Chapter 17 - Meta-Analysis and Single-Case Designs

[Note: The exercises in this chapter come as groups of exercises on a common research study. It is sometimes difficult to separate the answers neatly by individual question. For that reason I will make an exception in this chapter and provide general answers without trying to restrict them to the odd-numbered items.]
17.1 Mazzucchelli et al. (2010) study

Study 1		$-0.13[-1.16,0.89]$ $0.68[-0.15,1.50]$ Study 2 Study 3 Study 4 Study 5 Study 6 Study 7 Study 8 Study 9 Study 10 Study 11	

17.2-17.4

17.5 Fixed model

Fixed-Effects Model (k = 11)
Test for Heterogeneity:
$\mathrm{Q}(\mathrm{df}=10)=13.6678, \mathrm{p}-\mathrm{val}=0.1887$
Model Results:

```
estimate se zval pval ci.lb ci.ub
    0.4987 0.0951 5.2428 <.0001 0.3122 0.6851 ***
Signif. codes:0 '***` 0.001 '**' 0.01 '*` 0.05 '.' 0.1 ' ' 1
```

17.6-17.8 The following results are from R using library(metaphor)

Fixed-Effects Model (k=4)
Test for Heterogeneity:
$\mathrm{Q}(\mathrm{df}=3)=7.2655, \mathrm{p}-\mathrm{val}=0.0639$
Model Results:
$\begin{array}{rccccccc}\text { estimate } & \text { se } & \text { zval } & \text { pval ci.lb } & \text { ci.ub } & & \\ 0.2274 & 0.0881 & 2.5813 & 0.0098 & 0.0547 & 0.4001 & * *\end{array}$

Signif. codes: $0{ }^{\prime * * * ’} 0.001^{\prime * * \prime} 0.01^{\prime *} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$

It doesn't make sense to try to fit a random model because we have so few studies that we could not reasonably test for randomness.
17.9 The confidence interval does not include 0 , and we can safely reject the null hypothesis and conclude that methylphenidate does increase the severity of tics in these children.

17.10-17.12

Fixed-Effects Model (k=3)
Test for Heterogeneity:
$\mathrm{Q}(\mathrm{df}=2)=2.1121, \mathrm{p}-\mathrm{val}=0.3478$
Model Results:

```
estimate se zval pval ci.lb ci.ub
    0.7364 0.0955 7.7109 <.0001 0.5492 0.9236
    Signif. codes: 0 '***` 0.001 '**` 0.01 '*` 0.05 `.' 0.1 `' 1
```


Again we have too few studies to seriously look at heterogeneity.

17.13-17.14

Fixed-Effects Model (k=9)
Test for Heterogeneity:
$\mathrm{Q}(\mathrm{df}=8)=2.1826, \mathrm{p}-\mathrm{val}=0.9749$
Model Results:

```
estimate se zval pval ci.lb ci.ub
    0.5239
---
Signif. codes: 0 '***’ 0.001 '**’ \(0.01^{\text {'*' }} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1\)
```

17.15-17.19 Rajkumar (2010)

The risk ratios and log risk ratios are
Risk Ratio
4.1023266 .3360008 .2123891 .963636

Log Risk Ratio
1.4115541 .8462482 .1056440 .674798

Mean Risk Ratio and confidence limits

Log Risk Ratio

Estimate	se	zval	pval	ci.lb	ci.ub
1.5747	0.3277	4.8055	$<.0001$	0.9324	2.2170

Risk Ratio	Cllower	CIupper
4.8293	2.5406	9.1798

Even at the low end of the confidence interval the addition of thalidomide increases the chances of success to 2.5 times the chance of success in the control group.
17.20 Random effects model for Bisson and Martin (2009) study

Random-Effects Model ($\mathrm{k}=14$; tau^2 estimator: REML)
$\operatorname{tau}^{\wedge} 2$ (estimate of total amount of heterogeneity): $438.6370(\mathrm{SE}=189.2833)$
tau (sqrt of the estimate of total heterogeneity): 20.9437
I^2 (\% of total variability due to heterogeneity): 94.80%
$\mathrm{H}^{\wedge} 2$ (total variability / within-study variance): 19.24
Test for Heterogeneity:
$\mathrm{Q}(\mathrm{df}=13)=236.1772, \mathrm{p}-\mathrm{val}<.0001$

