Chapter 2 - Describing and Exploring Data

2.1 Children's recall of stories:

a. Children's

"and then...s" Frequency

b. unimodal and positively skewed
2.3 The problem with making a stem-and-leaf display of the data in Exercise 2.1 is that almost all the values fall on only two leaves if we use the usual 10s' digits for stems.

```
Stem Leaf
    012555666677777788888888889999999
    000000011122334
    1
    0
```

And things aren't much better even if we double the number of stems.

```
Stem Leaf
    1* 012
    1. 5556666777777888888888889999999
    2* 000000011122334
    2.
    3* 1
    3.
    4* 0
```

Best might be to use the units digits for stems and add HI and LO for extreme values

Stem Leaf

$5 \quad 555$
$6 \quad 6666$
$7 \quad 777777$
$8 \quad 8888888888$
99999999
100000000
$11 \quad 111$
$12 \quad 22$
1333
144
HI 3140
2.5 Stem-and-leaf diagram of the data in Exercises 2.1 and 2.4:

Children		Adults
	0*	1
	0t	34
	Of	55
	0s	7777
	0.	88889999999
10	1*	00000000111111
2	1 t	222223
555	1f	4444555
7777776666	1 s	667
77777778888888888	1.	
1110000000	2*	
3322	2 t	
4	2 f	
	2s	
	2.	
4031	Hi	

2.7 Invented bimodal data:

Score	Freq	Bimodal distribution		
1	2			
2	3			
3	5			
4	10			
5	15			\%
6	19			
7	16			\square
8	12			
9	10			N
10	15			-
11	19	0	${ }^{10}$	20
12	19		Score	
13	16			
14	13			
15	8			
16	4			
17	3			
18	2			
19	1			
20	1			

2.9 The first quartile for males is approximately 77 , whereas for females it is about 80 . The third quartiles are nearly equal for males and females, with a value of 87 .
2.11 The shape of the distribution of number of movies attended per month for the next 200 people you met would be positively skewed with a peak at 0 movies per month and a sharp drop-off to essentially the baseline by about 5 movies per month.
2.13 Stem-and-leaf for ADDSC

Stem	Leaf
2.	69
3*	0344
3.	56679
4*	00023344444
4.	5566677888899999
5*	00000000011223334
5.	55677889
6*	00012234
6.	55556899
7*	0024
7.	568
8* *	
8.	55

2.15 a. $Y_{1}=9 \quad Y_{10}=9$
b. $\sum Y=9+9+\ldots+2=57$
2.17 a. $(\Sigma Y)^{2}=(9+9+\ldots+2)^{2}=3249$
$\sum Y^{2}=9+9^{2}+\ldots+2^{2}=377$
b. $\frac{\sum Y^{2}-\frac{\left(\sum Y^{2}\right)}{N}}{N-1}=\frac{460-\frac{3249}{10}}{9}=5.789$
c. $\sqrt{\text { answer to Exercise } 17 \mathrm{~b}}=\sqrt{5.789}=2.406$
d. The units of measurement were squared musicality scores in part (b) and musicality scores in part (c).
2.19 a.

$$
\begin{aligned}
& \Sigma(X+Y)=(10+9)+(8+9)+\ldots+(7+2)=134 \\
& \Sigma X+\Sigma Y=77+57=134
\end{aligned}
$$

b.

$$
\begin{aligned}
& \Sigma X Y=10(9)+3(8)+\ldots+3(7)=460 \\
& \Sigma X \Sigma Y=(77)(57)=4389
\end{aligned}
$$

c.

$$
\begin{aligned}
& \Sigma C X=\Sigma 3 X=3(10)+3(8)+\ldots+3(7)=231 \\
& C \Sigma X=3(77)=231
\end{aligned}
$$

d.

$$
\begin{aligned}
& \Sigma X^{2}=10^{2}+8^{2}+\ldots+7^{2}=657 \\
& (\Sigma X)^{2}=77^{2}=5929
\end{aligned}
$$

2.21 The results in Exercise 2.20 support the sequential processing hypothesis.
2.23 The data are not likely to be independent observations because the subject is probably learning the task over the early trials, and later getting tired as the task progresses. Thus responses closer in time are more likely to be similar than responses further away in time.
2.25 The amount of shock that a subject delivers to a white participant does not depend upon whether or not that subject has been insulted by the experimenter. On the other hand, black participants do suffer when the experimenter insults the subject.
2.27 AIDS cases among people aged 13-29 in U.S. population (in thousands):

