Chapter 14 - Repeated-Measures Designs

[As in previous chapters, there will be substantial rounding in these answers. I have attempted to make the answers fit with the correct values, rather than the exact results of the specific calculations shown here. Thus I may round cell means to two decimals, but calculation is carried out with many more decimals.]
14.1 Does taking the GRE repeatedly lead to higher scores?
a. Statistical model:

$$
X_{i j}=\mu+\pi_{i}+\tau_{j}+\pi \tau_{i j}+e_{i j} \quad \text { or } \quad X_{i j}=\mu+\pi_{i}+\tau_{j}+e_{i j}
$$

b. Analysis:

Subject	Mean	Test Session	Mean
,	566.67	1	552.50
2	450.00	2	563.75
3	616.67	3	573.75
4	663.33		
5	436.67		
6	696.67		
7	503.33		
8	573.33		
Mean	563.33		
$S S_{\text {total }}=\sum X^{2}-\frac{\left(\sum X\right)^{2}}{N}=7811200-\frac{(13520)^{2}}{24}=194933.33$			
$S S_{\text {subj }}=t \Sigma\left(\bar{X}_{i .}-\bar{X}_{. .}\right)^{2}$			
$=3\left[(566.67-563.33)^{2}+\ldots+(573.33-563.33)^{2}\right]=3(63222.22)=189,666.67$			
$S S_{\text {test }}=n \Sigma\left(\bar{X}_{. j}-\bar{X}_{. .}\right)^{2}=8\left[(552.50-563.33)^{2}+(563.75-563.33)^{2}+(573.75-563.33)^{2}\right]$			
$\begin{aligned} S S_{\text {eror }} & =S S_{t 0} \\ & =194 \end{aligned}$	$-S S_{\text {subj }}$	458.33	

Source	$d f$	SS	MS	F
Subjects	7	$189,666.66$		
Within subj	16	5266.67		
Test session	2	1808.33	904.17	3.66 ns
Error	14	3458.33	247.02	
Total	23	$194,933.33$		

14.3 Teaching of self-care skills to severely retarded children:

Cell means:	Phase			
	Baseline			
	Training	Mean		
Group:	Exp	4.80	7.00	5.90
	Control	4.70	6.40	5.55
	Mean	4.75	6.70	5.72

$$
\begin{aligned}
& \\
& \Sigma X^{2}=1501 \quad \Sigma X=229 \quad N=40 \quad n=10 \quad g=2 \quad p=2 \\
& S S_{\text {total }}=\sum X^{2}-\frac{\left(\sum X\right)^{2}}{N}=1501-\frac{229^{2}}{40}=189.975 \\
& S S_{\text {subj }}=p \Sigma\left(\bar{X}_{i j .}-\bar{X}_{\ldots}\right)^{2} \\
& =2\left[(8.5-5.72)^{2}+\ldots+(5.5-5.72)^{2}\right]=106.475 \\
& S S_{\text {group }}=p n \Sigma\left(\bar{X}_{. . k}-\bar{X}_{\ldots}\right)^{2} \\
& =2(8)\left[(5.90-5.72)^{2}+(5.55-5.72)^{2}\right]=1.225 \\
& S S_{\text {phase }}=g n \Sigma\left(\bar{X}_{. j .}-\bar{X}_{\ldots}\right)^{2} \\
& =2(10)\left[(4.75-5.72)^{2}+(6.70-5.72)^{2}\right]=38.025 \\
& S S_{\text {cells }}=n \Sigma\left(\bar{X}_{. j k}-\bar{X}_{\ldots}\right)^{2} \\
& =10\left[(4.80-5.72)^{2}+\ldots+(6.40-5.72)^{2}\right]=39.875 \\
& S S_{P G}=S S_{\text {cells }}-S S_{\text {phase }}-S S_{\text {group }}=39.875-38.025-1.225=0.925 \\
& * \mathrm{p}<.05 \quad\left[\mathrm{~F}_{.05}(1,1,1)=4.41\right]
\end{aligned}
$$

There is a significant difference between baseline and training, but there are no group differences nor a group x phase interaction.
14.5 Adding a No Attention control group to the study in Exercise 14.3:

Cell means:
Phase

Group		Baseline	Training	$\begin{aligned} & \text { Total } \\ & 5.90 \end{aligned}$
		4.8	7.0	
	Att Cont	4.7	6.4	5.55
	No Att Cont	5.1	4.6	4.85
	Total	4.87	6.00	5.43

