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PERMUTATION TESTS FOR LINEAR MODELS

MARTI J. ANDERSON1 AND JOHN ROBINSON2∗

University of Sydney

Summary

Several approximate permutation tests have been proposed for tests of partial regression
coefficients in a linear model based on sample partial correlations. This paper begins with
an explanation and notation for an exact test. It then compares the distributions of the
test statistics under the various permutation methods proposed, and shows that the partial
correlations under permutation are asymptotically jointly normal with means 0 and vari-
ances 1. The method of Freedman & Lane (1983) is found to have asymptotic correlation
1 with the exact test, and the other methods are found to have smaller correlations with this
test. Under local alternatives the critical values of all the approximate permutation tests
converge to the same constant, so they all have the same asymptotic power. Simulations
demonstrate these theoretical results.
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1. Introduction

The first descriptions of permutation (or randomization) tests for linear statistical models
can be traced back to the first half of the 20th century in the work of Fisher (1935) and Pitman
(1937a, b, c). However, these tests are computationally intensive and the use of them, as
opposed to the traditional normal-theory tests, did not receive much attention in the natural and
behavioural sciences until the emergence of widely accessible computer power (Edgington,
1995; Manly, 1997).

There is general agreement concerning an appropriate method of permutation for exact
tests of hypotheses in simple linear regression (or, more simply, tests for the relationship be-
tween two variables, e.g. Edgington, 1995; Manly, 1997). This is not the case, however, for
partial tests in multiple linear regression, i.e. tests in the presence of concomitant variables.
Several different methods of permutation have been proposed to test the significance of one
or more regression coefficients in a multiple linear regression model (Brown & Maritz, 1982;
Freedman & Lane, 1983; Collins, 1987; Oja, 1987; Gail, Tan & Piantadosi, 1988; Welch,
1990; ter Braak, 1992; Kennedy, 1995; Manly, 1997). Complex designs such as these are
commonly used in biological and ecological studies, where several factors are of interest, con-
comitant environmental variables are measured, or nested hierarchies of sampling at various
temporal and spatial scales are necessary.
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76 MARTI J. ANDERSON AND JOHN ROBINSON

Although proponents of the various permutational strategies have each provided a ratio-
nale supporting their approach, the methods have not been formally compared. In a recent
empirical comparison of the type 1 error and power of the various permutation methods pro-
posed, Anderson & Legendre (1999), using Monte Carlo methods, showed that none of the
proposed tests was an exact test and that no two of them were identical. Our purpose is to
theoretically examine the relationships among the proposed methods of permutation for tests
of partial regression coefficients in linear models. The results explain the results of empirical
simulations given in Anderson & Legendre (1999).

In Section 2, we give the model and notation for the problem and introduce an exact
permutation test for a partial regression coefficient. Then we introduce the approximate per-
mutation tests of Freedman & Lane (1983), Kennedy (1995), Manly (1997) and ter Braak
(1992). Section 3 derives the asymptotic joint distributions of these statistics under permu-
tation under the null hypothesis. Section 4 shows that the asymptotic powers based on these
test statistics are the same under local alternative hypotheses. The last two sections give some
results of empirical simulations and a comparative discussion of the methods.

2. Notation and description of methods

First, consider the paired observations, Zi and Yi , i = 1, . . . , n, where Y is the depen-
dent variable of interest and Z contains fixed values. Without loss of generality, let Z and
Y be standardized to have mean zero. The simple linear model is Yi = βZi + ε′i . We wish
to test the null hypothesis H0:β = 0. We assume that the ε′ are independent and identically
distributed (iid) random variables. An appropriate test statistic for the two-tailed test is the
square of the correlation coefficient, r2

S . If the null hypothesis is true, then any of the n!
random pairings of the observations Y with Z are equi-probable. An exact test is therefore
given by calculating the correlation for each of the n! permutations of the observations Y,
while keeping Z fixed.

We use the notation of Freedman & Lane (1983) to denote the permutation π of In =
{1, 2, . . . , n}. So π moves i ∈ In to πi ∈ In as a 1 to 1 mapping of In onto itself. Equal
weight 1/n! is assigned to each of the n! possible permutations π. When used as a su-
perscript, π denotes that the superscripted variable itself is permuted, whereas when used
as a subscript, π denotes that the subscripted variable is derived from permuted and un-
permuted variables. Thus, the value of the statistic for any particular permutation is r2

π =
(
∑n
i=1 Y

π
i Zi)

2/(
∑n
i=1 Y

2
i

∑n
i=1 Z

2
i ).

