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To most people studying statistics a contingency table is a contingency table. We tend to 

forget, if we ever knew, that contingency tables can be formed in different ways, and 

how the table is restricted may influence the analysis we run. 

 

The Mathematics of a Lady Tasting Tea 

 

Let’s start with a very famous example from R. A. Fisher. This is often known as the 

“Lady Tasting Tea” example, and, according to Fisher’s daughter, it is a true story. The 

basic idea is that one day when people who worked around Fisher were having 

afternoon tea, one of them, Muriel Bristol, claimed that she could tell whether the milk 

was added to the cup before or after the tea. Fisher immediately turned this into an 

experiment by preparing eight cups of tea, four of which had milk added first and four 

of which had milk added second. He then put the cups in front of Muriel and asked her 

to identify the four cups that had milk added first. By the way, Muriel was no slouch. 

She was a Ph.D. scientist, back in the days when women were not Ph.D. scientists and 

she established the Rothamstead Experiment Station in 1919. This was the place that 

Fisher was later to make famous. I think you should know what Muriel looked like, so 

here she is—stolen without permission from Wikipedia. (No, that isn’t Einstein, 

although it looks like him.) 

 

 

 

This was a great example for Fisher, and we’ll come back to it later, but first I want to 

modify the experiment to include 96 cups instead of 8. Assume that each day for 12 days 



Muriel was presented with eight cups, four of each kind, and asked to make the 

identification. The data are then collapsed over all 12 days. (I made this change to have a 

much larger total sample size.) 

 

Without looking at the data you know something about them. There will be 48 cups 

with milk first and 48 cups with milk second. In addition, because of the instructions to 

Muriel, there will be 48 guesses of First and 48 guesses of Second. Finally, there will be 

96 total observations. 

 

 

  True Condition  

  First Second  

First 29 19 48  

Guess Second 19 29 48 

  48 48 96 

  

 

I created these data with these cell frequencies so as to have a table whose Pearson chi-

square statistic will be significant at close to α = .05. In this case the probability under the 

null is .0412. (These data are more extreme that the actual data as far as Muriel’s ability 

to detect differences is concerned.) 

 

 

 

Pearson’s Chi-Square Test 

 

Let’s start with a simple Pearson chi-square test for a 2 × 2 table, along with the odds 

ratio. 

 



 

2 2
2

2

( ) (29 24)

24

(29 24)
          ... 4.17

24

29 /19 1.5263
2.33

19 / 29 01.6552

O E

E

OR

χ − −= Σ = +

−+ =

= = =

 

 

 

As I said, this value of chi-square is significant at p = .0412. We can reject the null 

hypothesis and conclude that Muriel’s response and the way the tea was prepared are 

not independent. In other words she guessed correctly at greater than chance levels. 

(Note that I did not include Yates’ correction for these data, but if I had the chi-square 

would have been 3.38 with a p value of .0662. We will come back to that later.) 

 

 

Fisher’s Exact Test and the Hypergeometric Distribution 

 

Fisher specifically did not evaluate these data with a Pearson chi-square, and not just 

because he couldn’t stand Pearson, which he couldn’t. His reasoning involved the 

hypergeometric distribution. When both row and column totals (the “marginals”) are 

fixed, the hypergeometric distribution will tell us the probability that we will have a 

specified number of observations in cell11. (We could have picked on any cell, but cell11 

seems like a nice choice. We only need to worry about one cell because we only have 1 

df. If we had a 10 in cell11, then cell12 must be 38, cell21 but be 28, and cell22 must be 10.) 

 

The formula for the hypergeometric, if you must know, is 
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Where x = observation in cell11, n1. = total of row 1, n.2 = total of column 2, and N = total 

number of observations. But of course this will only give us the probability of exactly 29 

observations in cell11. We are going to want the probability of 29 or more observations in 

that cell, so we have to evaluate this expression for all values of 29 and higher. This is 

shown below, though I only carried 5 decimals and the entries rapidly drop to 0.00. But 

to make this a two-tailed test we also need to know the probability of 19 or fewer 

observations, which, because we have the same number of each type of tea, is the same. 

