## Answer Key for Exercises

## Exercises-Chapter 1

1.1 A variety of topics appear under ANOVA. A summary is below. You should look at some of the topics in more detail.

## Help Topics: SPSS for Windows



Contents Index $\mid$ Find

1 Type the first few letters of the word you're looking for.
ANOVA
2 Click the index entry you want, and then click Display.

| charts |
| :--- |
| ANOVA |
| assumptions |
| command syntax |
| in GLM Multivariate |
| in GLM Repeated Measures |
| in GLM Univariate |
| in Means |
| in One-Way ANOVA |
| model |
| Apply Dictionary |
| command syntax |
| area charts |
| available types |
| displayed data |
| obtaining |
| percentage scale |

1.2 I found 2 sets of information: one for categorical or nominal data and another for continuous data. Clicking on either one gave me suggestions about appropriate types of analyses to run given these types of data.
1.3 This will change the view in the Data Editor. When it is checked each piece of data is in a cell (surrounded by lines), when it is not checked, the cells are not divided by lines.
1.4 This is a matter of personal preference. There is no right answer.
1.5 This is a matter of personal preference. There is no right answer.

## Exercises-Chapter 2

2.1 A sample of labels and values follows.

| Name | Type | Width | Decimals | Label | Values |
| :---: | :---: | :---: | :---: | :---: | :---: |
| trial | Numeric | 5 | 0 |  | None |
| rxtime | Numeric | 6 | 0 | reaction times in 100th of a second | None |
| nstim | Numeric | 5 | 0 | number of digits | None |
| yesno | Numeric | 5 | 0 | was test digit included in comparison set | \{1, yes\}... |

2.2 A sample of the correct data file follows.

|  | intrus |
| ---: | ---: |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 2 |
| 5 | 2 |
| 6 | 3 |
| 7 | 4 |
| 8 | 4 |
| 9 | 4 |
| 10 | 5 |
| 11 | 5 |
| 12 | 5 |
| 13 | 6 |

2.3 Answers will vary depending on how you created your own data file. Remember to compare your file to Exercise2.2.sav on the CD.
2.4 To perform this exercise accurately, you would have used the merge/add cases option. The only way you would know this is by opening the 2 original files and looking at them. You can see both include the same variables, but include the data from different people. The merged file will include 90 cases.
2.5 To do this effectively, you would need to have noticed that the variable names were included at the top of the file and that commas delimited the data. A sample of the correct data file follows.

|  | id | gender | q1 | q2 | q3 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 1.0 | 2 | 3 | 4 | 5 |
| 2 | 2.0 | 1 | 1 | 2 | 3 |
| 3 | 3.0 | 1 | 2 | 3 | 4 |
| 4 | 4.0 | 2 | 3 | 4 | 5 |
| 5 | 5.0 | 1 | 4 | 5 | 5 |
| 6 | 6.0 | 2 | 1 | 1 | 1 |
| 7 | 7.0 | 1 | 1 | 2 | 2 |
| 8 | 8.0 | 2 | 3 | 3 | 4 |
| 9 | 9.0 | 2 | 5 | 4 | 3 |
| 10 | 10.0 | 1 | 3 | 4 | 5 |
| 11 | 11.0 | 1 | 3 | 4 | 5 |

2.6 All of the original variable names were longer than 8 characters, so I renamed them before reading them into EXCEL so they wouldn't end up with generic or truncated names. A sample data file follows.

|  | name | group | tgrade1 | tgrade2 |
| ---: | :--- | ---: | ---: | ---: |
| 1 | Jennifer | 1 | 90 | 88 |
| 2 | Michelle | 2 | 65 | 67 |
| 3 | Moriah | 1 | 78 | 85 |
| 4 | Matthew | 1 | 85 | 78 |
| 5 | Jacob | 2 | 87 | 84 |
| 6 | John | 2 | 67 | 65 |
| 7 | Melissa | 1 | 75 | 77 |
| 8 | Casey | 2 | 78 | 90 |
| 9 | Corinne | 1 | 89 | 877 |
| 10 | Keith | 1 | 92 | 94 |
| 11 | Amanda | 2 | 90 | 90 |

## Exercises-Chapter 3

3.1 A histogram for ADDSC follows.

3.2 The box plots follow. It appears that students with social problems have more ADD symptoms than students without social problems. The distribution appears more normally distributed for students with no social problems. The distribution for students with social problems appears positively skewed. Neither group has outliers.

3.3 A sample scatter plot follows. There appears to be a negative association between GPA and ADD symptoms.

3.4 A sample bar chart follows. It looks as if GPA differs between the 3 groups such that students in the college prep course have higher GPAs than students in general or remedial English, and students in general English have higher GPAs than students in remedial English. [Of course, we would need to compute some inferential statistics to see if these differences are statistically significant.]

level of English in 9th grade
3.5 The 2 graphs follow. It looks like there is a main effect of type of English class as described above. It also looks like there is a main effect of gender such that females have higher GPAs than males. I would guess there is an interaction effect such that the gender difference in GPA is greatest among students in college prep English. I like the line graph better because I think it is easier to visualize interaction effects with a line graph than a bar graph.



