treatments 1 and 2 with the combination of treatments 3, 4, 

and 5, we have formed two branches of our tree, one representing treatments 1 and 2 and 

the other representing treatments 3, 4, and 5. As discussed earlier, the value of ja for the 

treatment means on the left will be equal to the number of treatments on the right, and 

vice versa, with one of the sets being negative. Thus, the coefficients are (3, 3,-2,-2,-2) 

for the five treatments, respectively.  
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Now that we have formed two limbs or branches of our tree, we can never compare 

treatments on one limb with treatments on another limb, although we can compare 

treatments on the same limb. Thus, comparing treatment 3 with the combination of 

treatments 4 and 5 is an example of a legitimate comparison. The coefficients in this case 

would be (0, 0, 2,-1,-1). Treatments 1 and 2 have coefficients of 0 because they are not 

part of this comparison. Treatment 3 has a coefficient of 2 because it is compared with 

two other treatments. Treatments 4 and 5 received coefficients of  -1 because they are 

compared with one other treatment. The negative signs can be arbitrarily assigned to 

either side of the comparison.  

 

The previous procedure could be carried on until we have exhausted all possible sets of 

comparisons. This will occur when we have made as many comparisons as there are df 

for treatments. As a result of this procedure, we might arrive at the comparisons and 

coefficients shown in Figure 12.1. To show that these coefficients are orthogonal, we 

need to show only that all pairwise products of the coefficients sum to zero. For example, 

              3 1 3 1 2 0 2 0 2 0 0j ja b            

and 

              3 0 3 0 2 2 2 1 2 1 0j ja c             

Thus, we see that the first and second and the first and third contrasts are both 

independent. Similar calculations will show that all the other contrasts are also 

independent of one another. 
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Figure 12.1 Tree diagram illustrating orthogonal partition of SStreat 

 

These coefficients will lead to only one of many possible sets of orthogonal contrasts. If 

we had begun by comparing treatment 1 with the combination of treatments 2, 3, 4, and 

5, the resulting set of contrasts would have been entirely different. It is important for the 

experimenter to decide which contrasts she considers important, and to plan accordingly.  

 

The actual computation of F with orthogonal contrasts is the same as when we are using 

nonorthogonal contrasts. Because of this, there is little to be gained by working through 

an example here. It would be good practice, however, for you to create a complete set of 

orthogonal contrasts and to carry out the arithmetic. You can check your answers by 

showing that the sum of the sums of squares equals treatSS . 

 

When I first started teaching and writing about statistics, orthogonal contrasts were a big 

deal. Authors went out of their way to impress on you the importance of orthogonality, 

and the need to feel somewhat guilty if you ran comparisons that were not orthogonal. 

That attitude has changed over the years. While it is nice to have a set of orthogonal 

comparisons, in part because they sum to SStreat, people are far more willing to run 

nonorthogonal contrasts. I would certainly not suggest that you pass up an important 
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contrast just because it is not orthogonal to others that you ran. But keep in mind that 

being nonorthogonal means that these contrasts are not independent of each other. 

 

Bonferroni t (Dunn’s test) 

 

I suggested earlier that one way to control the familywise error rate when using linear 

contrasts is to use a more conservative level of  for each comparison. The proposal that 

you might want to use  = .01 instead of  = .05 was based on the fact that our statistical 

tables are set up that way. (We do not usually have critical values of t for  between .05 

and .01.) A formal way of controlling FW more precisely by manipulating the per 

comparison error rate can be found in a test proposed by Dunn (1961), which is 

particularly appropriate when you want to make only a few of all possible comparisons. 

Although this test had been known for a long time, Dunn was the first person to formalize 

it and to present the necessary tables, and it is sometimes referred to as Dunn’s test. It 

now more commonly goes under the name Bonferroni t. The Bonferroni t test is based 

on what is known as the Bonferroni inequality, which states that the probability of 

occurrence of one or more events can never exceed the sum of their individual 

probabilities. This means that when we make three comparisons, each with a probability 

 of  = .05 of a Type I error, the probability of at least one Type I error can never exceed 

3*.05 = .15. In more formal terms, if c represents the number of comparisons and ' 

represents the probability of a Type I error for each comparison, then FW is less than or 

equal to c . From this it follows that if we set' = /c for each comparison, where 

 = the desired maximum FW, then  FW c c c     . Dunn (1961) used this 
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inequality to design a test in which each comparison is run at' = /c, leaving the FW 

≤ for the set of comparisons . This can be accomplished by using the standard t test 

procedure but referring the result to modified t tables.  

 

The problem that you immediately encounter when you attempt to run each comparison 

at' = /c is that standard tables of Student’s t do not provide critical values for the 

necessary levels of . If you want to run each of three comparisons at' 

= /c = .05/3 = .0167, you would need tables of critical values of t at  = .0167. Dunn’s 

major contribution was to provide such tables. (Although such tables are less crucial now 

that virtually all computer programs report exact probability values for each F, they still 

have a role to play, and her table can be found in the appendix of this book.)  

 

For the Bonferroni test on pairwise comparisons (i.e., comparing one mean with one 

other mean), define 

error error errorMS MS 2MS

i j i jX X X X
t

n n n

 
  



 

and evaluate t  against the critical value of t  taken from Dunn’s tables in Appendix t . 

Notice that we still use the standard formula for t. The only difference between t  and a 

standard t is the tables used in their evaluation. With unequal sample sizes but 

homogeneous variances, replace the ns in the leftmost equation with in and jn . With 

heterogeneity of variance, see the solution by Games and Howell later in this chapter.  
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To write a general expression that allows us to test any comparison of means, pairwise or 

not, we can express t  in terms of linear contrasts. 

j jL a X  and 
2

errorMSj

L
t

a

n

 


 

This represents the most general form for the Bonferroni t, and it can be shown that if L is 

any linear combination (not necessarily even a linear contrast, requiring ja = 0), the 

FW with c comparisons is at most  (Dunn, 1961).
6
 To put it most simply, the Bonferroni 

t runs a regular t test but evaluates the result against a modified critical value of t that has 

been chosen so as to limit FW.  

 

A variation on the Bonferroni procedure was proposed by Šidák (1967). His test is based 

on the multiplicative inequality    1 1
c

p FW    and evaluates t  at  
1

1 1
c

     . 

(This is often called the Dunn-Šidák test.) A comparison of the power of the two tests 

shows only very minor differences in favor of the Šidák approach, and we will stick with 

the Bonferroni test because of its much wider use. Many computer software programs, 

however, provide this test. [For four comparisons, the Šidák approach would test each 

comparison at  
1 4 .251 1 1 .95 0.0127         level, whereas the Bonferroni 

approach would test at /c = .05/4 = .0125. You can see that there is not a lot of 

difference in power.]  

 

                                                           
6
 Note the similarity between the right side of the equation and our earlier formula for F with linear 

contrasts. The resemblance is not accidental; one is just the square of the other. 
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When we considered linear contrasts, we ran four comparisons, which had an FW of 

nearly .20. (Our test of each of those contrasts involved an F statistic but, because each 

contrast involves 1 df, we can go from t to F and vice versa by means of the 

relationship t F .) If we wish to run those same comparisons but to keep FW at a 

maximum of .05 instead of 4*(.05)  = .20, we can use the Bonferroni t test. In each case, 

we will solve for t  and refer that to Dunn’s tables. Taking the pairwise tests first, the 

calculations follow.  

 

Mc-M versus M-M: 

  error

29.00 10.00 19
6.72

2MS 82 32.00

8

i jX X
t

n

 
      

 

S-S versus M-S: 

  error

11.00 4.00 7
2.47

2MS 82 32.00

8

i jX X
t

n

 
      

 

M-M versus S-S: 

  error

10.00 11.00 1
0.35

2MS 82 32.00

8

i jX X
t

n

  
       

The calculations for the more complex contrast, letting the ja = 2, 2, 2, -3, -3 as before, 

follow.  
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S-M, Mc-M, and M-M versus S-S and M-S: 

     

  2

error

2 24 3 4 81
7.39

12030 32.00MS

8

j j

j

a X
t

a

n

  
    




 

From Appendix t , with c = 4 and errordf = 35, we find by interpolation  .05 35 2.64t  . In 

this case, the first and last contrasts are significant, but the other two are not.
7
 Whereas 

we earlier rejected the hypothesis that groups S-S and M-S were sampled from 

populations with the same mean, using the more conservative Bonferroni t test we are no 

longer able to reject that hypothesis. Here we cannot conclude that prior morphine 

injections lead to hypersensitivity to pain. The difference in conclusions between the two 

procedures is a direct result of our use of the more conservative familywise error rate. If 

we wish to concentrate on per comparison error rates, ignoring FW, then we evaluate 

each t (or F) against the critical value at  = .05. On the other hand, if we are primarily 

concerned with controlling FW, as we usually should be, then we evaluate each t, or F, at 

a more stringent level. The difference is not in the arithmetic of the test; it is in the 

critical value we choose to use. The choice is up to the experimenter. 

 

Multistage Bonferroni procedures 

 

The Bonferroni multiple-comparison procedure has a number of variations. Although 

these are covered here in the context of the analysis of variance, they can be applied 

equally well whenever we have multiple hypothesis tests for which we wish to control the 

familywise error rate. These procedures have the advantage of setting a limit on the FW 
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error rate at  against any set of possible null hypotheses, as does the Tukey HSD (to be 

discussed shortly), while at the same time being less conservative than Tukey’s test when 

our interest is in a specific subset of contrasts. In general, however, multistage 

procedures would not be used as a substitute when making all pairwise comparisons 

among a set of means.  

 

As you saw, the Bonferroni test is based on the principle of dividing up FW for a family 

of contrasts among each of the individual contrasts. Thus, if we want FW to be .05 and 

we want to test four contrasts, we test each one at  = .05/4 = .0125. The multistage tests 

follow a similar principle, the major difference being in the way they choose to partition 

. 