Subject means:
Group: Exp
Att

S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{8}$	$\mathrm{~S}_{9}$	$\mathrm{~S}_{10}$
8.5	6.0	2.5	6.0	5.5	6.5	6.5	5.5	5.5	6.5
4.0	5.0	9.0	3.5	4.0	8.0	7.5	4.5	5.0	5.0

Cont
$\begin{array}{lllllllllll}\text { No Att } & 3.5 & 5.0 & 7.0 & 5.5 & 4.5 & 6.5 & 6.5 & 4.5 & 2.5 & 3.0\end{array}$ Cont

$$
\sum X^{2}=2026 \quad \Sigma \sum \equiv 26326 \quad N_{N} \underline{6} 060 \quad n \equiv 160 \quad g \neq 33^{=} 3 p=2 \quad p=2
$$

$$
S S_{\text {total }}=\sum X^{2}-\frac{\left(\sum X\right)^{2}}{N}=2026-\frac{326^{2}}{60}=254.7333
$$

$$
S S_{\text {subj }}=p \Sigma\left(\bar{X}_{i j .}-\bar{X}_{\ldots}\right)^{2}
$$

$$
=2\left[(8.5-5.43)^{2}+\ldots+(3.0-5.43)^{2}\right]=159.733
$$

$$
S S_{g r o u p}=p n \Sigma\left(\bar{X}_{. . k}-\bar{X}_{. . .}\right)^{2}
$$

$$
=2(8)\left[(5.90-5.43)^{2}+(5.55-5.43)^{2}+(4.85-5.43)^{2}\right]=11.433
$$

$$
S S_{\text {phase }}=g n \Sigma\left(\bar{X}_{. j .}-\bar{X}_{\ldots . .}\right)^{2}
$$

$$
=3(10)\left[(4.87-5.43)^{2}+(6.00-5.43)^{2}\right]=19.267
$$

$$
S S_{\text {cells }}=n \Sigma\left(\bar{X}_{. j k}-\bar{X}_{. . .}\right)^{2}
$$

$$
=10\left[(4.80-5.43)^{2}+\ldots+(4.60-5.43)^{2}\right]=52.333
$$

$$
S S_{P G}=S S_{\text {cells }}-S S_{\text {phase }}-S S_{\text {group }}=51.333-19.267-11.433=20.633
$$

Source	$d f$		SS		MS
Between subj	29		159.7333	F	
Groups		2	11.4333	5.7166	1.04
Ss w/ Grps		27	148.300	5.4926	
Within subj	30		95.0000		
Phase		1	19.2667	19.2667	9.44^{*}
P^{*} G G	2	20.6333	10.3165	5.06^{*}	
P Ss w/Grps		27	55.1000	2.0407	
Total	59		254.733		

$* p<.05 \quad\left[F_{.05(1,27)}=4.22 ; F_{.05(2,27)}=3.36\right]$
b. Plot:

c. There seems to be no difference between the Experimental and Attention groups, but both show significantly more improvement than the No Attention group.
14.7 From Exercise 14.6:
a. Simple effect of reading ability for children:

$$
\begin{aligned}
S S_{\text {Rat } C} & =\operatorname{in} \Sigma\left(\bar{X}_{\text {Rat } C}-\bar{X}_{C}\right)^{2} \\
& =3(5)\left[(4.80-3.50)^{2}+(2.20-3.50)^{2}\right]=50.70 \\
M S_{\text {Rat } C} & =\frac{S S_{\text {Rat } C}}{d f_{\text {Rat } C}}=\frac{50.70}{1}=50.70
\end{aligned}
$$

Because we are using only the data from Children, it would be wise not to use a pooled error term. The following is the relevant printout from SPSS for the Between-subject effect of Reader.

Tests of Between-Subjects Effects ${ }^{\text {a }}$

Measure: MEASURE_1
Transformed Variable: Average

Source	Type III Sum of Squares	df		Mean Square	F	Sig.
Intercept	367.500		1	367.500	84.483	. 000
READERS	50.700		1	50.700	11.655	. 009
Error	34.800		8	4.350		

a. $\mathrm{AGE}=$ Children
b. Simple effect of items for adult good readers:

$$
\begin{aligned}
& S S_{I a t A G}=n \Sigma\left(\bar{X}_{I a t A G}-\bar{X}_{A G}\right)^{2} \\
& =5\left[(6.20-5.73)^{2}+(6.00-5.73)^{2}+(5.00-5.73)^{2}\right]=4.133
\end{aligned}
$$

Again, we do not want to pool error terms. The following is the relevant printout from SPSS for Adult Good readers. The difference is not significant, nor would it be for any decrease in the $d f$ if we used a correction factor.