## Exercises-Chapter 4

4.1 The output follows. I used Analyze/Descriptive Statistics/Frequencies to calculate these descriptives because it includes all of the options including the histogram.

## Frequencies

## Statistics

|  |  | self esteem | anxiety score | coping score | health score |
| :--- | :--- | ---: | ---: | ---: | ---: |
| N | Valid | 50 | 48 | 50 | 50 |
|  | Missing | 0 | 2 | 0 | 0 |
| Mean | 3.4933 | 3.8558 | 2.0856 | 3.0249 |  |
| Median | 3.6667 | 4.0000 | 1.9688 | 3.0000 |  |
| Mode | 4.00 | $3.50^{\mathrm{a}}$ | $1.76^{\mathrm{a}}$ | 3.00 |  |
| Std. Deviation | .5139 | .7337 | .5570 | .6146 |  |
| Variance | .2641 | .5383 | .3102 | .3777 |  |
| Range | 2.17 | 2.75 | 2.53 | 2.72 |  |

a. Multiple modes exist. The smallest value is shown

## Histogram


4.2 I calculated these frequencies using Analyze/Descriptive Statistics/Crosstabs. The results follow.
gender * social problems in 9th grade Crosstabulation

|  |  | social problems in 9th grade |  | Total |
| :---: | :---: | :---: | :---: | :---: |
|  |  | no social problems | yes, social problems |  |
| gender male <br>   <br>  female | Count | 48 | 7 | 55 |
|  | \% within gender | 87.3\% | 12.7\% | 100.0\% |
|  | Count | 30 | 3 | 33 |
|  | \% within gender | 90.9\% | 9.1\% | 100.0\% |
| Total | Count | 78 | 10 | 88 |
|  | \% within gender | 88.6\% | 11.4\% | 100.0\% |

### 4.3 The output follows. I calculated them by using Analyze/Compare

 Means/Means.
## Report

Grade point average in 9th grade

| social problems in | dropped out of | Mean | N | Std. Deviation | Variance |
| :--- | :--- | ---: | ---: | ---: | ---: |
| no social problems | did not drop out | 2.5293 | 73 | .8744 | .764 |
|  | dropped out of | 1.5340 | 5 | .6171 | .381 |
|  | high school | 2.4655 | 78 | .8915 | .795 |
|  | Total |  | 5 | .8023 | .644 |
| yes, social problems | did not drop out | 2.3500 | 5 | .4218 | .178 |
|  | dropped out of | 2.4180 | 5 | .6054 | .366 |
|  | high school | 2.3840 | 10 | .8662 | .750 |
|  | Total | did not drop out | 2.5178 | 78 | .6822 |
|  | dotal | dropped out of | 1.9760 | 10 | .465 |
|  | high school | 2.4562 | 88 | .8614 | .742 |

## Exercises-Chapter 5

5.1 The two-tailed correlations follow. Using a one-tailed versus a two-tailed test did not matter in this case because all of the correlations are statistically significant at the $\mathrm{p}<.01$ level. This would make a difference if correlation were marginally significant. For example, if a $p$ value is .10 as a two-tailed test, it would be non-significant. The same correlation would be significant as a one-tailed test.

Correlations

|  |  | ADD score in elementary school | IQ score | Grade point average in 9th grade | grade in ninth grade English |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ADD score in elementary school | Pearson Correlation | 1.000 | -. $632^{* *}$ | -.615** | -.478* |
|  | Sig. (2-tailed) |  | . 000 | . 000 | . 000 |
|  | N | 88 | 88 | 88 | 88 |
| IQ score | Pearson Correlation | -.632** | 1.000 | .497** | .370* |
|  | Sig. (2-tailed) | . 000 |  | . 000 | . 000 |
|  | N | 88 | 88 | 88 | 88 |
| Grade point average in 9th grade | Pearson Correlation | -.615** | .497** | 1.000 | .839** |
|  | Sig. (2-tailed) | . 000 | . 000 | . | . 000 |
|  | N | 88 | 88 | 88 | 88 |
| grade in ninth grade English | Pearson Correlation | -.478** | .370** | .839** | 1.000 |
|  | Sig. (2-tailed) | . 000 | . 000 | . 000 |  |
|  | N | 88 | 88 | 88 | 88 |

${ }^{* *}$. Correlation is significant at the 0.01 level ( 2 -tailed).
5.2 The output follow. All of the correlations are quite different between the two groups accept the correlation between GPA and grade in $9^{\text {th }}$ grade English, which correlate positively in both groups.