 

Holm and Larzelere and Mulaik tests 

 

Both Holm (1979) and Larzelere and Mulaik (1977) have proposed a multistage test that 

adjusts the denominator (c) in= /c depending on the number of null hypotheses 

remaining to be tested. Holm’s test is generally referred to when speaking about the 

analysis of variance, whereas the Larzelere and Mulaik test is best known as a test of 

significance for a large set of correlation coefficients. The logic of the two tests is the 

same, though the method of calculation is different. 

 

                                                                                                                                                                             
7
 The actual probabilities would be .000, .073, 1.00, and .000.  
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In the Holm procedure we calculate values of t  just as we did with the Bonferroni t test. 

For the equal n case, we compute 

error2MS

i jX X
t

n


   

For the unequal n case, or when we are concerned about heterogeneity of variance, we 

compute 

22

i j

ji

i j

X X
t

ss

n n


 



 

 

We calculate t  for all contrasts of interest and then arrange the t  values in increasing 

order without regard to sign. This ordering can be represented as 1 2 3 ct t t t       , 

where c is the total number of contrasts to be tested.  

 

The first significance test is carried out by evaluating ct  against the critical value in 

Dunn’s table corresponding to c contrasts. In other words, ct  is evaluated at c   . If 

this largest t  is significant, then we test the next largest  1. . ct i e t 
  against the critical 

value in Dunn’s table corresponding to c-1 contrasts. Thus, 1ct 
 is evaluated 

at  1c    . The same procedure continues for 2 3 4, , ,c c ct t t  
   until the test returns a 

nonsignificant result. At that point we stop testing. Holm has shown that such a procedure 

continues to keep FW ≤ , while offering a more powerful test.   
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The rationale behind the test is that when we reject the null for tc, we are declaring that 

null hypothesis to be false. If it is false, that only leaves c-1 possibly true null hypotheses, 

and so we only need to protect against c-1 contrasts. A similar logic applies as we carry 

out additional tests. This logic makes particular sense when you know, even before the 

experiment is conducted, that several of the null hypotheses are almost certain to be false. 

If they are false, there is no point in protecting yourself from erroneously rejecting them. 

 

To illustrate the use of Holm’s test, consider our example on morphine tolerance. With 

the standard Bonferroni t test, we evaluated four contrasts with the following results, 

arranged by increasing magnitude of t :  

 

Contrast Order (i) t  
critt  

M-M vs. S-S 1 t  =-0.35 2.03 

S-S vs. M-S 2 t  =  2.47 2.35* 

Mc-M vs. M-M 3 t  =  6.72 2.52* 

S-M, Mc-M, M-M vs. S-S, M-S 4 t  =  7.39 2.64* 

*p<.05 

 

If we were using the Bonferroni test, each of these t s would be evaluated against .05t  = 

2.64, which is actually Student’s t at  = 0.0125. For Holm’s test we vary the critical 

value in stages, depending on the number of contrasts that have not been tested. This 

number is indexed by ―Order (i)‖ in the table above. These critical values are presented in 

the right-hand column above. They were taken, with interpolation, from Dunn’s tables for 

c = i and 35 degrees of freedom. For example, the critical value of 2.35 corresponds to 

the entry in Dunn’s tables for c = 2 and df = 35. For the smallest t , the critical value 

came from the standard Student t distribution (Appendix t).  
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From this table you can see that the test on the complex contrast S-M, Mc-M, M-M vs. S-

S, M-S required a t  of 2.64 or above to reject 0H . Because t  was 7.39, the difference 

was significant. The next largest t  was 6.72 for Mc-M vs. M-M, and that was also 

significant, exceeding the critical value of 2.52. The contrast S-S vs. M-S is tested as if 

there were only two contrasts in the set, and thus t  must exceed 2.35 for significance. 

Again this test is significant. If it had not been, we would have stopped at this point. But 

because it is, we continue and test M-M vs S-S, which is not significant. Because of the 

increased power of Holm’s test over the Bonferroni t test, we have rejected one null 

hypothesis (S-S vs. M-S) that was not rejected by the Bonferroni. 

 

Larzelere and Mulaik Test 

 

Larzelere and Mulaik (1977) proposed a test equivalent to Holm’s test, but their primary 

interest was in using that test to control FW when examining a large set of correlation 

coefficients. As you might suspect, something that controls error rates in one situation 

will tend to control them in another. I will consider the Larzelere and Mulaik test with 

respect to correlation coefficients rather than the analysis of variance, because such an 

example will prove useful to those who conduct research that yields large numbers of 

such coefficients. However, as you will see when you look at the calculations, the test 

would be applied in the same way whenever you have a number of test statistics with 

their associated probability values. If you had never heard of Larzelere and Mulaik, you 

could still accomplish the same thing with Holm’s test. However, the different 
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calculational approach is instructive. It is worth noting that when these tests are applied 

in an analysis of variance setting we usually have a small number of comparisons. 

However, when they are used in a regression/correlation setting, we commonly test all 

pairwise correlations.  

 

Compas, Howell, Phares, Williams, and Giunta (1989) investigated the relationship 

between daily stressors, parental levels of psychological symptoms, and adolescent 

behavior problems [as measured by Achenbach’s Youth Self-Report Form (YSR) and by 

the Child Behavior Checklist (CBCL)]. The study represented an effort to understand risk 

factors for emotional/behavioral problems in adolescents. Among the analyses of the 

study was the set of intercorrelations between these variables at Time 1. These 

correlations are presented in Table 12.2. 

 

Table 12.2  Correlations among behavioral and stress measures  

 (1) (2) (3) (4) (5) (6) (7) 

Mother        

 (1) Stress 1.00 .69 .48 .37 -.02 .30 .03 

 (2) Symptoms  1.00 .38 .42 .12 .39 .19 

Father        

 (3) Stress   1.00 .62 .07 .22 .07 

 (4) Symptoms    1.00 .00 .24 .20 

Adolescent        

 (5) Stress     1.00 .11 .44 

 (6) CBCL      1.00 .23 

 (7) YSR       1.00 

 

 

Most standard correlation programs print out a t statistic for each of these correlations. 

However, we know that with 21 hypothesis tests, the probability of a Type I error based 
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on that standard t test, if all null hypotheses were true, would be high. It would still be 

high if only a reduced set of them were true. For this reason we will apply the modified 

Bonferroni test proposed by Larzelere and Mulaik. There are two ways to apply this test 

to this set of correlations. For the first method we could calculate a t value for each 

coefficient, based on 

 

 2

2

1

r N
t

r





 

(or take the t from a standard computer printout) and then proceed exactly as we did for 

the Holm procedure. Alternatively, we could operate directly on the two-tailed p values 

associated with the t test on each correlation. These p values can be taken from standard 

computer printouts, or they can be calculated using commonly available programs. For 

purposes of an example, I will use the p-value approach.  

 

Table 12.3 shows the correlations to be tested from Table 12.2 as well as the associated p 

values. The p values have been arranged in increasing numerical order. (Note that the 

sign of the correlation is irrelevant—only the absolute value matters.) 
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Table 12.3  Significance tests for correlations in Table 12.2 

Pair i Correlation p value /(k – i + 1 

1 vs. 2 

3 vs. 4 

1 vs. 3 

5 vs. 7 

2 vs. 4 

2 vs. 6 

2 vs. 3 

1 vs. 4 

1 vs. 6 

4 vs. 6 

6 vs. 7 

3 vs. 6 

4 vs. 7 

2 vs. 7 

2 vs. 5 

5 vs. 6 

3 vs. 5 

3 vs. 7 

1 vs. 7 

1 vs. 5 

4 vs. 5 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

.69 

.62 

.48 

.44 

.42 

.39 

.38 

.37 

.30 

.24 

.23 

.22 

.20 

.19 

.12 

.11 

.07 

.07 

.03 

-.02 

.00 

.0000 

.0000 

.0000 

.0000 

.0000 

.0001 

.0001 

.0002 

.0028 

.0179 

.0236 

.0302 

.0495 

.0618 

.2409 

.2829 

.4989 

.4989 

.7724 

.8497 

1.0000 

.00238* 

.00250* 

.00263* 

.00278* 

.00294* 

.00313* 

.00333* 

.00357* 

.00385* 

.00417 

.00455 

.00500 

.00556 

.00625 

.00714 

.00833 

.01000 

.01250 

.01667 

.02500 

.05000 

P < .05 

 

The right-hand column gives the value of required for significance. For example, if we 

consider 21 contrasts to be of interest,  1 .05 21 .00238k i       . By the time 

we have rejected the first four correlations and wish to test the fifth 

largest, we are going to behave as if we want a Bonferroni t adjusted for just the k-

i + 1 = 21-5 + 1 = 21-4 = 17 remaining correlations. This correlation will be tested 

at  1 .05 17 .00294k i       .  

 

Each correlation coefficient is tested for significance by comparing the p value associated 

with that coefficient with the entry in the final column. For example, for the largest 
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correlation coefficient out of a set of 21 coefficients to be significant, it must have a 

probability (under 0 : 0H   ) less than .00238. Because the probability for r = .69 is 

given as .0000 (there are no nonzero digits until the sixth decimal place), we can 

reject 0H and declare that correlation to be significant.  

 

Having rejected 0H for the largest coefficient, we then move down to the second row, 

comparing the obtained p value against p = .00250. Again we reject 0H and move on to 

the third row. We continue this procedure until we find a row at which the obtained p 

value in column 4 exceeds the critical p value in column 5. At that point we declare that 

correlation to be nonsignificant and stop testing. All correlations below that point are 

likewise classed as nonsignificant. For our data, those correlations equal to or greater 

than .30 are declared significant, and those below .30 are nonsignificant. The significant 

correlations are indicated with an asterisk in the table.  