So the two-tailed probability is .0656. 

 

 

 

Number in  

Upper Left 

Probability 

29 .02070 

30 .00830 

31 .00280 

32 .00079 

33 .00018 

34 .00005 

39 .00000 

40 .00000 

… … 

48 … 

Sum .03282 
 

Number in Upper 

Left 

Probability 

19 .02070 

18 .00830 

17 .00280 

16 .00079 

15 .00018 

14 .00005 

13 .00000 

12 .00000 

… … 

0 .00000 

Sum .03282 
 

 



In case you are interested, the distribution is plotted below, where you can see that the 

vast majority of outcomes lie between about 18 and 31. 

 

  

 

Using Fisher’s Exact Test we have a one-sided probability of .033, which would lead us 

to reject the null hypothesis. The two-sided probability would be .0656, which would not 

allow us to reject the null. Notice that we did not reject the (two-tailed) null hypothesis 

using Fisher’s test but we did using the Pearson chi-square test. This is most likely a 

result of the fact that observations are discrete, whereas the chi-square distribution is 

continuous. 

 

I earlier gave the “corrected” version of chi-square, called Yates’ correction, which had a 

probability of .0662. That number is very close to Fisher’s value, which is as it should be. 

Yates was trying to correct for the continuousness of the chi-square distribution, and he 

did so admirably. 

 

 

Contingency Tables with One Set of Fixed Marginals 

 

In the data table that we just examined, both the row and marginal totals were fixed. We 

knew in advance that there would be 48 cups of each type of tea and that Muriel would 

make 48 choices of each type. But consider a different example where the row totals are 



fixed but not the column totals. I will take as an example Exercise 6.13 from the 6th 

edition of Statistical Methods for Psychology. In 2000 the State of Vermont, to their very 

great credit,—a slight editorial comment—approved a bill authorizing civil unions 

between gay and lesbian partners. The data shown below suggest that there was a 

difference on this issue between male and female legislators. I chose this example, in 

part, because the sample size (145 legislators) is reasonable and the probability (p = .019) 

is significant but not extreme. Notice that the row totals are fixed because if someone 

demanded a recount the number of male and female legislators would be the same (44 

and 101) but the number of votes for and against the legislation could change. The 

calculations of Pearson’s chi-square and the odds ratio are straightforward. 

 

 

 

 Vote  

 Yes No Total 

Women  35  9  44 

Men  60  41  101 

Total  95  50  145 
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The usual way to evaluate this test statistic is to compare it to the mathematically 

defined chi-square distribution. Although that distribution will not be an exact fit to the 

sampling distribution of this statistic, it will be very close. Using R, or any other 

statistical software, the two-tailed p value is .01899. 

 

 

By normal standards, this value is statistically significant and we can conclude that how 

legislators voted depended, to some extent, on their gender. Women were more likely 

than men to vote for the legislation. The odds ratio was 2.66. Notice that this is a two-



tailed test because we could have a large value of chi-square if either men outvoted 

women or women outvoted men—the difference is squared. 

 

Another, and equivalent, way of running this test is to notice that 82% of the female 

legislators supported the measure whereas on 59% of the male legislators did. You 

probably know from elsewhere that we can test the difference between two proportions 

using z 
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The two-tailed probability is .0190, which is what we found with chi-square. (The reason 

that they agree so well is that when you have 1 df a chi-square distribution is just the 

square of a normal distribution, so this is really the same test.) 

 

Fisher’s Exact Test 

Although the marginal totals on the columns in this example are not fixed, we could act 

as if they are and apply Fisher’s Exact Test. If we did so we would find a probability 

under the null of .0226, which is slightly higher than we found with chi-square. 