The probability for this test is p = Pr(r2
π ≥ r2

S), the fraction of the permutations for
which r2

π ≥ r2
S . The test is conditional only on the order statistics. Also, the assumption

of iid errors can be relaxed if units have been randomly allocated to treatments a priori. As
the number of possible permutations n! increases rapidly with n, a practical strategy is to
perform the test using a random subset M < n! of all possible permutations. Such a test is
still exact.

Next, consider the familiar multiple regression model

Y = µ′′ + β1X + β2Z + ε′′, (1)

where Y is the dependent variable of interest, X and Z are each a set of fixed values, and each
of these is a value from samples of size n. In (1), Y, X and Z are considered to be typical
values for these variables; the subscript i = 1, . . . , n has been omitted here and in what
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PERMUTATION TESTS FOR LINEAR MODELS 77

follows, as a simplification. Exactly analogous results follow if Y, X or Z is multivariate,
but for simplicity of notation we restrict attention throughout this paper to univariate Y, X
and Z. For further simplicity and without loss of generality, we standardize Y, X and Z to
have mean zero. Interest lies in testing the null hypothesis H0:β2 = 0 (i.e. that the partial
regression coefficient for Z is not significantly different from zero). We wish to isolate a test
of the relationship between Y and Z, while controlling for any concomitant effect of X. Now
we describe an exact permutation test for H0 . The idea for such a test is implicit in Freedman
& Lane (1983), but here we give it an explicit notation by reference to an appropriate test
statistic.

First consider the linear model of the relationship between the dependent and the con-
comitant variable: Y = αX + ε. An appropriate test statistic for the null hypothesis of no
relationship between Y and Z, over and above any relationship of Y with X, is the partial
correlation coefficient r, or, restricting the discussion here to the two-tailed test, its square

r2 =
∑
(RY |XRZ|X)

2

∑
R2
Y |X

∑
R2
Z|X

, (2)

where RY |X = Y −aX denotes the residuals of the regression of Y on X alone and RZ |X =
Z−γX denotes the residuals of the regression of Z on X alone. Note that a = ∑

YX/
∑
X2

is an estimate of the unknown regression parameter α, while γ is known for fixed X and Z.
Now, if we knew what the relationship was between Y and X, i.e. if we knew α, then

we could obtain an exact test by constructing random permutations of Y given X that were
exchangeable under the null hypothesis. Specifically, the Y themselves are not exchangeable
under H0 , for these include some portion of variability explained by X. It is the errors ε
that are exchangeable random variables under H0 . Although they cannot be observed, they
are conceptually available to us as that part of Y not explained by X. If α were known, we
could consider the exact conditional distribution of Y under permutation given X. We would
first obtain the true errors ε, given the observed values of Y and X as ε = Y − αX. These
would be permuted to obtain επ . We could then create new observations that are genuine
realizations of alternative possible values of Y conditional on X under a true null hypothesis
as Yπ(E) = αX + επ . The test statistic under permutation for this exact test would therefore
be

r2
E =

( ∑
(Yπ(E) − aπ(E)X)RZ|X

)2

∑
(Yπ(E) − aπ(E)X)2

∑
R2
Z|X

, (3)

where aπ(E) = ∑
Yπ(E)X/

∑
X2 and Yπ(E)−aπ(E)X is the residual of Yπ(E) removing the

effect of X .
It may seem strange that to calculate r2

E we need to estimate the regression coefficient
aπ(E) , when we have just created new possible values by pretending to know the value of
α. It is important to remember, however, that the calculation of the original value of the test
statistic (2) relies on just such an estimate. This estimation must therefore also occur under
permutation for the values of the statistic under permutation (3) to be commensurate with the
original observed value of r2. We use our knowledge of α only to create new observations
conditional on X that could occur under a true null hypothesis.

Given r2 and all possible n! values of r2
E under the null hypothesis, p = Pr(r2

E ≥ r2)

gives an exact test of H0 . This exact test is conditional on the order statistics of the original
observations Y and has two assumptions: (i) the relationship between Y and X conforms to
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78 MARTI J. ANDERSON AND JOHN ROBINSON

a linear model, and (ii) the errors ε′′ are iid. Again, the last assumption can be relaxed if Z
consists of codes for an experimental design allocated randomly to units a priori.