 

Had we used a standard Bonferroni test, we would have set   = .05/21 = .00238, and a 

correlation less than .37 would not have been significant. In this particular case the 

multistage test made only a small difference. But often the difference is substantial in 

terms of the number of coefficients that are declared significant. 

 

One more comment 

 

I want to emphasize one more time that the Bonferroni test and its variants are 

completely general. They are not the property of the analysis of variance or of any other 
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statistical procedure. If you have several tests that were carried by any statistical 

procedure (and perhaps by different procedures), you can use the Bonferroni approach to 

control FW. For example, I recently received an e-mail message in which someone asked 

how they might go about applying the Bonferroni to logistic regression. He would do it 

the same way he would do it for the analysis of variance. Take the set of statistical tests 

that came from his logistic regression, divide  by the number of tests he ran, and declare 

a test to be significant only if its resulting probability was less than  /c. You don’t even 

need to know anything about logistic regression to do that. 

  

12.4. POST HOC COMPARISONS 

 

There is much to recommend the use of linear contrasts and the Bonferroni t test when a 

relatively small number of comparisons can be specified a priori. However, many 

experiments involve many hypotheses
8
 and/or hypotheses that are arrived at only after the 

data have been examined. In this situation, a number of a posteriori or post hoc 

techniques are available. 

 

Fisher’s least significant difference procedure 

 

One of the oldest methods for making post hoc comparisons is known as Fisher’s least 

significant difference (LSD) test (also known as Fisher’s protected t). The only 

difference between the post hoc LSD procedure and the a priori multiple t test procedure 
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discussed earlier is that the LSD requires a significant F for the overall analysis of 

variance. When the complete null hypothesis is true (all population means are equal), the 

requirement of a significant overall F ensures that the familywise error rate will equal . 

Unfortunately, if the complete null hypothesis is not true but some other more limited 

null hypotheses involving subsets of means are true, the overall F no longer affords 

protection for FW. For this reason, many people recommend that you not use this test, 

although Carmer and Swanson (1973) have shown it to be the most powerful of the 

common post hoc multiple-comparison procedures. If your experiment involves three 

means, the LSD procedure is a good one because FW will stay at , and you will gain the 

added power of using standard t tests. (The FW error rate will be with three means 

because if the complete null hypothesis is true, you have a probability equal to  of 

making a Type I error with your overall F, and any subsequent Type I errors you might 

commit with a t test will not affect FW. If the complete null is not true but a more limited 

one is, with three means there can be only one null difference among the means and, 

therefore, only one chance of making a Type I error, again with a probability equal to .) 

You should generally be reluctant to use the LSD for more than three means unless you 

have good reason to believe that there is at most one true null hypothesis hidden in the 

means. 

 

                                                                                                                                                                             
8
 If there are many hypotheses to be tested, regardless of whether they were planned in advance, the 

procedures discussed here are usually more powerful than is the Bonferroni t test. 
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The Studentized range statistic (q) 

 

Because many of the post hoc tests are based on the Studentized range statistic or special 

variants of it, we will consider this statistic before proceeding. The Studentized range 

statistic (q) is defined as 

errorMS

l s
r

X X
q

n


  

where lX and sX represent the largest and smallest of a set of treatment means and r is the 

number of treatments in the set. You probably have noticed that the formula for q is very 

similar to the formula for t. In fact 

 

error

error

MS

2 MS

l s

r

i j

X X
q

n

X X
t

n







 

and the only difference is that the formula for t has a ― 2 ‖ in the denominator. Thus, q is 

a linear function of t and we can always go from t to q by the relation 2q t . The real 

difference between q and t tests comes from the fact that the tables of q (Appendix q) are 

set up to allow us to adjust the critical value of q for the number of means involved, as 

will become apparent shortly. When there are only two treatments, whether we solve for 

t or q is irrelevant as long as we use the corresponding table.  
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When we have only two means or when we wish to compare two means chosen at 

random from the set of available means, t is an appropriate test.
9
 Suppose, however, that 

we looked at a set of means and deliberately selected the largest and smallest means for 

testing. It is apparent that we have drastically altered the probability of a Type I error. 

Given that 0H is true, the largest and smallest means certainly have a greater chance of 

being called ―significantly different‖ than do means that are adjacent in an ordered series 

of means. This is the point at which the Studentized range statistic becomes useful. It was 

designed for just this purpose.  

 

To use q, we first rank the means from smallest to largest. We then take into account the 

number of steps between the means to be compared. For adjacent means, no change is 

made and .05 .05 2q t . For means that are not adjacent, however, the critical value of q 

increases, growing in magnitude as the number of intervening steps between means 

increases.  

 

As an example of the use of q, consider the data on morphine tolerance. The means are 

1X  2X  3X  4X  5X  

4 10 11 24 29 

 

with n = 8, errordf = 35, and errorMS = 32.00. The largest mean is 29 and the smallest is 4, 

and there are a total (r) of 5 means in the set (in the terminology of most tables, we say 

that these means are r = 5 steps apart). 

                                                           
9
 With only two means we obtain all of the information we need from the F in the analysis of variance table 

and would have no need to run any contrast. 
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1
5

error

29 4 25
12.5

MS 32.00 4

8

sX X
q

n

 
     

Notice that r is not involved in the calculation. It is involved, however, when we go to the 

tables. From Appendix q, for r = 5 and errordf = 35,  .05 5,35 4.07q  . Because 12.5 > 

4.07, we will reject 0H and conclude that there is a significant difference between the 

largest and smallest means.  

 

An alternative to solving for obtq and referring obtq to the sampling distribution of q would 

be to solve for the smallest difference that would be significant and then to compare our 

actual difference with the minimum significant difference. This approach is frequently 

taken by post hoc procedures, so I cover it here, but I really don’t find that it saves any 

time. Since 

1

errorMS

s
r

X X
q

n


  

then 

  error
1 .05 error

MS
,sX X q r df

n
   

where 1 sX X is the minimum difference between two means that will be found to be 

significant.  

 

We know that with five means the critical value of  .05 5,35 4.07q  . Then, for our data, 
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1

32
4.07 8.14

8
sX X    

Thus, a difference in means equal to or greater than 8.14 would be judged significant, 

whereas a smaller difference would not. Because the difference between the largest and 

smallest means in the example is 25, we would reject 0H .  

 

Although q could be used in place of an overall F (i.e., instead of running the traditional 

analysis of variance, we would test the difference between the two extreme means), there 

is rarely an occasion to do so. In most cases, F is more powerful than q. However, where 

you expect several control group means to be equal to each other but different from an 

experimental treatment mean (i.e., 1 2 3 4 5        ), q might well be the more 

powerful statistic.  

 

Although q is seldom a good substitute for the overall F, it is a very important statistic 

when it comes to making multiple comparisons among individual treatment means. It 

forms the basis for the next several tests. 

 

The Newman–Keuls test 

 

The Newman–Keuls is a controversial test, for reasons that will become clear shortly. 

However, it is important to discuss it here if only because it is an excellent example of a 

whole class of multiple-comparison procedures. The basic goal of the Newman–Keuls 

test (sometimes called the Student-Newman-Keuls test) is to sort all the treatment means 
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into subsets of treatments. These subsets will be homogeneous in the sense that they do 

not differ among themselves, but they do differ from other subsets.  

 

Because most people make comparisons using computer software, we might be able to 

get away with omitting calculations of the Newman–Keuls test. But if you understand the 

calculations you will more easily make sense of computer output and you will better 

understand how the various tests fit together. So take out your calculator and a piece of 

paper.  

 

We will again use the data on morphine tolerance and will start by arranging the 

treatment means in ascending order from smallest to largest. We will designate these 

means as 1 5X X , where the subscript now refers to the position of that mean in the 

ordered series. For the data in our example, 

 

Treatment 

M-S M-M S-S S-M Mc-M 

1X  2X  3X  4X  5X  

4 10 11 24 29 

 

We will define the range of means as the number of steps in an ordered series between 

those means. Adjacent means will be defined as being two steps apart, means that have 

one other mean intervening between them will have a range of three, and so on. In 

general, the range between iX and jX  is i – j + 1 (for i > j).  
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If we wished to test the difference 5 1X X , the range would be 5-1 + 1 = 5 = r. For this 

example, we have r = 5 and 35 df for error, and thus (from Appendix q) would 

require obt 4.07q  if the difference is to be significant. Given this information, we could 

now solve for the smallest difference that would be judged significant. As we saw 

previously, this critical difference would be 8.14. Thus, when the means are five steps 

apart, a difference of at least 8.14 is required for significance.   If we were concerned 

with means that are four steps apart (e.g., 4 1X X  or 5 2X X ), then r = 4, df = 35, 

and  .05 4,35 3.815q   (by linear interpolation). Thus, the minimum difference that would 

be significant is 

   error
1 .05

MS 32.00
4,35 3.815 3.815 2 7.63

8
sX X q

n
      

Thus, four-step differences greater than 7.63 will be classified as significant.
10

  

 

This procedure will be repeated for all ranges possible with our data. If we define rW  as 

the smallest width or difference between means r steps apart that will be statistically 

significant, then 

  error
.05

MS
,rW q r df

n
  

For our example, 

                                                           
10

 The Newman–Keuls is sometimes referred to as a layered test because it adjusts the critical difference as 

a function of the number of means contained within a subset of means. This is in contrast to the Tukey 

HSD and Scheffé tests (to be described shortly), which essentially use a constant critical difference for all 

contrasts. 
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   

   

   
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2 .05

error
3 .05

error
4 .05

error
5 .05

MS
2,35 2.875 2 5.75
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3,35 3.465 2 6.93
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4,35 3.815 2 7.63
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5,35 4.07 2 8.14
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n

W q
n

W q
n

W q
n

  

  

  

  

 

 

The Newman–Keuls test employs the values of rW  and a set of rules that are designed to 

control FW and to prevent inconsistent conclusions. If we did not adopt a set of rules 

governing the tests that will be made and the order of the testing, we would lose complete 

control of FW and, in addition, we might find ourselves making contradictory statements. 