## dropped out of high school = did not drop out

| Correlations ${ }^{\text {a }}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ADD score in elementary school | IQ score | Grade point average in 9th grade | grade in ninth grade English |
| ADD score in elementary school | Pearson Correlation <br> Sig. (2-tailed) <br> N | $\begin{array}{r} 1.000 \\ 78 \end{array}$ | $\begin{gathered} \hline-.614^{\star *} \\ .000 \\ 78 \end{gathered}$ | $\begin{gathered} \hline-625^{* *} \\ .000 \\ 78 \end{gathered}$ | $-.493^{*}$ .000 78 |
| IQ score | Pearson Correlation Sig. (2-tailed) <br> N | $\begin{gathered} \hline-.614^{* \star} \\ .000 \\ 78 \end{gathered}$ | $\begin{array}{r} 1.000 \\ 78 \end{array}$ | $\begin{array}{r} .491^{* *} \\ .000 \\ 78 \end{array}$ | $\begin{array}{r} .365^{*} \\ .001 \\ 78 \end{array}$ |
| Grade point average in 9th grade | Pearson Correlation Sig. (2-tailed) N | $\begin{gathered} -.625^{\star \star} \\ .000 \\ 78 \end{gathered}$ | $\begin{gathered} .491^{* *} \\ .000 \\ 78 \end{gathered}$ | $\begin{array}{r} 1.000 \\ . \\ 78 \end{array}$ | $\begin{array}{r} .836^{*} \\ .000 \\ 78 \end{array}$ |
| grade in ninth grade English | Pearson Correlation <br> Sig. (2-tailed) <br> N | $\begin{gathered} \hline-.493^{\star \star} \\ .000 \\ 78 \\ \hline \end{gathered}$ | $\begin{array}{r} \hline .365^{* *} \\ .001 \\ 78 \\ \hline \end{array}$ | $\begin{gathered} \hline .836^{\star \star} \\ .000 \\ 78 \end{gathered}$ | 1.000 . 78 |

${ }^{* *}$. Correlation is significant at the 0.01 level (2-tailed).
a. dropped out of high school = did not drop out

## dropped out of high school = dropped out of high school

| Correlations ${ }^{\text {a }}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ADD score in elementary school | IQ score | Grade point average in 9th grade | grade in ninth grade English |
| ADD score in elementary school | Pearson Correlation <br> Sig. (2-tailed) <br> N | $\begin{array}{r} 1.000 \\ \text {. } \\ 10 \end{array}$ | $\begin{array}{r} \hline . .137 \\ .706 \\ 10 \end{array}$ | $\begin{array}{r} \hline-.216 \\ .548 \\ 10 \end{array}$ | $\begin{array}{r} .036 \\ .921 \\ 10 \end{array}$ |
| IQ score | Pearson Correlation Sig. (2-tailed) N | $\begin{array}{r} \hline . .137 \\ .706 \\ 10 \end{array}$ | 1.000 . 10 | $\begin{array}{r} \hline .020 \\ .955 \\ 10 \end{array}$ | $\begin{array}{r} \hline . .156 \\ .667 \\ 10 \end{array}$ |
| Grade point average in 9th grade | Pearson Correlation Sig. (2-tailed) N | $\begin{array}{r} \hline-.216 \\ .548 \\ 10 \end{array}$ | $\begin{array}{r} .020 \\ .955 \\ 10 \end{array}$ | $\begin{array}{r} 1.000 \\ \text {. } \\ 10 \end{array}$ | $\begin{array}{r} \hline .825^{*} \\ .003 \\ 10 \end{array}$ |
| grade in ninth grade English | Pearson Correlation Sig. (2-tailed) N | $\begin{array}{r} .036 \\ .921 \\ 10 \end{array}$ | $\begin{array}{r} \hline-.156 \\ .667 \\ 10 \end{array}$ | $\begin{array}{r} \hline .825^{* *} \\ .003 \\ 10 \end{array}$ | 1.000 . 10 |

**. Correlation is significant at the 0.01 level (2-tailed).
a. dropped out of high school = dropped out of high school
5.3 A sample scatter plot follows.

5.4 A sample scatterplot follows. It appears that both instructor knowledge and teaching skill are positively correlated with fairness of the exam.