It is not possible to carry out an exact permutation test like this in practice because we
cannot know α. It is at this point that the literature diverges into many opinions concerning
an appropriate approximate permutation method for such a test. Only in the special case of X
containing several replicates of each of several fixed values can an exact test be done. In that
case, by restricting permutations within sets of observations that take similar values for X,
α remains invariant under permutation (Brown & Maritz, 1982). Otherwise, an approximate
method is necessary.

The first approximate test we consider is that provided by Freedman & Lane (1983). This
method of permutation has also been called permutation under the reduced model. It is similar
to the exact test, except that ε and α are replaced by their least-squares estimates RY |X and
a, respectively. So Yπ(F) = aX + RπY |X , and the test statistic under permutation is

r2
F =

( ∑
(Yπ(F) − aπ(F)X)RZ|X

)2

∑ (
Yπ(F) − aπ(F)X

)2 ∑
R2
Z|X

, (4)

where aπ(F) = ∑
Yπ(F)X/

∑
X2.

Kennedy (1995) proposed another method of permutation which he claimed was identical
to the method of Freedman and Lane. The test is based on the general idea that the partial
regression coefficient is equivalent to the simple regression coefficient of residuals. Here, the
test statistic under permutation is the simple correlation coefficient between RπY |X and RZ |X ,
thus

r2
K =

( ∑
RπY |XRZ|X

)2

∑
R2
Y |X

∑
R2
Z|X

. (5)

Although both Kennedy’s and Freedman and Lane’s methods permute residuals RY |X , the

values r2
K and r2

F differ under permutation.
Manly (1997) proposed simply permuting observed values Y for the test of partial cor-

relation. This gives, under permutation,

r2
M =

( ∑
(Y π − aπ(M)X)RZ|X

)2

∑
(Y π − aπ(M)X)2

∑
R2
Z|X

, (6)

where aπ(M) = ∑
YπX/

∑
X2. Although permuting observations gives an exact test of

multiple correlation, there has been some controversy concerning the validity of this approach
for partial tests (Kennedy & Cade, 1996; Manly, 1997).

Ter Braak (1992) proposed permutation of residuals of the full model, rather than residu-
als of the reduced model as in Freedman & Lane (1983). The test statistic under permutation
for this method is

r2
T =

( ∑
(RπY |XZ − kπX)RZ|X

)2

∑
(RπY |XZ − kπX)

2
∑
R2
Z|X

, (7)

where kπ = ∑
RπY |XZX/

∑
X2 and RπY |XZ are the permuted least-squares residuals of the

full model (1).
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Note that all these methods use the partial least-squares correlation coefficient r2 cal-
culated on the original data as the value against which to compare distributions of permuted
values r2

F , r2
K , r2

M or r2
T .

3. Distribution associated with the null

3.1. Permutation under the reduced model

Let RY |X and RZ |X satisfy Condition C of the Appendix. Then
√
n rK

d→N(0, 1) by
Theorem 2. Now, we can write the relationship between the partial correlation coefficients
used in the Freedman & Lane (1983) and Kennedy (1995) methods under permutation as

r2
F = r2

K

(1 − A2
π )
, (8)

where A2
π = (

∑
RπY |XX)

2/
∑
R2
Y |X

∑
X2, the squared correlation coefficient between

RπY |X and X. If X also satisfies Condition C, then
√
nAπ

d→N(0, 1) and Aπ
p→0, and so

√
n rF

d→N(0, 1).
Although both methods use test statistics that converge to the same distribution under

permutation for large n, there is an important distinction between them. For the Kennedy
method, the permuted residuals RπY |X are regressed directly on RZ |X . This means that the
value of a remains fixed throughout the permutations. For the Freedman and Lane method,
in contrast, the permuted residuals RπY |X are added back onto the fitted values to create new
values Yπ(F) under permutation. The important point here is that the value aπ(F) does not
stay constant, but changes with each permutation π. There is no linear relationship between
RY |X and X. It is only by permuting the RY |X to form RπY |X that a small relationship is
re-introduced, so Aπ is non-zero for any particular permutation π.

The numerator of r2
F is the same as that for r2

K (cf. (4) and (5)). The value of the
cross-product, and therefore of the estimated partial regression coefficient for Z, is the same
for the two methods under permutation. This is what led Kennedy (1995) to suggest that
the methods were equivalent. Although Kennedy & Cade (1996) discussed the importance
of using an asymptotically pivotal statistic, such as r2, t or F, for partial tests in multiple
regression, they did not appear to note that the equivalence of the Kennedy method with that
of Freedman and Lane extends only to the value of the partial regression coefficient. Under
the null hypothesis, we wish to perform a permutation test which is completely conditional
on X. The Freedman and Lane method ensures that this conditioning on X is maintained
throughout the permutations, whereas the Kennedy method does not.