For example, if three means are ordered 1X , 2X , and 3X , it would be embarrassing if we 

found that 1X was different from 2X , but not from 3X (since 3X is larger than 2X ).  

 

To make the procedure systematic, we will form a matrix with treatment means on the 

rows and columns, and differences between means as the cell entries. Such a matrix is 

presented in Table 12.4a for the data in Table 12.1. The dashed lines in this table connect 

differences between means r steps apart with values of r and rW . Thus, any values along 

a dashed line that are greater than the corresponding value of rW are potentially 

significant. 
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Table 12.4 Newman-Keuls test applied to the data in Table 12.1 

 
 

We now start in the upper right corner and test along the first row until we reach a 

difference that is not significant. The upper right entry is 25, which represents a five-step 

difference. Because 25 > 8.14, this difference is significant, and an asterisk is placed in 

the corresponding cell of Table 12.4b. Moving to the left, we find an entry of 20, which 

represents a difference of four steps. We thus compare 20 against 4 7.63W  , and again 

reject 0H . Once again, we place an asterisk in the corresponding cell of Table 12.4b. 

Moving farther to the left, we find an entry of 7, which represents a three-step difference 

and is significant since 37 6.93W  . Again we place an asterisk in Table 12.4b. When 

we come to the far left, we find that a two-step difference of 6 is also significant (6 >  

5.75), and thus enter an asterisk in the matrix.  
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When we either reach a point at which a difference is not significant or else exhaust a 

row, we move to the next row. We now start working from right to left across the second 

row, but stop under one of three conditions:  (1) we exhaust the row; (2) we reach a 

nonsignificant difference; or (3) we reach a column at which a nonsignificant difference 

was found in an earlier row.  

 

In row 2, 19 > 7.63, 14 > 6.93, but 1 < 5.75. Thus, we place two asterisks in Table 12.4b 

and continue to the next row. In row 3, both differences are significant, because 18 > 6.93 

and 13 > 5.75. Going to row 4, our one difference is not significant (5 < 5.75).  

 

The resulting pattern of significant differences is given in Table 12.4b. Here we can see 

that group M-S is different from all other groups, groups M-M and S-S are different from 

groups S-M and Mc-M but not from each other, and groups S-M and Mc-M do not differ. 

These results can be represented graphically by writing down the treatments and 

underlining homogeneous subsets. Thus  

 

M-S M-M S-S S-M Mc-M 

4 10 11 24 29 

        

     

     

 

Treatments not underlined by a common line differ significantly from each other. This 

pattern of results would appear to confirm Siegel’s theory, because the group that 

received three morphine injections and then was switched to saline (M-S) showed 

hypersensitivity, whereas the group that received morphine in an environment different 
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from the test environment (Mc-M) was no different from the group that had not 

previously received morphine (S-M). The other two groups were intermediate, as the 

theory would predict. Notice that these results differ from those we obtained using the 

Bonferroni t test, even though both tests attempt to limit FW. The differences are due 

partly to the different approaches of the two tests and partly to the fact that the Newman–

Keuls is actually a less conservative test, as will be discussed shortly. (It does not always 

hold FW at .) 

 

Unequal sample sizes and heterogeneity of variance 

 

The Newman–Keuls procedure (and the Tukey procedure that follows) were designed 

primarily for the case of equal sample sizes ( 1 2 kn n n n    ). Frequently, however, 

experiments do not work out as planned, and we find ourselves with unequal numbers of 

observations and want to carry out a Newman–Keuls or a related test on the means. 

Although little work has been done on this topic with respect to the Newman–Keuls 

itself, work has been done on the problem with respect to the Tukey HSD test (see 

particularly Games and Howell, 1976; Keselman and Rogan, 1977; Games, 

Keselman, and Rogan, 1981). Because the problems would be the same in the two tests, it 

is reasonable to generalize from the latter findings. One solution, known as the Tukey–

Kramer approach, is to replace errorMS n with 

2

error error

i j

MS MS

n n

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This procedure has been proposed in conjunction with the Tukey HSD, to be discussed in 

Section 12.5. An alternative, and generally preferable, test was proposed by Games and 

Howell (1976). The Games and Howell procedure uses what was referred to as the 

Behrens–Fisher approach to t tests in Chapter 7. The authors suggest that a critical 

difference between means (i.e., rW ) be calculated separately for every pair of means 

using 

 
2 2
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r i j

s n s n
W X X q r df


    

where  .05 ,q r df  is taken from the tables of the Studentized range statistic on 
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degrees of freedom. This is basically the solution referred to earlier in the discussion of 

multiple t tests, although here we are using the Studentized range statistic instead of t. 

This solution is laborious, but the effort involved is still small compared to that of 

designing the study and collecting the data. The need for special procedures arises from 

the fact that the analysis of variance and its attendant contrasts are vulnerable to 

violations of the assumption of homogeneity of variance, especially when the sample 

sizes are unequal. If there is no serious problem with heterogeneity of variance and if 

the in are nearly equal, then you are probably safe calculating the harmonic mean of the 

sample sizes [  1h in k n  ] and using that in place of n in the standard approach. 

Moreover, regardless of the sample sizes, if the sample variances are nearly equal you 
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may replace 2

is and 2

js in the formula for rW with errorMS from the overall analysis of 

variance. And regardless of the sample size, if the variances are heterogeneous you 

should probably use the Games and Howell procedure. 

 

Familywise error rate 

 

Although the Newman–Keuls procedure was designed to control the familywise error 

rate, it does not control it completely. In fact, under certain conditions, the error rate can 

be quite high. If the complete null hypothesis is true (i.e., if 1 2 k     ), then the 

Newman–Keuls sets FW = .05, assuming that this is our chosen significance level. With, 

for example, five means and a true complete null hypothesis, our first test will 

compare 1 with 5 , and because we used the Studentized range statistic, the probability 

of a Type I error will be .05. If we do not find a difference, we stop testing and thus do 

not have another chance to make a Type I error. If we do find a difference, we have 

already made a Type I error (because the complete null hypothesis is true), and FW is not 

affected by how many more errors we make. (FW is the probability of at least one Type I 

error.) Suppose, however, that some other state of affairs is true. For example, 

suppose 1 2 3 4 5        . Then our first test is likely to be significant, because 1  

5.  Now, however, there are two true  null hypotheses to be tested and we have a 

probability of .05 of making a Type I error on each. Therefore, FW will be about 

 
2

1 1 .05  , which is approximately .10. In general, the maximum FW for the Newman–
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Keuls is approximately  times the maximum number of null hypotheses that could be 

true, which is equal to the number of pairs involving different means.  

 

Therefore, 

 
max

2

1

2

k

FW

k









 
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if  is even

if  is odd

k
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This means that with three means FW = .05 because there is at most one true null 

hypothesis to be falsely declared ―significant,‖ whereas with four or five 

means .10FW  (there at most two true null hypotheses). 

 

12.5. TUKEY’S TEST 

 

Much of the work on multiple comparisons has been based on the original work of 

Tukey, and an important test bears his name.
11

 The Tukey test, also called the Tukey’s 

HSD (honestly significant difference) test, is similar to the Newman–Keuls, except that 

HSDq  is always taken as the maximum value of rq . In other words, if there are five 

means, all differences are tested as if they were five steps apart. The effect is to fix the 

familywise error rate at  against all possible null hypotheses, not just the complete null 

hypothesis, although with a loss of power. The Tukey HSD is the favorite pairwise test 

for many people because of the control it exercises over .   

                                                           
11

 A second test (the WSD), which is a modification on the HSD test, was proposed by Tukey as less 

conservative. However, I have never seen it used and have omitted it from discussion. 
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If we apply the Tukey HSD to the data on morphine tolerance, we apply a critical value 

of 8.14rW  to all differences. Thus, we declare all mean differences ( i jX X ) to be 

significant if they exceed 8.14 and to be not significant if they are less than 8.14. For our 

data, the difference between M MX  and M SX   = 10-4 = 6, and the difference between 

S SX  and M SX   is 11-4 = 7. The Newman–Keuls declared these differences to be 

significant, but the Tukey HSD would declare them not significant because 6 and 7 are 

less than 8.14. On this basis, we would represent the set of homogeneous means as  

  

M-S M-M S-S S-M Mc-M 

4 10 11 24 29 

        

     

 

This leads to quite a different interpretation of the results, because the group that was 

switched from morphine to saline (M-S) can no longer be declared significantly more 

sensitive to pain than is the group that had never received morphine (S-S) or the group 

that always received it (M-M). 

 

12.6. THE RYAN PROCEDURE (REGWQ) 

 

As we have seen, the Tukey procedure controls the familywise error rate at  regardless 

of the number of true null hypotheses (not just for the overall null hypothesis), whereas 

the Newman–Keuls allows the familywise error rate to rise as the number of true null 
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hypotheses increases. The Tukey test, then, provides a firm control over Type I errors, 

but at some loss in power. The Newman–Keuls tries to maximize power, but with some 

loss in control over the familywise error rate. A compromise, which holds the familywise 

error rate at  but which also allows the critical difference between means to shrink as r 

(the number of means in a set) decreases, was proposed by Ryan (1960) and subsequently 

modified by others.  

