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Recent years have seen a large increase in the use of confidence intervals and effect size 

measures such as Cohen’s d in reporting experimental results. Such measures give us a 

far better understanding of our results than does a simple yes/no significance test. And a 

confidence interval will also serve as a significance test. 

 

This document goes a step beyond either confidence intervals or effect sizes by 

discussing how we can place a confidence interval on an effect size. That is not quite as 

easy as it may sound, but it can be done with available software.  

 

Almost nothing in this article is original with me. There are a number of sources that I 

could point to, but Busk and Serlin (1992), Steiger and Fouladi (1997), and Cumming 

and Finch (2002) are good sources. When it comes to actually setting confidence limits 

on effect sizes we need to use the non-central t distribution, and the explanation of that 

becomes tricky. I hope that my presentation will be the clear for everyone, but if it 

doesn’t work for you, go to the above references, each of which describes the approach in 

different terms.  

 

Starting at the Beginning—Confidence Limits on a Mean 
 

What follows in this section should not be new to anyone, but I present it as a transition 

to material that will be new. I’ll begin with an example that will be familiar to anyone 

who has used either of my books. It concerns the moon illusion. 

 

Everyone knows that the moon appears much larger when it is near the horizon than 

when it is overhead. Kaufman and Rock (1962) asked subjects to adjust the size of an 

artificial moon seen at its zenith to match the size of an artificial moon seen on the 

horizon. If the apparatus was not effective, there would be no apparent illusion and the 

ratio of the two sizes should be about 1.00. On the other hand, if there is an illusion, the 

physical size of the setting for the zenith moon might be, for example, 50% larger than 

the physical size of that moon seen on the horizon, for a ratio of 1.50. Kaufman and Rock 

collected the following data and we want to set a 95% confidence interval on the size of 

the moon illusion. 

 

Ratio of Settings Mean Standard 

Deviation 

n 

1.73 1.06 2.03 1.40 0.95 1.13 1.41 1.73 1.63 1.56 1.463 0.341 10 

 

We will begin with our one sample t test on the sample mean. Normally we test a null 

hypothesis that the population mean is 0.00, but here if there is no illusion we would 

expect a ratio of 1.00, so our null hypothesis is  = 1.00. Our t test is 
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The critical value of t at  = .05 on 9 df = +2.263, so we will reject the null hypothesis. 

 

If we want to set limits that are likely to include µ given the data at hand, what we really 

want to do is to find those values of X centered on the mean that would enclose 95% of 

the sampling distribution of the mean. If we knew σ, which we rarely do, we would look 

for limits that are values that are within 1.96 standard errors of the mean. Because we 

usually do not know σ, we will use the t distribution to find the necessary cutoffs. We 

want those values of X that would lie within 2.263 standard errors of the mean, where 

+2.263 is the t.025 quantile of the t distribution. 

 

In this situation it turns out to be easy to create these limits because we can “pivot” the 

equation for t to give us a confidence interval on . We want to solve for those values of 

 that would give us a t of exactly +2.263. 
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Notice that we have converted a formula for t into a formula for . I added the + in front 

of the t because I want both the upper and lower limits on . I also replaced “t” with 

.025,9t because I want the critical value of t on 9 df. This leads me to 
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Our confidence limits on the population mean of the moon illusion are 1.219 and 1.707. 

95% of the time intervals computed by adding and subtracting the critical value of t times 

the standard error of the mean to the sample mean will encompass the true population 

mean  It is not quite correct to say that the probability is .95 that the true value of  lies 

between 1.219 and 1.707, although you often find it stated that way. (Crawford, 

Garthwaite, and Porter (2010) offer a very nice rationale for phrasing a confidence 

interval in a more meaningful way.) As others have said, our confidence is not in the 

numbers themselves but in the method by which they were computed. 

 

Effect Size 
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In this particular case we are probably perfectly happy to say that the data show that the 

mean apparent size of the horizon moon is approximately 50% larger than the zenith 

moon. That is what a ratio of 1.50 says. But we have a somewhat unusual case where the 

numbers we calculate actually have some good intuitive meaning to us. But suppose that 

the 1.50 represented a score on a psychometric test. We would know that 1.5 is larger 

than 1.00, but that doesn’t give us a warm and cozy feeling that we have grasped what the 

difference means. (Remember that the 1.00 came from the fact that we would expect  to 

be 1.00 if there were in fact no moon illusion.)  

 

To come up with a more meaningful statistic in that situation we would be likely to 

compute an effect size, which simply represents the difference in terms of standard 

deviations. (In other words, we will “standardize” the mean.) We will call this statistic 

“d”, after Cohen. (A number of people developed effect size measures, most notably 

Cohen, Hedges, and Glass, and I am not going to fight over the name. Jacob Cohen was 

my idol, so I’ll give him the credit even though that may not be exactly correct. For a 

complete list see Kirk (2005) ). We could also fight over the symbol to be used (e.g., d, , 

, g, ES, etc, but that doesn’t help anyone.) To calculate d in this situation we simply 

divide the difference between the obtained mean and our “null mean,” which is 1.00, by 

the standard deviation. 
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We will conclude that our result was about one and a third standard deviations above 

what we would expect without an illusion. 