Although the difference between the two methods disappears asymptotically, (8) shows
that r2

K will be consistently smaller than or equal to values of r2
F . The observed value r2 will

thus appear more extreme more often for the Kennedy method under permutation, resulting
in tail probabilities that are too small, and inflating the type 1 error. Empirical simulations
support these results (Anderson & Legendre, 1999).

3.2. Permutation of raw data

The method of raw data permutation does not suffer from the same problem as the
Kennedy method. After each permutation the full model is applied, so the test of Yπ versus
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80 MARTI J. ANDERSON AND JOHN ROBINSON

Z is properly conditioned on the covariable X throughout the permutations. By conditioning
we intend approximate conditioning, insofar as it is only the linear relationship of the response
variable with the covariable X that is removed.

We can also consider the permuted residuals used in the Freedman and Lane method as
RπY |X = Yπ−aXπ . The numerator of (6) reduces to (

∑
YπRZ |X)2 , because

∑
XRZ |X = 0.

Now, replacing Yπ with RπY |X + aXπ, and recalling that
∑
Yπ2 = ∑

Y 2 = ∑
R2
Y |X(1 +

a2 ∑
X2/

∑
R2
Y |X) , some algebra gives

r2
M = (rK + gBπ)

2

(1 + g2)(1 − C2
π )
, (9)

where

B2
π =

( ∑
XπRZ |X

)2

∑
X2

∑
R2
Z |X

, C2
π =

( ∑
XYπ

)2

∑
X2

∑
Y 2

and g2 =
( ∑

XY
)2

∑
X2

∑
R2
Y |X

.

The role of (1 −C2
π ) in (9) is directly analogous to the role of (1 −A2

π ) in the Freedman and
Lane method (i.e. providing complete conditioning on X throughout the permutations), where
Cπ is the correlation coefficient between Yπ and X. Consider also that the random variables
rK and Bπ are each correlation coefficients between the variable pairs (RZ |X,R

π
Y |X) and

(RZ |X,X
π), respectively. Subject to Condition C holding for RZ |X , RY |X and X, we

can apply Theorem 2 to show that
√
n rK and

√
nBπ behave asymptotically as independent

standard normal variables. If Y also satisfies Condition C, we note that Cπ
p→0; so from (9),√

n rM
d→N(0, 1). The asymptotic distribution of r2

M under permutation is thus the same as
the asymptotic distribution of r2

F . This result means that, by virtue of the good qualities of
the pivotal statistic, including conditioning on nuisance variables, the permutation of raw data
gives an approximate test for non-zero partial regression coefficients.

3.3. Permutation under the full model

The method of ter Braak, like that of Freedman and Lane or Manly, maintains the con-
ditioning on X throughout the permutations. The permuted residuals of the full model can
be written RπY |XZ = RπY |X − bRπZ |X where b = ∑

RY |XRZ |X/
∑
R2
Z |X . So replacing

RπY |XZ in (7) and multiplying this out gives

r2
T = (rK − rFπ)

2

(1 − r2)(1 −G2
π )
, (10)

where F 2
π = (∑

RπZ |XRZ |X
)2/(∑

R2
Z |X

)2 andG2
π = (∑

RπY |XZX
)2/(∑

R2
Y |XZ

∑
X2

)
.

Note that r in (10) is the value of the test statistic for the original data before permutation
(2), used for all methods. Compare (10) with the result obtained for the method of raw data
permutation in (9). The role of (1 − G2

π ), where Gπ is the correlation coefficient between
RπY |XZ and X, is analogous to the role of (1 − A2

π ) in the Freedman and Lane method and

the role of (1 − C2
π ) in the method of Manly: they ensure conditioning on the covariable

X throughout the permutations. As in these previous analogous situations, if RY |XZ satis-

fies Condition C, Gπ
p→0. Furthermore, applying Theorem 2 as before,

√
n rK and

√
nFπ
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PERMUTATION TESTS FOR LINEAR MODELS 81

TABLE 1

Correlations among the test statistics under permutation for a single set of simulated
data. The expected correlations according to equation (11) are given first, and the

observed correlations, calculated from 999 permutations are in parentheses.