 

What Newman and Keuls really did in creating their test was to hold the error rate at  

for each set of r ordered means. The effect of this is to allow the critical values to grow as 

r increases, but they actually grow too slowly to keep the familywise error rate at  when 

multiple null hypotheses are true. Ryan (1960) also proposed modifying the value of  

for each step size, but in such a way that the overall familywise error rate would remain 

unchanged at . For k means and a step size of r, Ryan proposed using critical values of 

rq  at the 

/
r

r

k r k

 
    

level of significance, rather than always using rq  at the  level of significance. This 

suggestion was then modified by Einot and Gabriel (1975) to set 

 
 

 
1

1 1 1 1
k r r k

r         

and then again by Welsch (1977) to keep the Einot and Gabriel suggestion but to 

allow r to remain at  for r = k, and r = k-1. These changes hold the overall familywise 

error rate at  while giving greater power than does Tukey to some comparisons. (Notice 
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the similarity in the first two of these suggestions to the way  is adjusted by the 

Bonferroni and the Dunn-Šidák procedures.)  

 

What these proposals really do is to allow you to continue to use the tables of the 

Studentized Range Distribution, but instead of always looking for rq  at  = .05, for 

example, you look for rq  at  = r , which is likely to be some unusual fractional value. 

The problem is that you don’t have tables that give rq  at any values other than  = .05 or 

 = .01. That is no problem if you are using computer software that can calculate those 

values, but it is a problem if you are doing your analyses with your hand calculator.  

 

One way that you can run the Ryan procedure (or the Ryan/Einot/Gabriel/Welsch 

procedure) is to use SPSS or SAS and request multiple comparisons using the REGWQ  

method.  (The initials refer to the authors and to the fact that it uses the Studentized 

Range Distribution (q).) For those who have access to SPSS or other software that will 

implement this procedure, I recommend it over either the Newman–Keuls or the Tukey, 

because it appears to be the most powerful test generally available that still keeps the 

familywise error rate at . Those who don’t have access to the necessary software will 

have to fall back on one of the more traditional tests. The SAS output for the REGWQ 

procedure (along with the Student–Newman–Keuls, the Tukey, and the Scheffé tests) are 

presented later in the chapter so that you can examine the results. In this situation the 

conclusions to be drawn from the REGWQ and Tukey tests are the same, although you 

can see the difference in their critical ranges. 
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12.7. THE SCHEFFÉ TEST 

 

The post hoc tests we have considered all primarily involve pairwise comparisons of 

means, although they can be extended to more complex contrasts. One of the best-known 

tests, which is both broader and more conservative, was developed by Scheffé. The 

Scheffé test, which uses the F distribution rather than the Studentized range statistic, sets 

the familywise error rate at  against all possible linear contrasts, not just pairwise 

contrasts. If we let 

2

contrast 2
 and SSj j

j

nL
L a X

a
 


 

then 

2

2

errorMSj

nL
F

a



 

Scheffé has shown that if obtF  is evaluated against    error1 1,k F k df  —rather than 

against  error1,F df —the FW is at most . (Note that all that we have done is to calculate 

F on a standard linear contrast, but we have evaluated that F against a modified critical 

value.) Although this test has the advantage of holding constant FW for all possible linear 

contrasts—not just pairwise ones—it pays a price; it has the least power of all the tests 

we have discussed. Partly to overcome this objection, Scheffé proposed that people may 

prefer to run his test at  = .10. He further showed that the test is much less sensitive than 

the Tukey HSD for pairwise differences but is more sensitive than the Tukey HSD for 

complex comparisons (Scheffé, 1953, 1959). In general, the Scheffé test should never be 

used to make a set of solely pairwise comparisons, nor should it normally be used for 
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comparisons that were thought of a priori. The test was specifically designed as a post 

hoc test (as were the Newman–Keuls and Tukey tests), and its use on a limited set of 

comparisons that were planned before the data were collected would generally be foolish. 

Although most discussions of multiple-comparison procedures include the Scheffé, and 

many people recommend it, it is not often seen as the test of choice in research reports 

because of its conservative nature. 

 

12.8. DUNNETT’S TEST FOR COMPARING ALL TREATMENTS WITH A 

CONTROL 

 

In some experiments the important comparisons are between one control treatment and 

each of several experimental treatments. In this case, the most appropriate test is 

Dunnett’s test. This is more powerful (in this situation) than are any of the other tests we 

have discussed that seek to hold the familywise error rate at or below .  

 

We will let dt  represent the critical value of a modified t statistic. This statistic is found 

in tables supplied by Dunnett (1955, 1964) and reproduced in Appendix dt . We can 

either run a standard t test between the appropriate means (using errorMS as the variance 

estimate and evaluating the t against the tables of dt ) or solve for a critical difference 

between means. For a difference between means cX and jX (where cX represents the mean 

of the control group) to be significant, the difference must exceed 
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  error2MS
Critical value c j dX X t

n
   

Applying this test to our data, letting group S-S from Table 12.1 be the control group, 

 
 2 32.00

Critical value 
8

c j dX X t   

We enter Appendix dt  with k = 5 means and errordf = 35. The resulting value of dt  is 2.56.  

 
 

 
2 32.00

Critical value 2.56 2.56 2.828 7.24
8

c jX X     

Thus, whenever the difference between the control group mean (group S-S) and one of 

the other group means exceeds ±7.24, that difference will be significant. The k-1 

statements we will make concerning this difference will have an FW of  = .05. 

S-S versus M-S 11- 4 7

S-S versus M-M 11-10 1

S-S versus S-M 11- 24 -13

S-S versus Mc-M 11- 29 -18

 

 

 

 

 

Because we have a two-tailed test ( dt  was taken from two-tailed tables), the sign of the 

difference is irrelevant. The last two differences exceed ±7.24 and are therefore declared 

to be significant.  

 

In the case in which the groups have unequal sample sizes or heterogeneous variances, a 

test on the difference in treatment means is given by the same general procedure we used 

with the Newman–Keuls. 
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12.9. COMPARISON OF DUNNETT’S TEST AND THE BONFERRONI T 

 

Because the Bonferroni t test allows the experimenter to make any a priori test, it is 

reasonable to ask what would happen if we decided a priori to apply that test to the 

differences between the control mean and the experimental treatment means. If we did 

this for our data, we would find that the required critical difference would be 7.47 for the 

Bonferroni instead of the 7.24 required for Dunnett’s test. Thus, we would have a less 

powerful test, because a larger difference is needed for rejection of 0H . Both the 

Bonferroni t and Dunnett’s test are based on inequalities of the form FW ≤ , but 

Dunnett’s test uses a sharper inequality (Miller, 1981). To put this rather crudely, in 

Dunnett’s case there is more of the equal to and less of the less than involved in the 

relationship between FW and . For this reason, it is a more powerful test whenever you 

want simply to compare one treatment (it does not really have to be called a ―control‖ 

treatment) with each of the others. 

 

12.10.   COMPARISON OF THE ALTERNATIVE PROCEDURES 

 

Because the multiple-comparison techniques we have been discussing were designed for 

different purposes, there is no truly fair basis on which they can be compared. There is 

something to be gained, however, from summarizing their particular features and 

comparing the critical differences they require for the same set of data. Table 12.5 lists 

the tests, the error rate most commonly associated with them, the kinds of comparisons 
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they are primarily designed to test, and the type of test (range test, F test, or t—modified 

or not in each case). 

 

Table 12.5  Comparison of alternative multiple-comparison procedures 

 

Test Error Rate Comparison Type  A Priori/  

Post Hoc 

1. Individual t tests 

2. Linear contrasts 

3. Bonferroni t 

4. Holm: Larzelere & Mulaik 

5. Fisher’s LSD 

6. Newman-Keuls 

7. Ryan (REGWQ) 

8. Tukey HSD 

9. Sheffé’s test 

10.Dunnett’s test 

PC 

PC 

FW 

FW 

FW
†
 

FW
†
 

FW 

FW 

FW 

FW 

Pairwise 

Any contrasts 

Any contrasts 

Any contrasts 

Pairwise 

Pairwise 

Pairwise 

Pairwise
§
 

Any contrasts 

With control 

 

t 

F 

t
‡
 

t
‡
 

t 

Range 

Range 

Range
‡
 

F
‡
 

F
‡
 

A priori 

A priori 

†
Against complete null hypothesis 

‡
Modified 

§
Tukey HSD con be used for all contrasts, but is poor for this purpose 

 

 

If we compare the tests in terms of the critical values they require, we are being 

somewhat unfair to the a priori tests. To say that the Bonferroni t test, for example, 

requires a large critical value when making all possible pairwise comparisons is not really 

doing the test justice, because it was designed to make relatively few individual 

comparisons and not to be limited to pairwise contrasts. With this word of caution, 

Table 12.6 compares the critical differences ( rW ) for each test. Linear contrasts have 

been omitted because they are not appropriate to the structure of the table, and the critical 

values for pairwise comparisons would be the same as for the individual t tests. Dunnett’s 

test has also been omitted because it does not fit with the structure of the table. 
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Table 12.6  Comparison of critical differences for alternative procedures 

 W2 W3 W4 W5 

Individual t tests 

Bonferroni t tests
*
 

Holm** 

Newman-Keuls 

Ryan (REGWQ) 

Tukey HSD 

Scheffé test
 

5.74 

7.47 

5.74 

5.74 

6.88 

8.13 

9.19 

5.74 

7.47 

6.64 

6.93 

7.54 

8.13 

9.19 

5.74 

7.47 

7.13 

7.63 

7.63 

8.13 

9.19 

5.74 

7.47 

7.47 

8.13 

8.13 

8.13 

9.19 

 

* Assuming only four pairwise comparisons are desired. 

** Assuming significance at each preceding level 

 

 

 

12.11. WHICH TEST? 

 

Choosing the most appropriate multiple-comparison procedure for your specific situation 

is not easy. Many tests are available, and they differ in a number of ways. The choice is a 

bit easier if we consider the two extremes first.  

 

If you have planned your test in advance and you want to run only one comparison, I 

would suggest that you run a standard t test (correcting for heterogeneity of variance if 

necessary), or, if you have a complex comparison, a linear contrast. If you have several 

a priori contrasts to run, not necessarily pairwise, the multistage Bonferroni t proposed by 

Holm does a good job of controlling FW while at the same time maximizing power.  