 

Resampling 

 

But let’s look at this still a third way. Even though we have a lot of cases (145) the 

distribution is still discrete and is being fit against a continuous distribution. So suppose 

that we set up a simple resampling study for the case with one fixed set of marginals. 

 

First we will assume that the null hypothesis is true so we are sampling from 

populations with the same proportion of Yes votes. Then our best estimate of the 

common population proportion is 95/145 = .6552. In our resampling study we will draw 



44 cases, corresponding to women in the legislature. For each woman we will draw a 

random number between 0 and 1. If that number is less than .6552 we will record her 

vote as Yes. After we have drawn for all 44 women we will compute the proportion of 

them who voted Yes. (I could have accomplished the same thing by drawing 44 

observations from a binomial with p = .6552—e.g. rbinom(n = 1, size = 44, 

prob = .6552). I did things the long way because it makes it easier to grasp the 

underlying process.) In the long run we would expect to have 65.52% of women voting 

Yes, if the null hypothesis is true, but the actual counts will vary due to normal sampling 

error. Then we will do the same thing for males, but this time making 101 draws with 

number of Yes votes equal to the number of times our random number was greater than 

.6552. We will record the difference between male and female Yes votes. We will then 

repeat this “experiment” 10,000 times, each time generating the number of votes for the 

legislation by both men and women. Notice that we have set the common probability in 

both cases at .6552, so, on average, the differences between males and females will come 

out to 0.00. When we are all done we will have the distribution of differences for 10,000 

cases based on a true null hypothesis, and we can ask what percentage of those 

differences exceeded .2013, the difference in proportions that we found from our study. 

Notice that I am holding the number of males and females constant, but allowing the 

votes to vary. 

 

A histogram of the results is printed below. 

 

  

  



 The proportion of differences greater than .2013 is   0.0079 

 The proportion of differences less than -.2013 is        0.0105 

 

If we add together the two tails of the distribution we find that 1.84% of the observations 

exceeded + .2014, which was our obtained difference. These results are comforting 

because they very nearly duplicate the results of our chi-square test, which had a p value 

of .190. One important thing that this tells us is that chi-square is an appropriate statistic 

when one set of marginals are fixed—at least if we have relatively large sample sizes.  

 

The Case of No Fixed Marginals 

 

Now we will carry the discussion of contingency tables one step further by considering 

results in which we would not be willing to assume that either set of marginals is fixed. 

There have been a number of studies over the years looking at whether the imposition of 

a death sentence is affected by the race of the defendant (and/or the race of the victim). 

Peterson (2001) reports data on a study by Unah and Borger (2001) examining the death 

penalty in North Carolina in 1993-1997. The data in the following table show the 

outcome of sentencing for white and nonwhite (mostly black and Hispanic) defendants 

when the victim was white. The expected frequencies are shown in parentheses. 

 

Sentencing as a function of the race of the defendant 

 

 Death Sentence  

Defendant’s 
Race 

Yes No Total 

Nonwhite 33 
(22.72) 

251 
(261.28) 

284 

White 33 
(43.28) 

508 
(497.72) 

541 

Total 66 759 825 

  
 



This table is different from the others we have seen because if we went out and collected 

new data both the row totals and the column totals would be expected to change. 

Although it would be possible to do the arithmetic for Fisher’s Exact Test, it would be 

hard to argue that we should condition on these marginals. So let’s look at a different 

way of approaching the problem. 

 

First of all there is nothing to stop us from running a plain old Pearson chi-square, and, 

in fact, that is probably what we should do. These calculations follow. 
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The probability of chi-square = 7.71 on 1 df, if the null is true, is .0055, leading us to reject 

the null. (The probability for Fisher’s test, which I think is not appropriate here, is .007.) 

 

 

The Resampling Approach Again 

 

(I am not happy with the following approach because it assumes that the probability 

of falling in any cell is .25, even if the data are widely imbalanced, as they are here. 