## Exercises-Chapter 6

6.1 The regression output follows.

## Model Summary

| Model | R | R Square | Adjusted <br> R Square | Std. Error of <br> the Estimate |
| :--- | ---: | ---: | ---: | ---: |
| 1 | $.301^{\mathrm{a}}$ | .090 | .072 | .59 |

a. Predictors: (Constant), GRADE

| ANOVA ${ }^{\text {b }}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model |  | Sum of Squares | df | Mean Square | F | Sig. |
| 1 | Regression | 1.669 | 1 | 1.669 | 4.775 | . $034{ }^{\text {a }}$ |
|  | Residual | 16.776 | 48 | . 350 |  |  |
|  | Total | 18.445 | 49 |  |  |  |

a. Predictors: (Constant), GRADE
b. Dependent Variable: OVERALL

## Coefficients ${ }^{\text {a }}$

| Model | Unstandardized Coefficients |  | Standardi zed Coefficien ts | t | Sig. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | B | Std. Error | Beta |  |  |
| 1 (Constant) | 1.718 | . 843 |  | 2.038 | . 047 |
| GRADE | . 526 | . 241 | . 301 | 2.185 | . 034 |

a. Dependent Variable: OVERALL
6.2 A sample of the predicted values and residuals follows. They are the last 2 columns.

|  | overall | teach | exam | knowledg | grade | enroll | predover | resover |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| 1 | 3 | 4 | 4 | 5 | 4 | 21 | 3.56 | -.16 |
| 2 | 3 | 3 | 3 | 4 | 3 | 50 | 3.40 | -.50 |
| 3 | 3 | 2 | 2 | 4 | 3 | 800 | 3.19 | -.59 |
| 4 | 4 | 4 | 4 | 4 | 3 | 221 | 3.45 | .35 |
| 5 | 3 | 3 | 3 | 4 | 3 | 7 | 3.40 | -.40 |
| 6 | 3 | 3 | 4 | 4 | 3 | 108 | 3.40 | -.90 |
| 7 | 4 | 4 | 4 | 5 | 4 | 54 | 3.61 | .29 |
| 8 | 4 | 4 | 4 | 5 | 4 | 99 | 3.82 | .48 |
| 9 | 4 | 4 | 4 | 4 | 3 | 51 | 3.29 | .51 |

6.3 The regression output follows. It is consistent with the output in Table 11.6 of the textbook.

| Model Summary |  |  |  |  |
| :--- | :--- | ---: | ---: | ---: |
| Model R R Square Adjusted <br> R SquareStd. Error of <br> the Estimate |  |  |  |  |
| 1 | $.813^{\mathrm{a}}$ | .661 | .653 | 13.98 |

a. Predictors: (Constant), HEIGHT, SEX
ANOVA $^{\text {b }}$

| Model |  | Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | :--- | :---: | ---: | ---: | ---: | ---: |
| 1 | Regression | 33886.657 | 2 | 16943.328 | 86.678 | $.000^{\text {a }}$ |
|  | Residual | 17397.213 | 89 | 195.474 |  |  |
|  | Total | 51283.870 | 91 |  |  |  |

a. Predictors: (Constant), HEIGHT, SEX
b. Dependent Variable: WEIGHT

| Coefficients ${ }^{\text {a }}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model |  | Unstandardized Coefficients |  | Standardi zed Coefficien ts | t | Sig. |
|  |  | B | Std. Error | Beta |  |  |
| 1 | (Constant) | -88.199 | 43.777 |  | -2.015 | . 047 |
|  | SEX | -14.700 | 4.290 | -. 302 | -3.426 | . 001 |
|  | HEIGHT | 3.691 | . 572 | . 569 | 6.450 | . 000 |

a. Dependent Variable: WEIGHT
6.4 The regression output follows. These results are consistent with those presented in Table 11.7 in the textbook.

Model Summary

| Model | R | R Square | Adjusted <br> R Square | Std. Error of <br> the Estimate |
| :--- | :--- | ---: | ---: | ---: |
| 1 | $.659^{\mathrm{a}}$ | .435 | .411 | 7.66 |

a. Predictors: (Constant), BLAMBEH, DISTRES1, BLAMPER

| ANOVA ${ }^{\text {b }}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model |  | Sum of Squares | df | Mean Square | F | $\frac{\text { Sig. }}{.000^{\mathrm{a}}}$ |
| 1 | Regression | 3161.406 | 3 | $\begin{array}{r} 1053.802 \\ 58.680 \end{array}$ | 17.959 |  |
|  | Residual | 4107.581 | 70 |  |  |  |
|  | Total | 7268.986 | 73 |  |  |  |

a. Predictors: (Constant), BLAMBEH, DISTRES1, BLAMPER
b. Dependent Variable: DISTRES2

| Coefficients ${ }^{\text {a }}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model |  | Unstandardized Coefficients |  | Standardi zed Coefficien ts | t | Sig. |
|  |  | B | Std. Error | Beta |  |  |
| 1 | (Constant) | 14.052 | 5.782 |  | 2.430 | . 018 |
|  | DISTRES1 | . 640 | . 103 | . 564 | 6.184 | . 000 |
|  | BLAMPER | 2.451 | 1.048 | . 247 | 2.338 | . 022 |
|  | BLAMBEH | . 272 | . 990 | . 029 | . 275 | . 784 |

a. Dependent Variable: DISTRES2

## Exercises-Chapter 7

7.1 The output from a single sample t-test follow. They suggest that students who did not read the passage got more answers correct than you would expect by chance, consistent with the conclusion drawn in the textbook.