Tests of Within-Subjects Effects

Measure: MEASURE_1
Sphericity Assumed

	Type III Sum ofSquares	df	Mean Square	F	Sig.
Source	4.133		2	2.067	3.647
ITEMS	4.533		8	.567	
Error(ITEMS)					

14.9 It would certainly affect the covariances because we would force a high level of covariance among items. As the number of responses classified at one level of Item went up, another item would have to go down.
14.11 Plot of results in Exercise 14.10:

14.13 Analysis of data in Exercise 14.5 by BMDP:
a. Comparison with results obtained by hand in Exercise 14.5.
b. The F for Mean is a test on $H_{0}: \mu=0$.
c. $M S_{w / i n}$ Cell is the average of the cell variances.
14.15 Source column of summary table for 4-way ANOVA with repeated measures on A \& B and independent measures on $\mathrm{C} \& \mathrm{D}$.

Source
Between $S \mathrm{~s}$
C
D
$C D$
$S \mathrm{~s} \mathrm{w} /$ in groups
Within Ss
A
$A C$
$A D$
$A C D$
$A \mathrm{x} S \mathrm{~s}$ w/in groups
B
$B C$
$B D$
$B C D$
$\mathrm{~B} \mathrm{x} S \mathrm{~s} \mathrm{w} / \mathrm{in}$ groups
$A B$
$A B C$
$A B D$
$A B C D$
$A B \mathrm{x} S \mathrm{~s}$ w/in groups

14.17 Using the mixed models procedure on data from Exercise 14.16

If we assume that sphericity is a reasonable assumption, we could run the analysis with covtype(cs). That will give us the following, and we can see that the F 's are the same as they were in our analysis above.

Fixed Effects

Type ill Tests of Fixed Effects ${ }^{\text { }}$

Source	Numerator df	Denominator df	F	Sig.
Intercept	1	42.000	450.019	.000
Group	2	42.000	3.749	.032
Time	2	84	73.534	.000
Group *ime	4	84	4.058	.005

a. Dependent Variable: dv.

However, the correlation matrix below would make us concerned about the reasonableness of a sphericity assumption. (This matrix is collapsed over groups, but reflects the separate matrices well.) Therefore we will assume an autoregressive model for our correlations.

Correlations

		Pre	Post	Followup
Pre	Pearson Correlation	1.000	$.585^{\star \pi}$.282
Post	Pearson Correlation	$.585^{\star \pi}$	1.000	$.616^{\star \pi}$
Followup	Pearson Correlation	.282	$.616^{\pi \pi}$	1.000

**. Correlation is significant at the 0.01 level (2-tailed).

Fixed Effects

Type III Tests of Fixed Effects ${ }^{\text {a }}$

Source	Numerator df	Denominator df	F	Sig.
Intercept	1	43.256	422.680	.000
Group	2	43.256	3.521	.038
Time	2	81.710	71.356	.000
Group* Time	4	81.710	5.578	.001

a. Dependent Variable: dv.

These F values are reasonably close, but certainly not the same.
14.19 Mixed model analysis with unequal size example.

Fixed Effects

Type III Tests of Fixed Effects ${ }^{\text {a }}$

Source	Numerator df	Denominator df	F	Sig.
Intercept	1	41.724	393.118	.000
Group	2	41.724	2.877	.068
Time	2	70.480	64.760	.000
Group *Time	4	70.459	5.266	.001

a. Dependent variable: dv .