But the only way that I can see to change it is to calculate a probability other than .25 

(such as 66/825 or 284/825, which implicitly holds one set of marginals fixed. This 

would seem to be Agresti’s preference. I am leaving in this approach because it does 

have some virtues. I will make up for that with my conclusions.) 

 

Fisher met a lot of resistance to his idea on contingency tables because people objected to 

holding the marginal totals fixed. They argued that if the experiment were held again, 



we would be unlikely to have the same numbers of white and black defendants. Nor 

would we have the same number of death sentences. (This argument actually went on 

for a very long time, and we still don’t have good resolution. I, myself, have moved back 

and forth, but I now think that I would recommend Fisher’s Exact Test only for the case 

of fixed marginals.) 

 

One of the huge problems in this debate was that the calculations became totally 

unwieldy if you let go of the fixed marginals requirement. BUT now we have computers, 

and they like to do things for us. Computers, like Google, are our friends! as you saw in 

the previous problem.  Suppose that we pose the following task. We have 825 

defendants. We don’t care, as far as the statistical procedures go, how many are black 

and how many are sentenced to death. What is the probability that if we just threw the 

825 defendants at the contingency table they would come out the way they did?  In other 

words, take 825 grains of salt and hold them high over the very center of the 

contingency table. Now drop them and count how many land in each cell.  

 

Even my nice new Dell computer probably does not want to go through all of the 

calculations that would be required for a complete enumeration of all possible outcomes, 

so let’s make it simpler. Let’s run 10,000 experiments. Each time we run an experiment 

we let a random number generator put the observations in the four cells randomly. For 

example, the random number generator (drawing from the set of numbers 1-4) might 

pick a 3 and thus add the defendant to the 3rd cell, which is cell2,1, which is the cell for 

White/Yes. The program makes 825 of these random assignments and pauses. (This 

time I could have short-circuited the process by drawing from a Poisson distribution by 

using rpois(1, 206.25), where 206.25 = 825/4, which is what would be 

expected under the null. We have filled up our contingency table with one possible 

outcome for 825 observations, but we need some way to tell how extreme this particular 

outcome is. One way to do this is to calculate a chi-square statistic on the data. That is 

easy to do, and we calculate this statistic for this particular sample. Keep in mind that we 

are using chi-square just as a measure of extremeness, not because we will evaluate the statistic 

against the chi-square distribution. We could have used the difference between the cross products 



in the matrix.  The more extreme the results, the larger our chi-square. We just tuck that 

chi-square value away in some array and repeat the experiment all over again. And we 

do this 10,000 times.  

 

I actually carried out this experiment. (That took me 37 seconds, which is faster than I 

could calculate Pearson’s chi-square once by hand.) For my 10,000 resamples, the 

proportion of cases that were more extreme than a chi-square of 7.71 was .0051, which is 

in excellent agreement with the chi-square distribution itself, which gave a probability of 

.0055. Remember that these data were drawn at random, so the null hypothesis is 

actually true. This is beginning to look as if the chi-square distribution is an excellent 

approximation of the results we obtained here, even when neither set of marginals is 

fixed. We can look more closely at the results of the resampling study to see if this is 

really true. 

 

The results of this sampling procedure are shown below. What I have plotted is not the 

mathematical chi-square distribution but the distribution of chi-square values from our 

10,000 resampling. It certainly looks like a chi-square distribution, but looks can be 

deceiving. 

 

One nice feature of the results is that the mean of this distribution is 0.98 with a variance 

of 1.89. (On a second run those values were 0.997 and 2.00, respectively.) For the true 

chi-square distribution the mean and variance are df and 2df, or 1 and 2, which is very 

close. Let’s see how well they agree across a range of values.  

 

In Statistical Methods for Psychology, 7th ed. I used QQ plots to test normality. I just plotted 

the obtained quantiles against the ones expected from a normal distribution. I will do 

the same thing here except that I will plot my obtained chi-square values against the 

quantiles of the chi-square distribution. For example, I would expect 1% of a chi-square 

distribution with 1 df to exceed 6.63. Actually I found 94 / 10,000 = .94% at 6.63 or above. 