Model Results:

estimate	se	zval	pval	ci.lb	ci.ub
	-28.6212	5.8774	-4.8697	$<.0001$	-40.1407
-17.1017	$* *$				

| Study 1 |
| :--- | :--- | :--- |
| Study 2 |
| Study 3 |
| Study 4 |
| Study 5 |
| Study 6 |
| Study 7 |
| Study 8 |
| Study 9 |
| Study 10 |
| Study 11 |
| Study 12 |
| Study 13 |
| Study 14 |

Note that we can reject the null hypothesis in our test for heterogeneity, though we have no specific variable that might explain that variability. We can also conclude that VBT is a more effective treatment than the Control treatment.

Phase	S1	S2	S3
A	$\mathbf{1 3}$	$\mathbf{1 0}$	$\mathbf{2 2}$
A	$\mathbf{1 2}$	$\mathbf{1 2}$	$\mathbf{2 0}$
A	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{2 5}$
A	$\mathbf{1 5}$	$\mathbf{8}$	$\mathbf{2 0}$
A	$\mathbf{1 6}$	$\mathbf{1 2}$	$\mathbf{2 5}$
B	$\mathbf{1 4}$	$\mathbf{1 1}$	$\mathbf{2 0}$
B	$\mathbf{1 2}$	$\mathbf{1 0}$	$\mathbf{1 8}$
B	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{2 2}$
B	$\mathbf{1 0}$	$\mathbf{6}$	$\mathbf{2 0}$
B	$\mathbf{6}$	$\mathbf{2}$	$\mathbf{1 7}$
B	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{2 4}$
B	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{1 9}$
B	$\mathbf{2}$	$\mathbf{6}$	$\mathbf{2 2}$
B	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2 0}$
B	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{2 0}$

Mean(A)	13.6	11	22.4
SD(A)	1.817	2	2.51
Mean(B)	5.8	5	20.2
SD(B)	5.007	3.8	2.044
s(pooled)	4.286260671	3.350774882	2.197933015
d	1.819767998	1.790630589	1.000940422
s(d)	0.640613133	0.637870361	0.577404587
Cllower	0.564166258	0.540404682	-0.130772569

CIupper	3.075369738	3.040856496	2.132653414	
Weight	2.436735134	2.457735569	2.999435588	7.893906291
Widi	4.434292616	4.40089649	3.002256323	11.83744543
dbar	1.499	567514		
s(dbar)	0.355	921331		
Cllow(dbar)	0.801	961705		
CIup(dbar)	2.197	173322		

Two of the three subjects showed significant improvement (their confidence intervals did not include 0 , and the overall confidence interval also did not include 0 , indicating significant overall improvement.
17.25-17.28

Subj1	Subj2	Subj3	Subj4	Subj5	Subj6
2.0	6	6.3	4.0	4.4	2.3
2.5	6.7	3.4	3.9	3.8	2.3
2.5	6.7	3.2	4.0	3.4	2.0
2.8	6.3	3.4	2.6	4.0	1.9

2.3	6.7	3.2	3.8	4.5	2.6
2.3	6.9	2.8	3.9	4.9	3.1
2.6	6.2	7.1	2.3	3.9	3.0
2.2	6.6	2.9	4.0	4.0	3.3

The Rest Of The Data Go Here

6.9	6.9	4.7	5.5	5.4	5.8
5.3	6.9	5.0	5.5	5.4	6.4
5.0	7.0	5.1	5.6	5.5	6.3
4.1	7.0	5.0	5.7	5.5	5.6