 

If you have a large number of groups and wish to make many comparisons, whether or 

not you are interested in all of the possible pairwise comparisons, you would probably be 

better off using the Ryan REGWQ if you have it available or the Tukey. In the past I 
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recommended the Newman–Keuls, because it does a fairly good job when you have five 

or fewer groups, but I have found myself in a distinct minority and have decided to bail 

out.  With three groups the Newman–Keuls and the REGWQ test will be the same 

anyway, given Welsch’s modification to that test, which earned him a place in its initials. 

I can’t think of a situation where I would personally recommend the Scheffé, but I 

presented it here because it is a common test and real hard-liners like it.  

 

People often fail to realize that in selecting a test, it is perfectly acceptable to compare 

each of several tests on your own data in terms of the size of the critical values, and to 

select a test on that basis. For example, if you are going to run only a few pairwise 

comparisons, the critical values for the Holm-modified Bonferroni test may be smaller 

than the critical values for the REGWQ. In that case, go with modified Bonferroni. On 

the other hand, you may discover that even though you do not wish to make all possible 

pairwise comparisons, the REGWQ (or the Tukey) gives smaller critical values than the 

modified Bonferroni, in which case you would waste power to go with the Bonferroni. 

The important point is that these decisions have to be based on a consideration of the 

critical values, and not the final results. You can’t just try out every test you have and 

choose the one that gives you the answers you like. 

 

12.12.   COMPUTER SOLUTIONS 

 

Most software packages will perform multiple comparison procedures, but not all 

packages have all procedures available. Exhibit 12.1 contains the results of an analysis of 
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the morphine data using SAS. I chose SAS because it has a broad choice of procedures 

and is one of the major packages. It also has more information in its printout than do 

SPSS and Minitab, and is thus somewhat more useful for our purpose. 

 

Exhibit 12.1 begins with the program commands and the overall analysis of variance. 

(―Condition‖ is spelled as ―Condtion‖ because SAS allows only 8 characters in a name.) 

This analysis agrees with the summary table shown in Table 12.1, and with 

an 2 2 .757R   . You can see that our experimental manipulation accounts for a 

substantial portion of the variance. The remainder of the exhibit includes the results of 

the Newman–Keuls, Ryan, Tukey, and Scheffé tests.  

 

The Newman–Keuls, as the least conservative test, reports the most differences between 

conditions. If you look first at the means and ―SNK Grouping‖ at the end of that portion 

of the printout, you will see a column consisting of the letters A, B, and C. These are 

analogous to the underlining of condition names that you saw earlier in this chapter. 

Conditions that share the same letter are judged to not differ from one another. Thus the 

means of Conditions Mc-M and S-M are not significantly different from one another, but, 

because they don’t have a letter in common with other conditions, they are different from 

the means of S-S, M-M, and M-S. Similarly, Conditions S-S and M-M share the letter B 

and their means are thus not significantly different from each other, but are different from 

the means of the other three conditions. Finally, the mean of Condition M-S is different 

from the means of all other conditions. These are the same conclusions we drew when we 

performed the Newman–Keuls by hand.  
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 (the Condtion labels are wrong throughout—the order is Mc-M, S-M, S-S, M-M, M-S) 
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If you look a bit higher in the table you will see a statement about how this test deals with 

the familywise (here called ―experimentwise‖) error rate. As was said earlier, the 

Newman-Keuls holds the familywise error rate at  against the complete null hypothesis, 

but allows it to rise in the case where a subset of null hypotheses are true. You next see a 

statement saying that the test is being run at  = .05, that we have 35 df for the error term, 
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and that errorMS = 32.00. Following this information you see the critical ranges. These are 

the minimum differences between means that would be significant for different values 

of r. The critical ranges are equal to 

  error
.05

MS
,r eW q r df

n
  

For example, when r = 3 (a difference between the largest and smallest of three means) 

   error
3 .05

MS 32
3, 3.46 3.46 2 6.92

8
eW q df

n
     

Because all three step differences (e.g., 29-11 = 18; 24-10 = 14; 11-4 = 7) are greater than 

6.92, they will all be declared significant. 

 

The next section of Exhibit 12.1 shows the results of the Ryan (REGWQ) test. Notice 

that the critical ranges for r = 2 and r = 3 are larger than they were for the Newman–

Keuls (though smaller than they will be for the Tukey). As a result, for r = 3 we need to 

exceed a difference of 7.54, whereas the difference between 11 and 4 is only 7. Thus this 

test will not find Group 1 (M-S) to be different from Group 3 (S-S), whereas it was 

different for the more liberal Newman–Keuls. However the familywise error rate for this 

set of comparisons is  = .05, whereas it would be nearly  = .10 for the Newman–Keuls.  

 

The Tukey test is presented slightly differently, but you can see that Tukey requires all 

differences between means to exceed a critical range of 8.1319 to be declared significant, 

regardless of where they lie in an ordered series. For this specific set of data our 

conclusions are the same as they were for the Ryan test, although that will certainly not 

always be the case.  



 70 

 

Although the Scheffé test is run quite differently from the others, it is possible to compute 

a critical range for all pairwise comparisons. From Exhibit 12.1 we can see that this range 

is 9.1939, almost a full point larger than the critical range for Tukey. This reflects the 

extreme conservatism of the Scheffé procedure, especially with just pairwise contrasts, 

and illustrates my major objection to the use of this test.  

 

SAS will also produce a number of other multiple comparison tests, including the 

Bonferroni and the Dunn-Šidák. I do not show those here because it is generally foolish 

to use either of those tests when you want to make all possible pairwise comparisons 

among means. The Ryan or Tukey test is almost always more powerful and still controls 

the familywise error rate. I suppose that if I had a limited number of pairwise contrasts 

that I was interested in, I could use the Bonferroni procedure in SAS (BON) and promise 

not to look at the contrasts that were not of interest. But I’d first have to ―cross my heart 

and hope to die,‖ and even then I’m not sure if I’d trust myself. 

 

12.13. TREND ANALYSIS 

 

The analyses we have been discussing are concerned with identifying differences among 

group means, whether these comparisons represent complex contrasts among groups or 

simple pairwise comparisons. Suppose, however, that the groups defined by the 

independent variable are ordered along some continuum. An example might be a study of 

the beneficial effects of aspirin in preventing heart disease. We could ask subjects to take 
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daily doses of 1, 2, 3, 4, or 5 grains of aspirin, where 1 grain is equivalent to what used to 

be called ―baby aspirin‖ and 5 grains is the standard tablet. In this study we would not be 

concerned so much with whether a 4-grain dose was better than a 2-grain dose, for 

example, as with whether the beneficial effects of aspirin increase with increasing the 

dosage of the drug. In other words, we are concerned with the trend in effectiveness 

rather than multiple comparisons among specific means.  

 

To continue with the aspirin example, consider two possible outcomes. In one outcome 

we might find that the effectiveness increases linearly with dosage. In this case the more 

aspirin you take, the greater the effect, at least within the range of dosages tested. A 

second, alternative, finding might be that effectiveness increases with dosage up to some 

point, but then the curve relating effectiveness to dosage levels off and perhaps even 

decreases. This would be either a ―quadratic‖ relationship or a relationship with both 

linear and quadratic components. It would be important to discover such relationships 

because they would suggest that there is some optimal dose, with low doses being less 

effective and high doses adding little, if anything, to the effect.  

 

Typical linear and quadratic functions are illustrated in Figure 12.2. (They were 

produced using JMP on a Macintosh.) It is difficult to characterize quadratic functions 

neatly because the shape of the function depends both on the sign of the coefficient of 

2X and on the sign of X (the curve changes direction when X passes from negative to 

positive, and for positive values of X the curve rises if the coefficient is positive and falls 

if it is negative). Also included in Figure 12.2 is a function with both linear and quadratic 
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components. Here you can see that the curvature imposed by a quadratic function is 

superimposed upon a rising linear trend.  

 

Tests of trend differ in an important way from the comparison procedures we have been 

discussing. In all of the previous examples, the independent variable was generally 

qualitative. Thus, for example, we could have written down the groups in the morphine-

tolerance example in any order we chose. Moreover, the F or t values for the contrasts 

depended only on the numerical value of the means, not on which particular groups went 

with which particular means. In the analysis we are now considering, F or t values will 

depend on the both the group means and the particular ordering of those means. To put 

this slightly differently using the aspirin example, a Newman–Keuls test between the 

largest and the smallest means will not be affected by which group happens to have each 

mean. However, in trend analysis the results would be quite different if the 1-grain and 5-

grain groups had the smallest and largest means than if the 4-and 2-grain groups had the 

smallest and largest means, respectively. (A similar point was made in Section 6.7 in 

discussing the nondirectionality of the chi-square test.) 
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Figure 12.2 Typical linear and quadratic functions 

 

Boring is attractive 

 

A useful example of trend analysis comes from a study by Langlois and Roggman 

(1990), which examined the question of what makes a human face attractive. They 

approached the problem from both an evolutionary and a cognitive perspective. Modern 

evolutionary theory would suggest that average values of some trait would be preferred to 

extreme ones, and cognitive theory suggests that both adults and children respond to 

prototypes of objects more positively than to objects near the extremes on any dimension. 