One-Sample Statistics

|  | N | Mean | Std. Deviation | Std. Error <br> Mean |
| :--- | ---: | ---: | ---: | ---: |
| score in no <br> passage group | 28 | 46.57 | 6.83 | 1.29 |

One-Sample Test

|  | Test Value $=20$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | t | df | Sig. (2-tailed) | Mean Difference | 95\% Confidence Interval of the Difference |  |
|  |  |  |  |  | Lower | Upper |
| score in no passage group | 20.591 | 27 | . 000 | 26.57 | 23.92 | 29.22 |

7.2 The output follows. They are consistent with the results in the textbook.

## Paired Samples Statistics

|  |  | Mean | N | Std. Deviation | Std. Error <br> Mean |
| :--- | :--- | :---: | ---: | ---: | :---: |
| Pair | ELEVATE | 1.4820 | 10 | .3742 | .1183 |
| 1 | LEVEL | 1.4630 | 10 | .3407 | .1077 |

Paired Samples Correlations

|  | N | Correlation | Sig. |  |
| :---: | ---: | ---: | ---: | ---: |
| Pair 1 | ELEVATE \& LEVEL | 10 | .931 | .000 |


| Paired Samples Test |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Paired Differences |  |  |  |  | t | df | $\begin{aligned} & \text { Sig. } \\ & \text { (2-tail } \\ & \text { ed) } \\ & \hline \end{aligned}$ |
|  |  | Mean | Std. Deviati on | Std. Error Mean | 95\% Confidence Interval of the Difference |  |  |  |  |
|  |  | Lower |  |  | Upper |  |  |  |
| $\begin{aligned} & \hline \text { Pair } \\ & 1 \end{aligned}$ | ELEVATE <br> - LEVEL |  | 1.9E-02 | . 1371 | 4.337E-02 | -7.91E-02 | . 1171 | . 438 | 9 | . 672 |

7.3 A sample bar graph follows.

7.4 A boxplot follows. It is similar to the one in the textbook in Figure 14.3.

7.5 The output follows. The results are consistent with the textbook except that our $t$ is positive. Either way, the difference between the 2 groups is statistically significant.

Group Statistics

|  |  |  |  |  | Std. Error |
| :--- | :--- | ---: | ---: | ---: | ---: |
|  | GROUP | N | Mean | Std. Deviation | Mean |
| weight gain | family therapy | 17 | 7.26 | 7.16 | 1.74 |
|  | control group | 26 | -.45 | 7.99 | 1.57 |

Independent Samples Test

|  | Levene's <br> Test for | t -test for Equality of Means |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

7.6 The t-tests follow. After making all 3 possible comparisons, it seems that the family therapy group is the one that is most effective because it is the only one for which weight gain was significantly higher than the control group.

## T-Test

Group Statistics

|  |  |  |  |  | Std. Error <br>  <br> GROUP |
| :--- | :--- | ---: | ---: | ---: | ---: |
| N | Mean | Std. Deviation | Mean |  |  |
| weight gain | cognitive therapy | 29 | 3.01 | 7.31 | 1.36 |
|  | family therapy | 17 | 7.26 | 7.16 | 1.74 |



## T-Test

Group Statistics

|  |  |  |  |  | Std. Error <br> Mean |
| :--- | :--- | ---: | ---: | ---: | ---: |
| weight gain | cognitive therapy | 29 | 3.01 | 7.31 | 1.36 |
|  | control group | 26 | -.45 | 7.99 | 1.57 |

Independent Samples Test

|  |  | Levene's Test for Equality of Variances |  | t-test for Equality of Means |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | F | Sig. | t | df | $\begin{gathered} \text { Sig. } \\ \text { (2-tailed) } \\ \hline \end{gathered}$ | Mean Differ ence | Std. Error Difference |
| weight gain | Equal variances assumed <br> Equal variances not assumed | .557 | . 459 | $\begin{aligned} & 1.676 \\ & 1.668 \end{aligned}$ | $\begin{array}{r} 53 \\ 50.971 \end{array}$ | .100 .101 | 3.46 3.46 | 2.06 2.07 |

7.7 A sample bar graph follows.


## Exercises-Chapter 8

8.1 The results follow. They indicate that there is a significant difference in recall based on condition. Specifically, people in the counting and rhyming conditions had significantly lower recall than all other groups.