I would expect 50% of the results to be greater than or equal to 0.45, and actually 49.8% 



met that test. If I I obtain similar pairs of values for all of the percentages between 0 and 

100, I would have the following result. 

 

 

 

  

 

Notice that the values fall on a straight line. There are only trivial deviations of the 

results from that line.  

 

So now we have at least four ways to evaluate data in 2 × 2 contingency tables. We can 

run a standard Pearson’s chi-square test (or a likelihood ratio test, which I have not 

described), we can assume that both sets of marginals are fixed and use Fisher’s Exact 

test, we can assume that row marginals are fixed but not the column marginals, or we 

can assume nothing about the marginals (other than the total number of observations) 

and run a resampling test. In the language of statisticians we are moving from the 

hypergeometric to the binomial to the multinomial distributions. The fact our results 

generally come out to be close is encouraging. I’m a great fan of randomization tests, but 

that is partly because I like to write computer programs. For those who don’t like to 

write programs, you can use either Fisher’s Exact Test or Pearson’s chi-square. There is a 

slight bias toward Fisher’s test in the literature when you have small sample sizes, but 

don’t settle for it until you have read the rest of this document. 



 

The one thing that I would not recommend is using Yates’ Correction with the standard 

Pearson chi-square. If you are worried about discreteness of the probability distribution 

go with Fisher’s Exact Test, which is what Yates was trying to approximate anyway. 

 

Remember that Fisher’s Exact Test applies only to 2 × 2 tables. It can be expanded to 

larger tables, (Howell and Gordon, 1976), but that is not commonly done. It is very easy 

to expand the randomization test given here to larger tables, but your computer would 

get tired. 

 

But are Things Really That Good?? 

 

It’s nice to know that with reasonably large samples the randomization tests (and the 

hypergeometric) produce results very similar to those produced by chi-square. But what 

if we don’t have large samples? In that case the chi-square distribution may not be an 

adequate fit to the resulting test statistic. I will start with Fisher’s original experiment, 

which only had 8 cups of tea. His results are below. 

 

  

  True Condition  

  First Second  

First 3 1 4  

Guess Second 1 3 4 

  4 4 8 

  

Suppose that we compute chi-square on these data. Our result will yield of chi-square of 

2.00 on 1 df with an associated probability of .1573. But Fisher’s exact test gives a 

probability of .4857!!!  The reason is fairly simple. There are only a few ways the data 

could have come out. The table could have looked like any of the following. 

 

 4     0  3   1  2   2  1   3  0   4 



 0     4  1   3  2   2  3   1  4   0 

 

χ2 =      8.00   2.00  0.00  2.00  8.00 

 

p .005  .157  1.00  .157  .005 

 

Fisher  .029  .486  1.00  .486  .029 

2-tail 

 

Fisher .014  .243  .757  .986  1.00 

1-tail 

 

Notice how discrete the results are and how far the (correct) Fisher probabilities are 

from the chi-square probabilities. With small samples and fixed marginals I strongly 

suggest that you side with Fisher—he could use some company. We know that for fixed 

marginals his values are theoretically correct, and we now know that chi-square 

probabilities are not even close. 

 

So the p values assigned by Fisher and by the chi-square distribution are greatly 

different.  But perhaps this is a bad example because the frequencies are so very small. 

So let’s go back to the example of the Vermont legislature and cut the sample sizes in 

each cell by approximately 5. (I had to cheat a bit to get whole numbers.) Remember that 

this is not a case where we would prefer to use Fisher’s Exact test because only the row 

totals are constant. So I will compare a standard chi-square test with the resampling 

procedure that we used earlier. 

 

 

  



 

 Vote  

 Yes No Total 

Women  7  2  9 

Men  12  8  20 

Total  19  10  29 
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The p value (two-sided) from chi-square = .351, which is not significant. If we had asked 

for Yates correction, chi-squared would have been .2597 with a p value of .61 whereas 

Fisher’s test would have had a p value of .43. Notice that these values are all over the 

place.  