A prototype, by definition, possesses average values of the object along important 

dimensions. (A prototype of a cat is one that is not too tall or too short, not too fat or too 

thin, and doesn’t purr too loudly or too quietly.) 
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Langlois and Roggman took facial photographs of 336 males and 214 females. They then 

created five groups of composite photographs by computer-averaging the individual 

faces. Thus, for one group the computer averaged 32 randomly selected same-gender 

faces, producing a quite recognizable face with average width, height, eyes, nose length, 

and so on. For the other groups the composite faces were averaged over either 2, 4, 8, or 

16 individual faces. An example of composite faces can be seen in Figure 12.3. The label 

Composite will be used to represent the five different groups. That is not an ideal name 

for the independent variable, but neither I nor the study’s authors have a better 

suggestion. Within each group of composite photographs were three male and three 

female faces, but we will ignore gender for this example. (There were no significant 

gender differences, and the overall test on group differences is not materially affected by 

ignoring that variable.) 
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Langlois and Roggman presented different groups of subjects with composite faces and 

asked them to rate the attractiveness of the faces on a 1–5 scale, where 5 represents ―very 

attractive.‖ The individual data points in their analysis were actually the means averaged 

across raters for the six different composites in each condition. The data are given in 

Table 12.7. These data are fictional, but they have been constructed to have the same 

mean and variance as those reported by Langlois and Roggman, so the overall F and the 

tests on trend will be the same as those they reported.  

 



 76 

Table 12.7  Data on rated attractiveness 

 Group 1 Group 2 Group 3 Group 4 Group 5 

 2.201 

2.411 

2.407 

2.403 

2.826 

3.380 

1.893 

3.102 

2.355 

3.644 

2.767 

2.109 

2.906 

2.118 

3.226 

2.811 

2.857 

3.422 

3.233 

3.505 

3.192 

3.209 

2.860 

3.111 

3.200 

3.253 

3.357 

3.169 

3.291 

3.290 

Mean 2.6047 2.6450 2.8900 3.1850 3.2600 

 

A standard one-way analysis of variance on these data would produce the following 

summary table:  

 

Source df SS MS F 

Composite 4 2.1704 0.5426 3.13* 

Error 25 4.3281 0.1731  

Total 29 6.4985   

*p<.05 

From the summary table it is apparent that there are significant differences among the 

five groups, but it is not clear how these differences are manifested. One way to examine 

these differences would be to plot the group means as a function of the number of 

individual pictures that were averaged to create the composite. An important problem that 

arises if we try to do this concerns the units on the abscissa. We could label the groups as 

―2, 4, 8, 16, and 32,‖ on the grounds that these values correspond to the number of 

elements over which the average was taken. However, it seems unlikely that rated 

attractiveness would increase directly with those values. We might expect that a picture 

averaged over 32 items would be more attractive than one averaged over 2 items, but I 

doubt that it would be 16 times more attractive. But notice that each value of the 

independent variable is a power of 2. In other words, the values of 2, 4, 8, 16, and 32 
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correspond to 1 2 3 4 52 ,2 ,2 ,2 ,  and 2 . (Put another way, taking the 2log  of 2, 4, 8, 16, and 32 

would give us 1, 2, 3, 4, and 5.) For purposes of analyzing these data, I am going to 

represent the groups with the numbers 1 to 5 and refer to these as measuring the degree of 

the composite. (If you don’t like my approach, and there is certainly room to disagree, be 

patient and we will soon see a solution using unequally spaced values of the independent 

variable. The example will be simpler statistically if the units on the abscissa are evenly 

spaced.) The group means using my composite measure on the abscissa are plotted in 

Figure 12.4, where you can see that the rated attractiveness does increase with increasing 

levels of Composite.  

 

 

Figure 12.4  Scatterplot of mean versus composite group 

 

Our first question asks whether a nonhorizontal straight line provides a good fit to the 

data. A glance at Figure 12.4 would suggest that this is the case. We will then follow that 

question by asking whether systematic residual (nonerror) variance remains in the data 

after fitting a linear function, and, if so, whether this residual variance can be explained 

by a quadratic function. 
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To run a trend analysis, we will return to the material we discussed under the headings of 

linear and orthogonal contrasts. (Don’t be confused by the use of the word linear in the 

last sentence. We will use the same approach when it comes to fitting a quadratic 

function. Linear in this sense simply means that we will form a linear combination of 

coefficients and means, where nothing is raised to a power.)  

 

In Section 12.3 we defined a linear contrast as 

1 1 2 2 3 3 k k j jL a X a X a X a X a X       

The only difference between what we are doing here and what we did earlier will be in 

the coefficients we use. In the case in which there are equal numbers of subjects in the 

groups and the values on the abscissa are equally spaced, the coefficients for linear, 

quadratic, and higher-order functions (polynomial trend coefficients) are easily tabled 

and are found in Appendix Polynomial. From Appendix Polynomial we find that for five 

groups the linear and quadratic coefficients are 

 

Linear: -2 -1 0 1 2 

Quadratic: 2 -1 -2 -1 2 

 

We will not be using the cubic and quartic coefficients shown in the appendix, but their 

use will be evident from what follows. Notice that like any set of orthogonal linear 

coefficients, the requirements that ja = 0 and 0i ja b  are met.  

 

As you should recall from Section 12.3, we calculate a sum of squares for the contrast as 
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2

contrast 2
SS

j

nL

a



 

In our case, 

         

 

linear

22

linear
2

2 2.6047 1 2.6450 0 2.8900 1 3.1850 2 3.2600

1.8506

6 1.8506
SS

10

2.0548

j

L

nL

a

      



 





 

 

Like all contrasts, this contrast has a single degree of freedom, and therefore 

linear linearSS MS . As you probably suspect from what you already know, we can convert 

this mean square for the contrast to an F by dividing by errorMS : 

linear

error

MS

MS

2.0548

0.1731

11.8706

F 





 

 

This is an F on 1 and 24 degrees of freedom, and from Appendix F we find 

that  .05 1,24 4.26F  . Because the F for the linear component (11.87) exceeds 4.26, we 

will reject 0H and conclude that there is a significant linear trend in our means. In other 

words, we will conclude that attractiveness varies linearly with increasing levels of 

Composite. Notice here that a significant F means that the trend component we are 

testing is significantly different from 0.  
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It is conceivable that we could have a significant linear trend in our data and still have 

residual variance that can be explained by a higher-order term. For example, it is possible 

that we might have both linear and quadratic, or linear and cubic, components. In fact, it 

would be reasonable to expect a quadratic component in addition to a linear one, because 

it seems unlikely that judged attractiveness will keep increasing indefinitely as we 

increase the number of individual photographs we average to get the composite. There 

will presumably be some diminishing returns, and the curve should level off.  

 

The next step is to ask whether the residual variance remaining after we fit the linear 

component is significantly greater than the error variance that we already know is 

present. If linearSS  accounted for virtually all of CompositeSS , there would be little or nothing 

left over for higher-order terms to explain. On the other hand, if linearSS  were a relatively 

small part of CompositeSS , then it would make sense to look for higher-order components. 

From our previous calculations we obtain 
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residual Composite linear

residual Composite linear

residual
residual

residual

residual
residual

error

SS SS SS

2.1704 2.0548

0.1156

4 1

3

SS
MS

0.1156

3

0.0385

MS

MS

0.0385

0.1731

1

df df df

df

F

 

 



 

 














 

Because F for the residual is less than 1, we know automatically that it is not significant. 

This tells us that there is no significant variability left to be explained over and above that 

accounted for by the linear component. We would, therefore, normally stop here. 

However, for purposes of an example I will go ahead and calculate the quadratic 

component. The calculations will be shown without discussion, because the discussion 

would essentially be the same as above with the word quadratic substituted for linear. 
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         

 

quadratic

2

quadratic 2

2

quadratic

error

2 2.6047 1 2.6450 2 2.8900 1 3.1850 2 3.2600

0.1194

SS

6 0.1194

14

0.0061

MS

MS

0.0061

0.1731

1

j

L

nL

b

F

       

















 

 

As our test on the residual suggested, there is no significant quadratic component on our 

plot of the group means. Thus there is no indication, over the range of values used in this 

study, that the means are beginning to level off. Therefore, we would conclude from 

these data that attractiveness increases linearly with Composite, at least given the 

definition of Composite used here.  

 

A word of caution is in order at this point. You might be tempted to go ahead and apply 

the cubic and quartic coefficients that you find in Appendix Polynomial. You might also 

observe that having done this, the four sums of squares ( linearSS , ... , quarticSS ) will sum to 

CompositeSS , and be very impressed that you have accounted for all of the sums of squares 

between groups. Before you get too impressed, think about how proud you would be if 

you showed that you could draw a straight line that exactly fit two points. The same idea 

applies here. Regardless of the data, you know before you begin that a polynomial of 

order k-1 will exactly fit k points. That is one reason why I was not eager to go much 
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beyond fitting the linear components to the data at hand. A quadratic was stretching 

things a bit. Moreover, if you were to fit a fourth-order polynomial and found that the 

quartic component was significant, what would you have to say about the results? A 

linear or quadratic component would make some sense, but a quartic component could 

not be explained by any theory I know. 

 

Unequal intervals 

 

In the preceding section we assumed that the levels of the independent variable are 

equally spaced along some continuum. In fact, I actually transformed the independent 

variable into a scale called Composite to fulfill that requirement. It is possible to run a 

trend analysis when we do not have equal intervals, and the arithmetic is the same. The 

only problem comes when we try to obtain the trend coefficients, because we cannot take 

our coefficients from Appendix Polynomial unless the intervals are equal.  

 

Calculating quadratic coefficients is not too difficult, and a good explanation can be 

found in Keppel (1973). For higher-order polynomials the calculations are more 

laborious, but a description of the process can be found in Robson (1959). For most 

people, their analyses will be  carried out with standard statistical software, and that 

software will often handle the problem of unequal spacing. Without diving deeply into 

the manuals, it is often difficult to determine how your software handles the spacing 

problem. The simplest thing to do, using the attractiveness data as an example, would be 

to code the independent variable as 1, 2, 3, 4, and 5, and then recode it as 2, 4, 8, 16, 32. 