√
n r
E

√
n r
F

√
n r
M√

n r
F

1.000 (0.999)
√
n r
M

0.820 (0.854) 0.820 (0.830)
√
n r
T

0.675 (0.666) 0.675 (0.668) 0.553 (0.547)

behave as standard normal variables with correlation r. Thus, from (10),
√
n rT

d→N(0, 1).
Therefore, permutation of residuals under the full model gives a distribution under the null
hypothesis that is asymptotically the same as that obtained by the Freedman and Lane method
and the permutation of raw data. Like the latter, ter Braak’s method relies on the qualities of
the pivotal statistic as a ratio, including the conditioning on nuisance variables.

3.4. Correlations under permutation

Consider equations (8), (9) and (10). Using Theorem 2 we can show
√
n(rF , rM, rT )

converges in distribution to a trivariate normal with means zero and covariance matrix




1 u v

u 1 uv

v uv 1


 , where u = (1 + g2)−1/2, v = (1 − r2)1/2. (11)

So, even though the value of the test statistic for each method is not the same for any single
permutation π, the distributions of the permuted statistics, rF , rM and rT , converge to the
same distribution, a standard normal. For the test by permutation, it is the distribution of
the permuted values that matters, for it is against this that we scale the observed value of the
test statistic, r2, to obtain a P -value. So, all the tests (except the Kennedy method) work
as approximate permutation tests for a partial regression coefficient. All the methods use the
same observed value and they all produce permutation distributions under H0 that converge
to the same distribution, so the expected values of the probabilities obtained using the tests are
asymptotically equivalent. The method of Freedman and Lane comes the closest to attaining
the status of an exact test in the current framework. It is the only test to have an expected
correlation of 1 with the exact test.

The expected and observed correlation matrices among the four statistics (Table 1) show
that the Freedman and Lane method is indeed the closest to the exact test for each permutation
π. In addition, all observed correlations correspond well to their expected values obtained
using (11). To derive the tabulated values a single set of data was simulated with X and Z
each chosen randomly from a uniform distribution on the interval (0, 3), β1 = β2 = 1 and
errors ε′′ were drawn randomly from a standard normal distribution. The linear model in
equation (1) was then used to create observations Y and the sample size was n = 40.

4. Power of the tests

A few comments concerning the power of these approximate permutation tests are ap-
propriate. Previous work by Hoeffding (1952), Robinson (1973), Vadeviloo (1983) and Hall
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82 MARTI J. ANDERSON AND JOHN ROBINSON

& Titterington (1989) is relevant. In the present case, for simplicity, consider the one-tailed
test for H0: β2 = 0, with alternative H1: β2 > 0. Let r denote the observed value of the
test statistic as in (2). Consider its value under permutation as

rπ =
∑
RπY |XRZ|X√∑
R2
Y |X

∑
R2
Z|X

,

the square root of r2
K . Taking M random permutations, we have a subset {π1, . . . , πM}

randomly sampled with (or without) replacement from {π1, . . . , πP }, where P is the total
number of possible permutations. Then {rπ1

, . . . , rπM } are the values of the statistic for this
subset of permutations and {r(1) ≤ r(2) ≤ · · · ≤ r(M)} is the ordered set of these values.

The test is: reject H0 for r ≥ r(k), where k = M − [Mα], α is the a priori level of
significance chosen for the test and [Mα] denotes the largest integer less than or equal to Mα.
We assume that α is fixed for the test and that M → ∞ as n → ∞, so k/M → 1 − α as
n → ∞. The probability of rejecting H0 when it is true (i.e. the size of the test) is

Pr0(r ≥ r(k)) = EH0

(
Pr(r ≥ r(k) | Y )) .

Similarly, the probability of rejecting H0 when it is false (i.e. the power of the test) is

Pr1(r ≥ r(k)) = EH1

(
Pr(r ≥ r(k) | Y )) .

Theorem 1. Assume that {X} and {RZ |X} satisfy Condition C of the Appendix and that

var(Y ) > 0 and E|Y |3 < ∞. If we consider a sequence of alternatives such that
√
nEH1(r)

converges to a constant ζ, then the asymptotic power of the test is 1 − ,(uα − ζ ), where
1 −,(uα) = α and , is the standard normal cdf.

Proof. We first show Condition A of Hoeffding (1952):
√
nr(k)

p→uα , where |k/M − (1 −
α)| ≤ 1/M. Our treatment differs from Hoeffding’s in that we have a random subset M of
all possible permutations P. As in the Monte Carlo approach outlined by Hall & Titterington
(1989), let rπ denote a generic value r under permutation. Define pu = Pr(

√
n rπ ≤ u |Y ).