Notice that we have a substantial change in the F for Time, though it is still large.
14.21 Everitt's study of anorexia:
a. SPSS printout on gain scores:

Tests of Between-Subjects Effects

Dependent Variable: GAIN

	Type III Sum of Squares	df	Mean Square	F	Sig.
Source	614.644^{a}	2	307.322	5.422	.006
Corrected Model	732.075	1	732.075	12.917	.001
Intercept	614.644	2	307.322	5.422	.006
TREAT	3910.742	69	56.677		
Error	5075.400	72			
Total	4525.386	71			
Corrected Total					

a. R Squared $=.136($ Adjusted R Squared $=.111)$
b. SPSS printout using pretest and posttest:

Tests of Within-Subjects Effects

Measure: MEASURE_1
Sphericity Assumed

	Type IIISum of Squares	df	Mean Square	F	Sig.
Source	366.037	1	366.037	12.917	.001
TIME	307.322	2	153.661	5.422	.006
TIME * TREAT	1955.371	69	28.339		
Error(TIME)					

c. The F comparing groups on gain scores is exactly the same as the F for the interaction in the repeated measures design.
d.

The plots show that there is quite a different relationship between the variables in the different groups.

e. Treatment Group = Control

One-Sample Statistics ${ }^{\text {a }}$

	N	Mean	Std. Deviation	Std. Error Mean
GAIN	26	-.4500	7.9887	1.5667

a. Treatment Group $=$ Control

One-Sample Test ${ }^{\text {a }}$

	Test Value $=0$					
	t	df	Sig. (2-tailed)	Mean Difference	95\% Confi dence Interval of the Difference	
					Lower	Upper
GAIN	-. 287	25	. 776	-. 4500	-3.6767	2.7767

a. Treatment Group $=$ Control

This group did not gain significantly over the course of the study. This suggests that any gain we see in the other groups cannot be attributed to normal gains seen as a function of age.
f. Without the control group we could not separate gains due to therapy from gains due to maturation.
14.23 $t=-0.555$. There is no difference in Time 1 scores between those who did, and did not, have a score at Time 2.
b. If there had been differences, I would worried that people did not drop out at random. to answer.
14.25 Differences due to Judges play an important role.
14.27 If I were particularly interested in differences between subjects, and recognized that judges probably didn't have a good anchoring point, and if this lack was not meaningful, I would not be interested in considering it.
14.29 Strayer et al. (2006)

Tests of Between-Subjects Effects

Measure:MEASURE 1

Transformed yariabje:Average.					
Source	Type III Sum of Squares	df	Mean Square	F	Siq.
Intercept	$7.711 \mathrm{E7}$	1	7.711 E 7	724.691	.000
Error	4149966.533	39	106409.398		

Tests of Within-Subjects Effects

Measure:MEASURE 1

Measure:MEASURE_1	Type III Sum of Squares	df	Mean Square	F	Siq.	
Source		134696.067	2	67348.033	4.131	.020
Condition	Sphericity Assumed	Greenhouse-Geisser	134696.067	1.992	67619.134	4.131
	Huynh-Feldt	134696.067	2.000	67348.033	4.131	.020
	Lower-bound	134696.067	1.000	134696.067	4.131	.049
Error(Condition)	Sphericity Assumed	1271689.267	78	16303.709		
	Greenhouse-Geisser	1271689.267	77.687	16369.337		
	Huynh-Feldt	1271689.267	78.000	16303.709		
	Lower-bound	1271689.267	39.000	32607.417		

b. Contrasts on means:

Because the variances within each condition are so similar, I have used $\mathrm{MS}_{\text {error(within) }}$ as my error term. The means are 776.95, 778.95, and 849.00 for Baseline, Alcohol, and Cell phone conditions, respectively..

$$
\begin{aligned}
& t=\frac{\hat{\psi}}{\sqrt{\frac{\sum a_{i}^{2} M S_{\text {error }}}{n}}} \\
& \hat{\psi}_{1 v s 2}=776.95-778.95=2 \\
& \hat{\psi}_{1 v s 3}=776.95-849.00=72.05 \\
& \hat{\psi}_{2 v s 3}=778.95-849.00=70.5 \\
& d e n=\sqrt{\frac{\sum a_{i}^{2} M S_{\text {error }}}{n}}=\sqrt{\frac{2 \times 16303.709}{40}}=28.551 \\
& t_{\text {lvs } 2}=2 / 28.551=0.07 \\
& t_{1 v s 3}=72.05 / 28.551=2.52^{*} \\
& t_{2 v s 3}=70.05 / 28.551=2.45^{*}
\end{aligned}
$$

Both Baseline and Alcohol conditions show poorer performance than the cell phone condition, but, interestingly, the Baseline and Alcohol conditions do not differ from each other.