 84 

If the software is making appropriate use of the levels of the independent variable, you 

should get different answers. Then the problem is left up to you to decide which answer 

you want, when both methods of coding make sense. For example, if you use SPSS 

ONEWAY procedure and ask for polynomial contrasts, where the independent variable 

is coded 1, 2, 3, 4, 5, you will obtain the same results as above. If you code the variable 2, 

4, 8, 16, 32, you will obtain slightly different results. However, if you use SPSS General 

Linear Model/Univariate procedure, the way in which you code the independent variable 

will not make any difference—both will produce results as if the coding were 1, 2, 3, 4, 5. 

It always pays to check. 

 

An example containing both a quadratic and a cubic component can be found in Exercise 

12.25 Working through that exercise can teach you a lot about trend analysis. 

 

KEY TERMS 

Error rate per comparison (PC) (12.1) 

Familywise error rate (FW) (12.1) 

A priori comparisons (12.1) 

Post hoc comparisons (12.1) 

Contrasts (12.3) 

Linear combination (12.3) 

Linear contrast (12.3) 

Partition (12.3) 

Orthogonal contrasts (12.3) 

Dunn’s test (12.3) 

Bonferroni t (12.3) 

Bonferroni inequality (12.3) 

Dunn-Šidák test (12.3) 

Fisher’s least significance difference 

(LSD) (12.4) 

Studentized range statistic (q) (12.4) 

Newman–Keuls test (12.4) 

Tukey test (12.5) 
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HSD (honestly significant difference) 

test (12.5) 

Ryan procedure (REGWQ) (12.6) 

Scheffé test (12.7) 

Dunnett’s test (12.8) 

Trend (12.13) 

Quadratic function (12.13) 

Polynomial trend coefficients (12.13)  

 

 

 

EXERCISES 

12.1) Assume that the data that follow represent the effects of food and/or water 

deprivation on behavior in a learning task. Treatments 1 and 2 represent 

control conditions in which the animal received ad lib food and water (1) or 

else food and water twice per day (2). In treatment 3 animals were food 

deprived, in treatment 4 they were water deprived, and in treatment 5 they 

were deprived of both food and water. The dependent variable is the number 

of trials to reach a predetermined criterion. Assume that before running our 

experiment we decided that we wanted to compare the combined control 

groups (treatments 1 and 2) with the combined experimental groups, the 

control groups with each other, the singly deprived treatments with the doubly 

deprived treatment, and the singly deprived treatments with each other.  
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Ad Lib 

Control 

Two per 

Day 

Control 

Food 

Deprived 

Water 

Deprived 

Food and 

Water 

Deprived 

18 20 6 15 12  

20 25 9 10 11  

21 23 8 9 8  

16 27 6 12 13  

15 25 11 14 11 

90 120 40 60 55  

 

a) Analyze the data using linear contrasts (Note, I am not asking for 

linear polynomials (trend) here, just standard contrasts). 

b) Show that the contrasts are orthogonal. 

c) Show that the sums of squares for the contrasts sum to treatSS .  

12.2) Using the data from Exercise 11.1, compute the linear contrasts for 5 versus 

(20 and 35) days and 20 versus 35 days, using  = .05 for each contrast. 

12.3) What would be the per comparison and familywise error rates in Exercise 

12.2? (Hint: Are the contrasts orthogonal?) 

12.4) Compute F for the linear contrast on the two groups in Exercise 11.2. (Note 

that this and subsequent exercises refer to exercises in Chapter 11, not this 

chapter.). Is this a waste of time? Why or why not? 

12.5) Compute the Studentized range statistic for the two groups in Exercise 11.2, 

and show that it is equal to 2t (where t is taken from Exercise 11.2b). 

12.6) Compute the Fs for the following linear contrasts in Exercise 11.3. Save the 

results for use in Chapter 13. 

a) 1 and 2 versus 3 and 4 

b) 1 and 3 versus 2 and 4 

c) 1 and 4 versus 2 and 3 
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d) What questions do the contrasts in (a), (b), and (c) address?  

12.7) Run the Bonferroni t test on the data for Exercise 11.1, using the contrasts 

supplied in Exercise 12.2. Set the maximum FW at .05. 

12.8) Repeat Exercise 12.7, using Holm’s multistage test. 

12.9) Apply Holm’s multistage test to Exercise 12.1. 

12.10) Run a Newman–Keuls test on the example given in Table 11.2 (page …)and 

interpret the results. 

12.11) Calculate the Tukey test on the data in the example in Table 11.2, and 

compare your results to those you obtained for Exercise 12.10. 

12.12) Consider the following data for five groups:  

Group 1 2 3 4 5 

jX  10 18 19 21 29 

jn  8 5 8 7 9  

2

js  7.4 8.9 8.6 7.2 9.3  

Run a Newman–Keuls test on these data. 

12.13) Run Tukey’s HSD procedure on the data in Exercise 12.12. 

12.14) Use the Scheffé test on the data in Exercise 12.12 to compare groups 1, 2, and 

3 (combined) with groups 4 and 5 (combined). Then compare group 1 with 

groups 2, 3, and 4 (combined). (Hint: You will need to go back to the section 

in which unequal sample sizes are discussed in conjunction with Table 12.2.) 

12.15) Apply the Tukey procedure to the log transformed THC data from Table 11.5 

(page …). What is the maximum FW for this procedure? 

12.16) Apply Dunnett’s test to the log transformed data in Table 11.5. 

12.17) How could a statistical package that did not have a Bonferroni command be 

used to run the Bonferroni t test on the data in Exercise 12.7? 
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12.18) The Holm test is referred to as a modified sequentially rejective procedure. 

Why? 

12.19) Fit linear and quadratic trend components to the Conti and Musty (1984) log 

transformed data in Table 11.5. The control condition received 0 μg of THC. 

For purposes of this example, assume that there were 10 subjects in all groups. 

(You could add a 2.56 to the 0.5 μg group and a 2.35 and 2.36 to the 1 μg 

group without altering the results significantly.) The linear coefficients 

(calculated with unequal spacing on the independent variable) are [-0.72, -

0.62, -0.22, 0.28, 1.28]. The quadratic coefficients are [0.389, 0.199, -0.362, -

0.612, 0.387].  

Verify your answers using SPSS ONEWAY if you have it available. 

12.20) Use any statistical package to compute Fisher’s LSD procedure on all three 

pairs of means (even though the overall F was not significant) for GSIT from 

Mireault’s data (Mireault.dat). (This is based on the analysis of variance in 

Exercise 11.27.) Compare these results with the individual t tests that you ran 

for Exercise 7.46. Interpret the results. 

12.21) Use any statistical package to apply the Newman–Keuls, Tukey, REGWQ (if 

available), and Scheffé procedures to the data from Introini-Collison and 

McGaugh (1986), described in the exercises for Chapter 11. Do these analyses 

for both Epineq.dat and Epinuneq.dat. Do not combine across the levels of the 

interval variable. 
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12.22) In Exercise 12.21 it would not have made much of a difference whether we 

combined the data across the three intervals or not. Under what conditions 

would you expect that it would make a big difference? 

12.23) Using the data in Epineq.dat, compute both the linear and quadratic trend tests 

on the three drug dosages. Do this separately for each of the three intervals. 

(Hint: The linear coefficients are [-0.597110, -0.183726, 0.780836], and the 

quadratic coefficients are [0.556890, -0.795557, 0.238667].) 

12.24) Interpret the results in Exercise 12.23. 

12.25) Stone, Rudd, Ragozzino, and Gold (1992) investigated the role that glucose 

plays in memory. Mice were raised with a 12 hour light-on/light-off cycle, starting at 

6:00 AM.  During training mice were placed in the lighted half of an experimental box 

and given foot shock when they moved into the dark half. The mice quickly learned 

to stay in the lighted half. The day/night cycle was then advanced by 4 hours for all 

mice, which is known to interfere with memory of the original training. Three days 

later mice were retested 30 minutes after being injected with 0, 1, 10, 100, 250, or 

500 mg/kg of sucrose. The purpose was to see whether sucrose would reduce the 

disruptive effects of changing the diurnal cycle, and whether different doses would 

have different effects. Data that have been generated to loosely mimic the results of 

Stone et al. are given below, where the dependent variable is the latency to enter the 

dark chamber.  
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Glucose Level in mg/kg 

 0  1  10  100  250  500 

 295 

 287 

 91 

 260 

 193 

 52 

 129 

 248 

 350 

 278 

 150 

 195 

 393 

 484 

 308 

 112 

 132 

 414 

 653 

 732 

 570 

 434 

 690 

 679 

 379 

 530 

 364 

 385 

 355 

 558 

 521 

 241 

 162 

 197 

 156 

 384 

 

a) Plot these data using both the actual dosage, and the values 1, 2, 3, 4, 5, 6 as 

the values of X. 

b) Run a trend analysis using SPSS Oneway, if available, with the actual dosage 

as the independent variable. 

c) Repeat part b) using the 1, 2, 3, 4, 5, 6 coding as the independent variable. 

d) Interpret your results. How might these results have something to say to 

students who stay up all night studying for an exam? 

e) Why might you, or Stone et al., prefer one coding system over another? 

  

Discussion Question 

12.26) Students often have difficulty seeing why a priori and post hoc tests have 

different familywise error rates. Make up an example (not necessarily from 

statistics) that would help to explain the difference to others. 

12.27) Write an explanation of why the Newman–Keuls error rate is greater than 

 = .05 when the overall null hypothesis is not true. How does Ryan’s 

modification correct the problem? 

12.28) Find an example in the research literature of a study that used at least five 

different conditions, and create a data set that might have come from this 
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experiment. Apply several of the techniques we have discussed, justifying 

their use, and interpret the results. (You would never apply several different 

techniques to a set of data except for an example such as this.) [Hint: You can 

generate data with a given mean and variance by taking any set of numbers 

(make them at least unimodal and symmetrical), standardizing them, 

multiplying the standard scores by the desired standard deviation, and then 

adding the desired mean to the result. Do this for each group separately and 

you will have your data.] 

 