2.29 There is a strong increase in age at marriage, although the difference between males and females remains about the same. It is likely that what we are seeing is an increase in the percentage of couples living together without marrying. They finally get around to marrying about 5 years later than they used to.
2.31 The mean falls above the median.
2.33 Rats running a straight alley maze:

$$
\bar{X}=\frac{\sum X}{N}=\frac{320}{15}=21.33 ; \text { Median }=21
$$

2.35 Multiplying by a constant:
Original data (X):
835
5
$6 \quad 2$

$$
\begin{aligned}
& \bar{Y}=4.83 \\
& \text { Median }=5 \\
& \text { Mode }=5
\end{aligned}
$$

Transformed data $(Y=3 X)$	$24 \quad 9$	15	15	18	6	$\begin{aligned} & \bar{Y}=14.5 \\ & \text { Median }=15 \\ & \text { Mode }=15 \end{aligned}$
$3 \overline{\mathrm{X}}=\overline{\mathrm{Y}}$	$3\left(\operatorname{Med}_{x}\right)=$ Med $_{\text {y }}$					$3\left(\mathrm{Mo}_{5}\right)=\mathrm{M}$
$3(4.83)=14.5$	$3(5)=15$					$3(5)=15$
$14.5=14.5$	$15=15$					15 $=15$

2.37 They look just the way I would have expected.
2.39 Computer exercise
2.41 For the data in Exercise 2.4:

$$
\begin{aligned}
& \text { range }=17-1=16 \\
& \begin{aligned}
\text { variance }=s_{X}^{2} & =\Sigma(X-\bar{X})^{2}=(10-10.2)^{2}+(12-10.2)^{2}+\ldots+(9-10.2)^{2} \\
& =11.592
\end{aligned} \\
& \text { standard deviation }=\mathrm{s}_{\mathrm{X}}=\sqrt{\mathrm{s}_{\mathrm{X}}^{2}}=\sqrt{11.592}=3.405
\end{aligned}
$$

2.43 For the data in Exercise 2.1:

The interval:
$\bar{X} \pm 2 s_{X}=18.9 \pm 2(4.496)=18.9 \pm 8.992=9.908$ to 27.892

From the frequency distribution in Exercise 2.1 we can see that all but two scores (31 and 40) fall in this interval, therefore $48 / 50=96 \%$ of the scores fall in this interval.
2.45 \quad Original data: $\quad \begin{array}{lllllllll}5 & 8 & 3 & 8 & 6 & 9 & 9 & 7\end{array}$
$\mathrm{s}_{1}=2.1$
If $X_{2}=c X_{1}$, then $\mathrm{s}_{2}=c \mathrm{~s}_{1}$ and we want $\mathrm{s}_{2}=1.00$
$\mathrm{S}_{2}=c \mathrm{~s}_{1}$
$1=c(2.1)$
$c=1 /(2.1)$
Therefore we want to divide the original scores by 2.1
$X_{2}=\frac{X_{1}}{2.1} \quad 2.381 \quad 3.809 \quad 1.428 \quad 3.809 \quad 2.857 \quad 4.286$
$s_{2}=1$
2.47 Boxplot for ADDSC [Refer to stem-and-leaf in Exercise 2.15]:

Median location $=(N+1) / 2=(88+1) / 2=89 / 2=44.5$
Median = 50
Hinge location $=($ Median location +1$) / 2=(44+1) / 2=45 / 2=22.5$
Hinges $=44.5$ and 60.5
H-spread $=60.5-44.5=16$
Inner fences $=$ Hinges $\pm 1.5^{*}(\mathrm{H}$-spread $)$

$$
=60.5+1.5(16)=60.5+24=84.5
$$

$$
\text { and } \quad=44.5-1.5(16)=44.5-24=20.5
$$

Adjacent values $=26$ and 78

2.49 Coefficient of variation for Appendix Data Set
s/ $\bar{X}=0.8614 / 2.456=0.351$
2.51 10% trimmed means of data in Table 2.6
$\begin{array}{llllllllll}3 & 3 & 3.17 & 3.19 & 3.19 & 3.20 & 3.20 & 3.22 & 3.23 & 3.25\end{array} 3.26$
$\begin{array}{llllllllllllllllll}3.27 & 3.29 & 3.29 & 3.30 & 3.31 & 3.31 & 3.34 & 3.34 & 3.36 & 3.38\end{array}$
Ten percent trimming would remove the two extreme observations at either end of the distribution, leaving
$\begin{array}{lllllll}3.19 & 3.19 & 3.20 & 3.20 & 3.22 & 3.23 & 3.25\end{array} 3.26$
$\begin{array}{llllllll}3.27 & 3.29 & 3.29 & 3.30 & 3.31 & 3.31 & 3.34 & 3.34\end{array}$
$\bar{X}=\frac{52.28}{16}=32.675$
In this case the trimmed mean is very close to the untrimmed mean (3.266).
2.53 Reaction times when stimulus was present or absent.

2.55 This is an Internet search that has no fixed answer.