ANOVA
RECALL

|  | Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | :---: | ---: | ---: | ---: | ---: |
| Between Groups | 351.520 | 4 | 87.880 | 9.085 | .000 |
| Within Groups | 435.300 | 45 | 9.673 |  |  |
| Total | 786.820 | 49 |  |  |  |

## Post Hoc Tests

## Multiple Comparisons

Dependent Variable: RECALL

| (I) GROUP | (J) GROUP | Mean Difference (I-J) | Std. Error | Sig. | 95\% Confidence Interval |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Lower Bound | Upper Bound |
| Counting | Rhyming | 1.00E-01 | 1.39 | . 943 | -2.70 | 2.90 |
|  | Adjective | -4.00* | 1.39 | . 006 | -6.80 | -1.20 |
|  | Imagery | -6.40* | 1.39 | . 000 | -9.20 | -3.60 |
|  | Intentional | -5.00* | 1.39 | . 001 | -7.80 | -2.20 |
| Rhyming | Counting | -1.00E-01 | 1.39 | . 943 | -2.90 | 2.70 |
|  | Adjective | -4.10* | 1.39 | . 005 | -6.90 | -1.30 |
|  | Imagery | -6.50* | 1.39 | . 000 | -9.30 | -3.70 |
|  | Intentional | -5.10* | 1.39 | . 001 | -7.90 | -2.30 |
| Adjective | Counting | 4.00* | 1.39 | . 006 | 1.20 | 6.80 |
|  | Rhyming | 4.10 * | 1.39 | . 005 | 1.30 | 6.90 |
|  | Imagery | -2.40 | 1.39 | . 091 | -5.20 | . 40 |
|  | Intentional | -1.00 | 1.39 | . 476 | -3.80 | 1.80 |
| Imagery | Counting | 6.40 * | 1.39 | . 000 | 3.60 | 9.20 |
|  | Rhyming | 6.50 * | 1.39 | . 000 | 3.70 | 9.30 |
|  | Adjective | 2.40 | 1.39 | . 091 | -. 40 | 5.20 |
|  | Intentional | 1.40 | 1.39 | . 320 | -1.40 | 4.20 |
| Intentional | Counting | 5.00* | 1.39 | . 001 | 2.20 | 7.80 |
|  | Rhyming | 5.10 * | 1.39 | . 001 | 2.30 | 7.90 |
|  | Adjective | 1.00 | 1.39 | . 476 | -1.80 | 3.80 |
|  | Imagery | -1.40 | 1.39 | . 320 | -4.20 | 1.40 |

*. The mean difference is significant at the .05 level.

### 8.2 An edited ANOVA summary table follows.

## ANOVA

RECALL

|  | Sum of Squares | df |  | Mean Square | F |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Between Groups | 351.520 | 4 | 87.880 | 9.085 | Sig. |
| Within Groups | 435.300 | 45 | 9.673 |  |  |
| Total | 786.820 | 49 |  |  |  |

8.3 I calculated eta squared through Analyze/Compare Means/Means. I could have calculated it also through General Linear Model/Univariate.

Measures of Association

|  | Eta | Eta Squared |
| :--- | ---: | ---: |
| RECALL * GROUP | .668 | .447 |

8.4 A sample bar chart follows.


## Exercises-Chapter 9

9.1 The output follows. You need to calculate your own F values by dividing the mean square for groups by the mean square error from the original analysis (8.026). When you do so, the F values are: .16, .31, 9.00, 10.99, and 33.20, for counting, rhyming, adjective, imagery and intentions respectively consistent with the values reported in the textbook.

## CONDITIO = Counting


#### Abstract

ANOVA ${ }^{a}$ RECALL |  | Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Between Groups | 1.250 | 1 | 1.250 | .464 | .504 |
| Within Groups | 48.500 | 18 | 2.694 |  |  |
| Total | 49.750 | 19 |  |  |  |


a. CONDITIO = Counting

## CONDITIO = Rhyming

| ANOVA ${ }^{\text {a }}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RECALL |  |  |  |  |  |
|  | Sum of Squares | df | Mean Square | F | Sig. |
| Between Groups | 2.450 | 1 | 2.450 | . 586 | . 454 |
| Within Groups | 75.300 | 18 | 4.183 |  |  |
| Total | 77.750 | 19 |  |  |  |

a. CONDITIO $=$ Rhyming

## CONDITIO = Adjective

ANOVA $^{\mathbf{a}}$
RECALL

|  | Sum of |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Squares | df | Mean Square | F | Sig. |  |
| Between Groups | 72.200 | 1 | 72.200 | 7.848 | .012 |
| Within Groups | 165.600 | 18 | 9.200 |  |  |
| Total | 237.800 | 19 |  |  |  |

a. CONDITIO = Adjective

CONDITIO = Imagery

ANOVA ${ }^{a}$
RECALL

|  | Sum of <br> Squares | df | Mean Square | F | Sig. |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Between Groups | 88.200 | 1 | 88.200 | 6.539 | .020 |
| Within Groups | 242.800 | 18 | 13.489 |  |  |
| Total | 331.000 | 19 |  |  |  |

a. CONDITIO = Imagery

## CONDITIO = Intentional

ANOVA $^{\text {a }}$
RECALL

|  | Sum of |  |  |  |  |
| :--- | :---: | ---: | ---: | ---: | ---: |
|  | Squares | df | Mean Square | F | Sig. |
| Between Groups | 266.450 | 1 | 266.450 | 25.229 | .000 |
| Within Groups | 190.100 | 18 | 10.561 |  |  |
| Total | 456.550 | 19 |  |  |  |

a. CONDITIO = Intentional
9.2 The output follows. These results are consistent with those in the textbook.