Let FM(u |Y ) be the empirical distribution function of {rπ1
, . . . , rπM }; that is, the number of

rπi less than or equal to u divided by M. Then r(k) ≤ u if and only if FM(u |Y ) ≥ k/M, so

Pr(r(k) ≤ u | Y ) = Pr
(
MFM(r | Y ) ≥ k

) =
M∑
i=k

(
M

k

)
piu(1 − pu)

M−i ,

which is an upper-tail probability of a binomial (M, pu), conditional on Y.

Let An denote the set of {Y } such that {RY |X} and {RZ |X} satisfy Condition C of the
Appendix. Then for Y ∈ An, from Theorem 2, given δ > 0,

∣∣Pr(
√
n rπ ≤ u | Y )−,(u)

∣∣ < δ
for large enough n. The set An is such that 1

n

∑
R2
Y |X > C and 1

n

∑ |RY |X|3 < C′ for
some constants C and C′, so from the assumptions, using the weak law of large numbers and

c© Australian Statistical Publishing Association Inc. 2001



PERMUTATION TESTS FOR LINEAR MODELS 83

Hölder’s inequality we can show that, given ε > 0, Pr(Y ∈ An) > 1 − ε for large enough n.
Then

Pr
(∣∣Pr(

√
n rπ ≤ u | Y )−,(u)

∣∣ < δ) > 1 − ε. (12)

Now, if FM(u | Y ) p→,(u), (13)

then for u′ < uα < u′′, Pr(
√
n r(k) ≤ u′ |Y ) → 0 and Pr(

√
n r(k) ≤ u′′ |Y ) → 1 so√

n r(k)
p→uα. Next we show that (13) holds. From (12), p(u) = Pr(

√
n rπ ≤ u |Y ) p→,(u).

Also because, given Y, MFM(u |Y ) is binomial (M, pu), Pr
(∣∣FM(u |Y )−pu

∣∣ < ε |Y ) p→1.
Also the conditional probabilities on the left are bounded by 1 so

Pr
(∣∣FM(u | Y )− pu

∣∣ < ε) = E
[
Pr

(∣∣FM(r | Y )− pu
∣∣ < ε | Y )] → 1,

and therefore (13) holds, which is what we require.

Finally, under H1 and the assumptions of the theorem,
√
nEH1r

p→ζ and n var(r)
p→1,

so we can use the Lyapounov version of the central limit theorem to show that

Pr(
√
n r ≤ u) → ,(u− ζ ).

All the permutation tests considered here use r2 for the observed test statistic (the two-
tailed equivalent to the above one-tailed test). The values of the test statistics under permutation
(i.e. r2

K , r2
F , r2

M and r2
T ) have all been shown to converge asymptotically to the same dis-

tribution and so all have comparable asymptotic power. These results are also supported by
extensive empirical simulations (Anderson & Legendre, 1999).

5. Empirical simulations

Some empirical simulations additional to those provided by Anderson & Legendre (1999)
are given here. In particular, we show the exaggerated effect of inflated type 1 error for
Kennedy’s method with increases in the number of covariables in the model. Data were sim-
ulated as follows: predictor variables were each chosen randomly and independently from a
uniform distribution on the interval (0, 3). The slope parameter for one of the variables (Z,
the one under test) was set at zero, while the slope parameter for each of the other variables
was set at 1. Errors ε′′ were chosen independently and randomly from a standard normal
distribution and the linear model was used to obtain Y. Ten thousand such datasets were gen-
erated and for each we obtained P -values using 999 permutations in the manner of Kennedy
and of Freedman and Lane. The P -value for the t -test was also calculated for each dataset.
The type 1 error for each method was recorded as the proportion of rejections of H0 at sig-
nificance level 0.05. This was done for n = 10, 20, 30, 40, 50, 60 and with the number of
covariables = 5, 10. When the number of covariables was 10, the smallest sample size was
n = 12 (rather than 10). The entire procedure was repeated with errors ε′′ chosen from an
exp(1) distribution raised to the third power.

Figure 1 shows the results, and inflated type 1 error is apparent for the Kennedy method,
especially with small sample sizes. In the most extreme cases, type 1 error is as high as 60%
for the Kennedy method. Note also that it is only for quite radically non-normal errors (i.e.
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Figure 1. Results of empirical simulations comparing type 1 error for the methods of Freedman and
Lane, Kennedy and the normal-theory t -test. The method of simulation of data is described in the
text. The a priori significance level was 0.05. Each point represents the proportion of the number of

rejections of the null hypothesis out of 10 000 simulations, each with 999 permutations.

exp(1)3) that the normal-theory t -test noticeably deviates from the a priori significance level
of 0.05 (Figure 1c).