Mean(A)	2.4	6.55	3.71666	3.95	3.9	2.125	
SD(A)	0.26832	0.33316	1.28439	0.07071	0.41633	0.20615	
Mean(B)	4.35	6.76666	4.96666	4.29	4.8875	4.5125	
SD(B)	1.76493	0.31411	1.33516	1.24762	0.67493	1.64788	
s(pooled)	1.63324	0.31698	1.32782	1.23218	0.65622	1.5747	-
	-	-		-	-	-	
d	1.19394	0.68352	-0.94139	0.27593	1.50481	1.51616	
s(d)	0.46882	0.45441	0.46077	0.72894	0.55919	0.55962	
Cllower	2.11284	1.57416	-1.8445	1.70466	2.60084	2.61302	
Ciupper	0.27504	0.20712	-0.03828	1.15279	0.40879	-0.4193	
Weight	4.54962	4.84287	4.71012	1.88196	3.19794	3.19308	22.3756
Widi	-5.4319	-3.3102	-4.43407	-0.5193	4.81231	4.84123	23.3491

dbar
s(dbar)

Cllow(dbar)
Clup(dbar) -0.62915
-1.45786
-1.04351
0.211404

17.29-17.31

Individual Regressions

Subject 1

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$	d	Wt
(Intercept)	$5.000 \mathrm{e}+01$	$2.182 \mathrm{e}+01$	2.291	0.0342^{*}		
Phase	$-2.482 \mathrm{e}+01$	$2.272 \mathrm{e}+01$	-1.092	0.2891	0.515	0.002
trial	$-7.106 \mathrm{e}-15$	$1.010 \mathrm{e}+01$	0.000	1.0000	0.000	0.010
int1	$-1.447 \mathrm{e}+00$	$1.012 \mathrm{e}+01$	-0.143	0.8879	0.943	0.010

Residual standard error: 14.29 on 18 degrees of freedom
Multiple R-squared: 0.5717, Adjusted R-squared: 0.5003
F-statistic: 8.008 on 3 and 18 DF, p-value: 0.000

Subject 2

Coefficients:

	Estimate	Std. Error	t value	$\mathrm{Pr}(>\|\mathrm{t}\|)$	d	Wt
(Intercept)	59.667	10.332	5.775	$6.44 \mathrm{e}-05^{*}$		
Phase	-3.352	10.887	-0.308	0.763	0.171	0.008
trial	-7.500	4.783	-1.568	0.141	0.870	0.044
int2	5.551	4.804	1.155	0.269	0.641	0.043

Residual standard error: 6.764 on 13 degrees of freedom
Multiple R-squared: 0.8494, Adjusted R-squared: 0.8147
F-statistic: 24.44 on 3 and 13 DF, p-value: 1.283e-05

Subject 3

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$		d
Wt						
(Intercept)	29.533	12.614	2.341	0.0275^{*}		
Phase	-32.633	13.750	-2.373	0.0256^{*}	0.949	0.005
trial	2.514	3.239	0.776	0.4449	0.310	0.095
int3	-2.884	3.267	-0.883	0.3858	0.353	0.094

Residual standard error: 13.55 on 25 degrees of freedom
Multiple R-squared: 0.4627, Adjusted R-squared: 0.3982
F-statistic: 7.176 on 3 and 25 DF, p-value: 0.001235
From the columns for t and d we see that taken individually, the only significant difference was for the change of slope for Subject 3, although many of the d values were reasonably large.

We can compute the mean of d and its standard error from the above.

Phase
$\bar{d}_{\text {Phase }}=\frac{\Sigma W_{i} d_{1}}{\Sigma W_{i}}=\frac{(0.002 * 0.515+0.008 * 0.171+0.005 * 0.949)}{(0.002+0.008+0.005)}=\frac{0.007}{0.015}=0.467$
$s_{\bar{d}}=\sqrt{\frac{1}{\Sigma W_{i}}}=\sqrt{\frac{1}{0.015}}=8.165$

Trial

$\bar{d}_{\text {Trial }}=\frac{0.068}{.149}=0.046$
$s_{\bar{d}}=\sqrt{\frac{1}{0.149}}=2.59$

Interaction

$$
\begin{aligned}
& \bar{d}_{\mathrm{int}}=\frac{0.070}{0.147}=0.476 \\
& s_{\bar{d}}=\sqrt{\frac{1}{0.147}}=2.608
\end{aligned}
$$

It is apparent from the above results that the mean of d is not significant for any effect. Contrary to the example in the text, the standard errors were very large.