 

At this point you might want me to take the next step and compute a confidence interval 

around d = 1.36, but you’ll have to wait. 

 

Confidence Intervals and Effect Sizes with Two Means 
 

To take another example from at least one of my books, Adams, Wright, and Lohr (1996) 

ran an interesting study in which they showed sexually explicitly homosexual videotapes 

to people they had identified as homophobic or nonhomophobic. They actually expected 

the homophobic individuals to be more sexually aroused by the tape (for various 

psychoanalytic reasons), and that is what they found. 

 

  

 Homophobic Nonhomophobic 

Mean 24.00 16.5 

Variance 148.87 139.16 

N 35 29 

 

First we will pool the variances 
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Then compute t 
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Now compute a confidence interval on the mean difference. 
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You will notice that although the difference is significant, the confidence interval on the 

difference is quite wide (approximately 12 units). 

 

Now compute the effect size 
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We can conclude that difference between the two groups is about 2/3 of a standard 

deviation, which seems quite large. 

 

Now to the Fun Stuff 
 

There really should not be anything in what you have just seen that is especially new. We 

simply ran two t tests, constructed a set of bounds on the mean or the difference of 

means, and computed two effect sizes. I went through this because it leads nicely into 

confidence limits on effect sizes. 

 

Confidence Limits on Effect Sizes 

 

In the previous examples things were simple. We were able to go from a t test to a 

confidence interval by inverting the t test. (That is just a classier way of saying “turning 

the t test on its head.”) We went from solving for t to solving for  with simple algebra 

that you probably learned in junior high. The reason that we could get away with that is 

that we were using a “central t distribution,” which is symmetrically distributed around 0. 

One limit would give you a t of 2.263 and the other limit would give you a t of -2.263. 
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But when we come to effect sizes we need to use a noncentral t, which is a plan old t 

distribution that is not distributed around 0.00 and is not symmetric. 

 

The figure below shows a noncentral t distribution on 9 df with a noncentrality parameter 

of 1.8. You can see that it is clearly non-normal. It is positively skewed. But what is a 

noncentrality parameter and why do we care? 

 

  

          
 

One question at a time. 

 

Think about the standard t test as a hypothesis test. We have 
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This formula is handy because if  is equal to    (in other words if we are subtracting 

the true population mean from the sample mean) this is a central t distribution. And when 

we run a hypothesis test, we are asking about what the value would be if the null is true—

if  is equal to . From here we can ask what values  could take on and still not have 

the obtained t exceed the critical value (2.263 in our first example). 

 

But a noncentral t is somewhat different. This is a t that is not distributed around 0, but 

around some other point. And that “other point” is called the noncentrality parameter 

(ncp). Suppose that we rewrite the above formula as: 
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If you clear parentheses and cancel, this is the same formula that we started with.   

 

The first part of this formula is a central t but that bit on the end 
 0

X
s
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 moves the 

distribution left or right. That is the noncentrality parameter, and it is a standardized 
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difference between the true mean and the mean under the null hypothesis. If  = then 

the noncentrality parameter is equal to 0 and we are back to a central t distribution.    

 

But why worry about the noncentral t distribution? One reason is that if we can put 

confidence limits on the noncentrality parameter itself, we can then, by a minor bit of 

algebra, turn those limits into confidence limits on effect sizes, because effect sizes are a 

linear function of the noncentrality parameter. 

 

That doesn’t seem to help because now you will just change your question to “how will 

we put confidence limits on the noncentrality parameter.” But that is easy in principle, 

though not very easy if you don’t have a computer. 

 

Confidence Intervals on Noncentrality Parameters 

 

If we go back to our moon illusion example, we found a t value of 4.29. If you had a 

program, like the one that generated the figure above, you could keep plugging in 

different possible noncentrality parameters until you happened to get one that had a 

cutoff of 4.29 for the lower 2.5%. 

 

If you use R, which is free, or its commercial equivalent called S-Plus, which is not, you 

could enter a command like pt(4.29, 9, ncp) and keep changing ncp until you got the 

answer you want.  Look at the following sequence of output. 