The simulation study by Anderson & Legendre (1999) suggests that the method of raw
data permutation is prone to error in the manner suggested initially by Kennedy & Cade
(1996). In the case of an extreme outlier in X with either normal or extremely non-normal
errors, the type 1 error was de-stabilized for permutation of raw data, often being inflated (see
Anderson & Legendre, 1999 Figure 7). However, the presence of such an extreme outlier is
certainly a situation that violates the conditions of boundedness used in the proofs provided
here. Mathematical proofs demonstrating the problem with Manly’s method caused by an
outlier in X would require an Edgeworth expansion of r2

M at least out to the fourth moment
(examining kurtosis), which is not pursued here.

If the partial regression coefficient alone were used for the test (a non-pivotal statistic),
then neither the method of raw data permutation nor permutation under the reduced model
would work. This has been noted by others (Kennedy & Cade, 1996). We show explicitly that
the slope coefficient under permutation of raw data would be affected by the added value of
the non-zero fixed constant g defined in (9), thus inflating the values of the permuted statistics
and decreasing the rejection rate. Table 2 shows results of simulations demonstrating this
effect, where the a priori significance level of 0.05 is not achieved by either method when
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TABLE 2

Type 1 error obtained using the pivotal t -statistic (equivalent to using r2 or the
F-statistic under permutation) or the non-pivotal slope coefficient (b2) for either
permutation of raw data (Raw) or permutation under a reduced model (Reduced)

No. of Sample size Raw Reduced Raw Reduced
regressors n (t) (t) (b2) (b2)

2 12 0.054 0.053 0.012 0.079
5 12 0.047 0.047 0.000 0.131

10 12 0.052 0.052 0.000 0.610
2 20 0.050 0.051 0.009 0.057
5 20 0.051 0.052 0.000 0.086

10 20 0.052 0.052 0.000 0.167
2 40 0.051 0.049 0.011 0.052
5 40 0.048 0.047 0.000 0.060

10 40 0.051 0.050 0.000 0.090

using the slope coefficient alone for the permutation test. Note that permutation under the
reduced model using the slope coefficient alone as the test statistic is equivalent to using the
Kennedy method. As the number of rejections under the true null hypothesis has a binomial
distribution, the 95% confidence interval for 10 000 trials (simulations) is (0.046–0.054). Any
values falling outside this range can be considered to differ significantly from the expected
value of 0.05. The data were simulated as for Table 1 with the obvious generalization to
multidimensional X when the number of regressors is 5 or 10.

Further simulations show that the method of ter Braak, in virtually all situations consid-
ered, gives results highly comparable with those obtained for the Freedman and Lane method
(Anderson & Legendre, 1999). In particular, the issue of increased power, suggested by ter
Braak (1992) as being a potential advantage of the method, does not seem to occur. Power
curves consistently show results for the Freedman and Lane method and the ter Braak method
of permutation as virtually identical: they are almost impossible to distinguish on the graphs
(see Anderson & Legendre, 1999 Figure 6). The method of ter Braak also suffers somewhat
from de-stabilization of type 1 error when the covariable X contains an outlier, but only in the
presence of extremely non-normal errors and to a much lesser extent than for Manly’s method.
This effect also disappears with increases in the sample size (see Anderson & Legendre, 1999
Figure 8).

6. Discussion

The distributions of the statistics for these methods (
√
n rF ,

√
n rM and

√
n rT ) all

converge asymptotically under permutation to a standard normal distribution. We have also
demonstrated that the critical values for all these permutation tests converge to the same
constant under sequences of contiguous alternative hypotheses, so they all have the same
asymptotic power.

In empirical studies, the Freedman & Lane (1983) method generally gives the best results
(in terms of type 1 error or power; Anderson & Legendre, 1999) and the theoretical results
here demonstrate why this is so. It estimates what would be an exact test if the relationship
between the response variable Y and the concomitant variable X were known by creating
alternative possible observed values under the null hypothesis that are completely conditional
on X through permutation of errors ε. None of the other methods approximates the exact test.
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We have shown that the reason for the inflated type 1 error with the Kennedy method
(1995) is a lack of appropriate conditioning on the nuisance variable X throughout the per-
mutations. The lack of conditioning causes the estimated variance of the partial regression
coefficient being tested to be too large under permutation, causing inflated type 1 error. This
is a consistent error that becomes worse with increases in the number of nuisance variables in
the model.