 

Now let’s use the same resampling approach that we used earlier, holding the row 

marginals fixed but not the columns. The obtained difference in the two proportions 

were .7778 - .6000 = .1778. The probability of an outcome more extreme than this, in 

either direction, was .1703 + .1818 = .3521, which is virtually the same as the chi-square 

probability, but quite different from the probability given by Fisher’s test (.43). I prefer 

the resampling approach because it is in certain ways as exact test. But notice that the 

standard chi-square test produces almost the same statistic. This tells me that chi-square 

is a good fallback when you don’t want to do a randomization test. 

 

Now let’s go back to the death sentence data where neither set of marginals are fixed. If I 

cut my cell frequencies by approximately 9 I obtain the following data. The total sample 

sizes are larger than I would like for an example, but I can’t reduce the cells by much 

more and still have useful data. (Again I need to note that I am not entirely happy with 

this approach, but I’ll let it go anyway.) 

 



  

  

 Death Sentence  

Defendant’s 

Race 

Yes No Total 

Nonwhite 4 28 32 

White 4 56 60 

Total 8 84 92 

 

  

  

The standard Pearson chi-square on these data is 0.8944 for p = .3443. When we run a 

randomization test with the null hypothesis true and no constraints on the marginal 

totals we find 3485 results that are greater than our obtained chi-square, for p = .3485. 

Notice how well that agrees with the Pearson chi-square. Yates correction gave a p value 

of .5773, whereas Fisher’s Exact Test gave a p = .4422. Again we see that the standard 

chi-square test is to be preferred. (Well, I later reduced my cells by a factor of 

approximately 10 and found a chi-square probability of .395 and a resampling 

probability of .410—who can complain about that?) 

 

So what have we learned? 

 

Well, I have learned a lot more than I expected. When the data can reasonably be 

expected to have both sets of marginal totals fixed, then conditioning on those 

marginals, which is what Fisher’s Exact Test does, is the preferred way to go. However 

when one or both sets of marginals are not fixed, and when the sample size is small, 

Fisher’s test gives misleading values. Both when one set of marginals is fixed and when 

no marginals are fixed, the standard Pearson chi-square test, without Yates correction, is 

to be preferred. This would appear to be in line with the recommendation given by 

Agresti (2002), which is always reassuring. The chi-square test (when one or zero 



marginals are fixed) agrees remarkably well with randomization tests that seem to be 

reasonable ways of conceiving of the data. I had expected to find something like this, but 

I never thought that it would be anywhere as neat as it is. Now I have to go back to the 

book that I am revising and re-revise the section on Fisher’s Exact Test. I still have a 

problem with my resampling approach to the case where we hold neither set of 

marginals fixed, but the fact that chi-square does well in that case is reassuring. I would 

suggest the chi-square approach for that situation. 

 

 

The Programs 

 

Below are pasted the programs written for R (or S-Plus). They may not be exactly 

the same as the ones used here because I may have made minor changes to check 

things, but they are essentially correct—though not necessarily elegant. 

 

 

Plot the Hypergeometric Distribution 

# Plotting the hypergeometric 

x <- 0:48 
y <- c() 
n1dot <- 48 
ndot1 <- 48 
N <- 48 
par(mfrow = c(2,2)) 
y <- dhyper(x,n1dot, ndot1,48) 
plot(y~x, main = "Hypergeomteric Distribution", xlab = "Count", ylab = "Probability", type = "l") 

 

 