Tests of Between-Subjects Effects
Dependent Variable: maternal role adaptation

| Source | Type III Sum <br> of Squares | df | Mean Square | F | Sig. |
| :--- | :---: | ---: | ---: | ---: | ---: |
| Corrected Model | $210.854^{\mathrm{a}}$ | 5 | 42.171 | 3.984 | .005 |
| Intercept | 12707.521 | 1 | 12707.521 | 1200.373 | .000 |
| GROUP | 122.792 | 2 | 61.396 | 5.800 | .006 |
| EDUCATIO | 67.688 | 1 | 67.688 | 6.394 | .015 |
| GROUP * EDUCATIO | 20.375 | 2 | 10.188 | .962 | .390 |
| Error | 444.625 | 42 | 10.586 |  |  |
| Total | 13363.000 | 48 |  |  |  |
| Corrected Total | 655.479 | 47 |  |  |  |

a. R Squared $=.322$ (Adjusted R Squared $=.241$ )
9.3 A sample graph follows.


## Exercises-Chapter 10

10.1 The within subjects output follows. The results are consistent with the textbook

| Tests of Within-Subjects Effects |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Measure: MEASURE_1 |  |  |  |  |  |  |  |
| Source |  | Type III Sum of Squares | df | Mean Square | F | Sig. | Eta Squa red |
| FACTOR1 | Sphericity Assumed | 351.520 | 4 | 87.880 | 20.218 | . 000 | . 692 |
|  | GreenhouseGeisser | 351.520 | 2.051 | 171.394 | 20.218 | . 000 | . 692 |
|  | Huynh-Feldt | 351.520 | 2.664 | 131.972 | 20.218 | . 000 | . 692 |
|  | Lower-bound | 351.520 | 1.000 | 351.520 | 20.218 | . 001 | . 692 |
| $\begin{aligned} & \text { Error(FAC } \\ & \text { TOR1) } \end{aligned}$ | Sphericity Assumed | 156.480 | 36 | 4.347 |  |  |  |
|  | Greenhouse- <br> Geisser | 156.480 | 18.459 | 8.477 |  |  |  |
|  | Huynh-Feldt | 156.480 | 23.972 | 6.528 |  |  |  |
|  | Lower-bound | 156.480 | 9.000 | 17.387 |  |  |  |

10.2 Eta squared is included in the previous output.
10.3 A sample graph follows.

10.4 I calculated the new variable, lowproc. Then, I used a paired t-test to compare recall in the imagery and lowproc conditions. I did this because I knew it would calculate the mean difference for me. Then, I used the protected t-test explained in the text using the $\mathrm{MS}_{\text {error }}$ from the original analysis (see answer to exercise 1). The resulting t-value is 3.82 , which is statistically significant with 9 df . Thus, recall was better in the imagery group than in the lower processing conditions.

Paired Samples Statistics

|  |  | Mean | N | Std. Deviation | Std. Error Mean |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Pair } \\ & 1 \end{aligned}$ | IMAGERY | 13.40 | 10 | 4.50 | 1.42 |
|  | LOWPROC | 9.2250 | 10 | 2.1745 | . 6876 |

Paired Samples Test


## Exercises-Chapter 11

11.1 The output follow. They are consistent with the data in the text.

ALLEY

|  | Observed N | Expected N | Residual |
| :--- | ---: | ---: | ---: |
| A | 4 | 8.0 | -4.0 |
| B | 5 | 8.0 | -3.0 |
| C | 8 | 8.0 | .0 |
| D | 15 | 8.0 | 7.0 |
| Total | 32 |  |  |

Test Statistics

|  | ALLEY |
| :--- | ---: |
| Chi-Square $^{\text {a }}$ | 9.250 |
| df | 3 |
| Asymp. Sig. | .026 |

a. 0 cells (. $0 \%$ ) have expected frequencies less than

5 . The minimum expected cell frequency is 8.0 .
11.2 The output follows. The results support the hypothesis.