The methods of Manly (1997) and ter Braak (1992) do not suffer from this error of a
lack of complete conditioning on the nuisance variable(s). For each of these methods, as for
that of Freedman and Lane, X and Z are kept fixed and are included in the partial regression
done for each permutation. Neither of these methods, however, follows the rationale of an
exact test. Instead, we have demonstrated how they rely on the asymptotically pivotal test
statistic under permutation. By asymptotically pivotal in the present context, we mean that
the test statistic used has a distribution that, asymptotically, does not rely on any unknown
parameters and thereby adjusts for any nuisance parameters that are not of interest for the test.
The importance of using a pivotal statistic has been discussed in the context of bootstrapping
for constructing confidence limits and tests (e.g. Hall & Titterington, 1989; Fisher & Hall,
1990), but has not been considered fully in the present context of permutation tests for partial
regression.

Unlike Freedman and Lane’s method, these two methods can have problems when the
covariable X contains an extreme outlier. In that case, the asymptotic statements concerning
the equivalence of the methods begin to lose their meaning as the conditions of Theorem 2
no longer apply. However, such extreme situations do not adversely affect the Freedman and
Lane permutation method.

Although we have considered only the two-tailed tests, the same arguments apply to
one-tailed tests of partial slope coefficients using these methods. The results obtained also
extend to the general situation with (i) greater numbers of covariables or nuisance variables
in the model, or (ii) greater numbers of predictor variables being tested simultaneously under
the null hypothesis.

In addition, we note that these results have special relevance for the case of multivariate
data (i.e. multiple response variables). For univariate analysis, the normal-theory tests are
fairly robust and, in situations where this is in doubt, appropriate transformations of the raw
data can usually be found. Traditional multivariate tests, however, are not so robust to de-
partures from non-normality, and permutation tests now abound for non-parametric analysis
of multivariate data, particularly in the biological and ecological sciences, especially for tests
based on distance matrices (e.g. Mantel, 1967; Mielke, Berry & Johnson, 1976; Smouse, Long
& Sokal, 1986; Clarke, 1993). It was for multivariate canonical analysis of ecological and
agricultural data that ter Braak (1992) first suggested his permutational approach. Smouse
et al. (1986) considered an extension of the simple Mantel test (1967) to a partial Mantel
test, suggesting a permutational strategy equivalent to the method proposed later by Kennedy
(1995) for such tests. We consider that the use of Kennedy’s method with multivariate distance
matrices will also suffer with inflated type 1 error, due to lack of conditioning on nuisance
terms, as for the univariate case. All our results can be readily extended to the case of multi-
variate response variables. Indeed, in the above, it can be considered that Y is a matrix rather
than a vector, and that correspondingly entire rows of this matrix (or matrices of appropriate
residuals) are permuted for the tests, and that the products indicate vector products or matrix
multiplication (depending on the context).
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Appendix

In this appendix we state a multivariate limit theorem that uses conditions which are
simpler than those of Wald & Wolfowitz (1944) and which imply the condition of Hájek
(1961) in the multivariate case. We use a Cramér–Wold device to get the multivariate version
as in, e.g., Fraser (1957, Theorem 6.3 p .240).

Condition C. For the triangular array

B = {bnj , j = 1, . . . , n; n = 1, 2, . . .}

there exist positive constants C and C′ such that for each n = 1, 2, . . .

1

n

n∑
j=1

b2
nj > C and

1

n

n∑
j=1

|bnj |3 < C′.

Theorem 2. Consider the arrays {anj }, {cn1j }, . . . , {cnmj } which are such that ān = c̄n1 =
· · · = c̄nm = 0. Let (π1, . . . , πn) be a random equiprobable permutation of (1, . . . , n) and
define, for each n = 1, 2, . . . ,

Snk =
√
n

∑n
j=1 anj cnkπj√∑n

j=1 a
2
nj

∑n
j=1 c

2
nkj

(k = 1, . . . , m).

Then if {anj }, {cn1j }, . . . , {cnmj } all satisfy Condition C,

(Sn1, . . . , Snm)
d→Nm(0,R), as n → ∞,

where R = [Rk2] and

Rk2 =
∑n
j=1 cnkj cn2j√∑n

j=1 c
2
nkj

∑n
j=1 c

2
n2j

.

In the main text, we omit the first subscript n throughout.
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