Row Marginals Fixed 

# Analysis of contingency tables conditional on the row totals 
 
#read in the data 
origdata <- matrix(c(7,2, 12, 8), nrow = 2) 
obtchisq <- chisq.test(origdata, correct = F) 
obtained <- obtchisq$statistic 
N <- sum(origdata) 



nreps <- 10000 
chisquare <- c() 
 
results <- c() 
extreme <- 0 
propdiff <- c() 
# Now resample nreps times  -- could be shortened by drawing on binomial 
for (i in 1:nreps) { 
yesfem = 0 
for (j in 1:9) { 
    xran <- runif(1,0,1) 
    if (xran < 0.6552) b = 1 else b=0 
    yesfem = yesfem + b 
  } 
 propfem <- yesfem/9 
     
 yesmale = 0 
 for (j in 1:20) { 
    xran <- runif(1,0,1) 
    if (xran < 0.6552) b = 1 else b = 0 
    yesmale <- yesmale + b 
 } 
 propmale <- yesmale/20 
 propdiff[i] <- propfem - propmale 
 } 
 
hist(propdiff, breaks = 50, main = "Distribution of differences under the null", 
    xlab = "Difference in Proportions") 
below <- length(propdiff[propdiff < -.1778])/nreps 
above <- length(propdiff[propdiff > .1778] )/nreps 
  
cat("The proportion of differences greater than .1778 is  ", above) 
cat("The proportion of differences less than -.1778 is  ", below) 

 

 

No Fixed Marginals 

# Analysis of contingency tables conditional only on the total sample size 
 
#read in the data 
origdata <- matrix(c(33, 251, 33, 508), nrow = 2) 
obtchisq <- chisq.test(origdata, correct = F) 
obtained <- obtchisq$statistic 
N <- sum(origdata) 
nreps <- 10000 
chisquare <- c() 
cells <- c(1,2,3,4) 
results <- c() 
extreme <- 0 
 
# Now resample 10,000 times 



for (i in 1:nreps) { 
counts <- c(0,0,0,0) 
for (j in 1:N) { 
      cell <- sample(cells,1) 
      counts[cell] <- counts[cell] + 1 
  } 
dim(counts) <- c(2,2) 
results[i] <- chisq.test(counts, correct = F)$statistic 
 extreme <-ifelse (results[i] >= obtained, extreme + 1,extreme) 
  } 
 mean(results); var(results) 
 par(mfrow=c(2,2)) 
 hist(results, xlab = "Chi-Square", ylab = "Frequency", breaks = 50, main = 
 "Histogram of Obtained Chi-Square") 
  
 
 
pvalues <- c(1:9999)/10000         #generate a set of probabilities p = .00001 - .99999 
qquant <- qchisq(p = pvalues,df = 1)       #convert those to quantiles of chi-sq distrib. 
 
temp <- sort(results, na.last = NA)      #put the obtained quantiles in order 
 
temp <- temp[-10000]  #make them the same length 
plot(qquant,temp, main = "QQ Plot for Chi-Square", xlab = "Obtained Chi-Square", 
    ylab = "Expected Chi-Square") #make a qqplot 
  qqlinechisq <- function (y, datax = FALSE, ...) 
{ 
    y <- quantile(y[!is.na(y)], c(0.25, 0.75)) 
    x <- qchisq(c(0.25, 0.75),1) 
    if (datax) { 
        slope <- diff(x)/diff(y) 
        int <- x[1] - slope * y[1] 
    } 
    else { 
        slope <- diff(y)/diff(x) 
        int <- y[1] - slope * x[1] 
    } 
    abline(int, slope, ...) 
} 
qqlinechisq(results) 
 
 moreextreme <- results[results > obtained] 
 moreextreme <- length(moreextreme)/nreps 
 cat("The proportion of cases with results at least as extreme as our data is  ",moreextreme) 
 

6/4/2008 

 

After Thought 

To go one step further I drew the cell11 frequency from the hypergeometric distribution 



(phyper(1,4,4,4) and used that. I repeated 10,000 times. For the original data chi-square 

gave a probability of that result under the null was .1573, whereas Fisher’s test gave p = 

.4857. Obviously these are wildly different. If you just count the number of times that 

cell11 was > 3 or < 1, it comes out to 2349 + 2494 = .4843, which is nicely in agreement 

with Fisher. 

 