 

> pt(q = 4.29, df = 9, ncp = 5) 

[1] 0.2758338 

> pt(q = 4.29, df = 9, ncp = 6) 

[1] 0.09950282 

> pt(q = 4.29, df = 9, ncp = 6.9) 

[1] 0.02908984 

> pt(q = 4.29, df = 9, ncp = 6.95) 

[1] 0.02692960 

> pt(q = 4.29, df = 9, ncp = 6.99) 

[1] 0.02530044 

> pt(q = 4.29, df = 9, ncp = 7.00) 

[1] 0.02490646 

> pt(q = 4.29, df = 9, ncp = 7.01) 

[1] 0.0245177 

 

The lines that begin with the “>” are the commands. The first one asks  “what is the 

lower tailed probability of getting t = 4.29 on 9 df when ncp = 5. (R uses the label “q” for 

what we call “t.”)  The probability was 0.2758. Well, that didn’t work because we wanted 

.025, so I increased ncp and moved somewhat closer to 0.025. I kept increasing ncp, 

moving closer, until I overshot. It looks like my best guess was ncp = 7.00.  

 

Then I tried working on the other end. I want an ncp that will have a probability of .975 

of getting a t of 4.29 or below. I get the following sequence, again starting off with any 
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old guess. (If you enter the parameters in the correct order you don’t have to label them 

as “q =”, etc.) 

 

> pt(4.29, 9, 1.5) 

[1] 0.973518 

> pt(4.29, 9, 1.45) 

[1] 0.9757474 

> pt(4.29, 9, 1.44) 

[1] 0.9761741 

> pt(4.29, 9, 1.46) 

[1] 0.9753144 

> pt(4.29, 9, 1.47) 

[1] 0.974875 

> pt(4.29, 9, 1.465) 

[1] 0.9750955 

 

So now I know that the 95% confidence interval on the noncentrality parameter is 

P(1.465 < ncp < 7.00) = .95. 

 

The following graph plots the two noncentral t distribution, each of which cuts off 2.5% 

in the tail at tobt = 4.29. You can see that the distributions differ in shape. The 

corresponding noncentrality parameters are shown by vertical lines. 
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Now we can find the 95% confidence interval on d
*
. (I use d

*
 to indicate the true 

parametric value of the effect size. I could use a Greek letter, but that gets messy later.) I 

can show, but won’t, that 
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So the confidence interval on d
*
 is 0.488 < d

*
 < 2.33. 

 

But Maybe You Don’t Have R 
 

I would be very surprised if most readers were familiar with R (or S-Plus). Well, 

Cumming and Finch (2001) have something for you! They have written a script that runs 

in Excel that will do the calculations for you—and a lot faster than I did them. It is called 

ESCI, and you can download it at http://www.thenewstatistics.com  . It takes a bit of 

playing to get used to it (Don’t be afraid to click on things to see what happens.), but it is 

worth it. Their output is shown below. You will see that their limits are not quite the 

same as mine (their CI was 0.466 – 2.216), but they came up with different ncp values, 

which just means that they solved a messy computer coding problem by a different 

algorithm. (They use  for the ncp and  for d
*.

) 

 

http://www.thenewstatistics.com/
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CI on Effect Size for Two Independent Groups 

 

From the two-sample example we have 

 

t = 2.48, df  = 62, d = 0.62 

 

Playing around to find the ncp for which t = 2.48 is at the lower or upper .025 level, I find 

that the limits on ncp are 0.465 and 4.48. 

 

This time the relationship between the CI on ncp and the CI on effect size is 
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That result agrees nicely with Cumming and Finch. 

 

Other Confidence Intervals on Effect Sizes 
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I am not going to work through other effect size limits here, but there is good coverage in 

the paper by Steiger and Foulardi. They cover ANOVA, R
2
, analysis of covariance, and 

put confidence limits on power estimates. 

 

But I’m Not Done 

 

What I have given you in this document is a way of computing confidence limits on a 

single effect size. In other words, you go out and conduct a study with ni subjects in each 

condition, compute an effect size, and then compute a confidence limit. That’s just fine. 

But suppose that you ran some single-subject studies on 4 people. (You collect behavioral 

data on one subject before an intervention, then intervene, and then collect more 

behavioral data after the intervention. And you repeat this process for 3 other subjects, 

but keeping the data separate for each subject.) There are many areas in psychology, 

especially clinical psychology, where such an approach is common. For each subject you 

could calculate an effect size. With suitable assumptions you could calculate confidence 

limits on that effect size using the noncentral t. But you could also pull together the effect 

sizes for each subject and use those to calculate confidence limits on an overall effect size 

by using the same methods that we used above to calculate confidence limits on the 

mean. When I get time, I will cover this in a separate document available at 

http://www.uvm.edu/StatPages/More_Stuff/single-case effect sizes.html . 

 

Alternatively, assume that you have used a single-subject case-control design in which 

you compare one subject’s score with scores from a control sample of normal adults. It is 

useful and important to calculate both an effect size and confidence limits on that effect 

size. An excellent paper on this topic is Crawford, Garthwaite, and Porter (2010), who 

also provide free programs to make the necessary calculations. That is an excellent paper 

and it is not particularly useful for me to create a document on that issue when theirs is so 

clear. 
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