RATING

|  | Observed N | Expected N | Residual |
| :--- | ---: | ---: | ---: |
| not at all like me | 8 | 5.0 | 3.0 |
| somewhat unlike me | 10 | 10.0 | .0 |
| neither like me or | 20 | 20.0 | .0 |
| unlike me | 8 | 10.0 | -2.0 |
| somewhat like me | 4 | 5.0 | -1.0 |
| very much like me | 50 |  |  |
| Total |  |  |  |

## Test Statistics

|  | RATING |
| :--- | ---: |
| Chi-Square $^{\mathrm{a}}$ | 2.400 |
| df | 4 |
| Asymp. Sig. | .663 |

a. 0 cells (. $0 \%$ ) have expected frequencies less than 5. The minimum expected cell frequency is 5.0.
11.3 A sample data file follows.

|  | bystande | assist | counts |
| ---: | ---: | ---: | ---: |
| 1 | .00 | yes | 11.00 |
| 2 | 1.00 | yes | 16.00 |
| 3 | 4.00 | yes | 4.00 |
| 4 | .00 | no | 2.00 |
| 5 | 1.00 | no | 10.00 |
| 6 | 4.00 | no | 9.00 |

11.4 The results follow. They are consistent with the textbook.

BYSTANDE * ASSIST Crosstabulation

|  |  |  | ASSIST |  | Total |
| :--- | :--- | :--- | ---: | ---: | ---: |
|  |  | yes |  | no |  |
| BYSTANDE | .00 | Count | 11 | 2 | 13.0 |
|  |  | Expected Count | 7.8 | 5.3 | 26 |
|  | 1.00 | Count | 16 | 10 | 26.0 |
|  |  | Expected Count | 15.5 | 10.5 | 13 |
|  | 4.00 | Count | 4 | 9 | 13.0 |
|  | Expected Count | 7.8 | 5.3 | 52 |  |
|  |  | Count | 31 | 21 | 52.0 |

Chi-Square Tests

|  | Value | df | Asymp. Sig. <br> (2-sided) |
| :--- | :---: | ---: | ---: |
| Pearson Chi-Square | $7.908^{\mathrm{a}}$ | 2 | .019 |
| Likelihood Ratio | 8.295 | 2 | .016 |
| Linear-by-Linear | 7.321 |  | 1 |

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 5.25 .

## Exercises-Chapter 12

12.1 The output follows. The z score is the same as the text, but the Ws are different. In both cases, the results suggest that there is a significant difference between groups. (Note: SPSS chooses to work with the sum of the scores in the larger group (71), and thus $\mathrm{n}_{1}$ and $\mathrm{n}_{2}$ are reversed. This will give you the same z score, with the sign reversed. Notice that $z$ in the output agrees with $z$ in the text.)

## Ranks

|  | GROUP | N | Mean Rank | Sum of Ranks |
| :--- | :--- | ---: | ---: | ---: |
| BIRTHWEI | 1 | 10 | 7.10 | 71.00 |
|  | 2 | 8 | 12.50 | 100.00 |
|  | Total | 18 |  |  |

Test Statistics ${ }^{\text {b }}$

|  | BIRTHWEI |
| :--- | ---: |
| Mann-Whitney U | 16.000 |
| Wilcoxon W | 71.000 |
| Z | -2.132 |
| Asymp. Sig. (2-tailed) | .033 |
| Exact Sig. [2*(1-tailed | $.034{ }^{\mathrm{a}}$ |
| Sig.)] |  |

a. Not corrected for ties.
b. Grouping Variable: GROUP
12.2 The output follows. There appears to be a significant increase in weight over the course of family therapy.

## Wilcoxon Signed Ranks Test

## Kruskal-Wallis Test

|  |  |
| :--- | :--- |
| weight after family <br> therapy - weight <br> before family therapy | Negative Ranks |
|  | Ties |
|  | Total |

a. weight after family therapy < weight
b. weight after family therapy > weight
c. weight before family therapy $=$ weigh

Test Statistics ${ }^{\text {b }}$

|  | weight after <br> family therapy <br> - weight <br> before family <br> therapy |
| :--- | ---: |
| Z <br> Asymp. Sig. (2-tailed) | $-3.101^{\mathrm{a}}$ |

a. Based on negative ranks.
b. Wilcoxon Signed Ranks Test
12.3 The output follows. There is a significant difference in adaptation based on group.

| Ranks |
| :--- | :--- | ---: | ---: |
|  GROUP N Mean Rank <br> maternal role adaptation LBW Experimental 29 40.17 <br> (low sores better) LBW Control 27 60.83 <br>  Full-term 37 42.26 <br>  Total 93  |

## Friedman Test

Test Statistics ${ }^{\text {a,b }}$

|  | maternal role <br> adaptation <br> (low sores <br> better) |
| :--- | ---: |
| Chi-Square | 10.189 |
| df | 2 |
| Asymp. Sig. | .006 |

a. Kruskal Wallis Test
b. Grouping Variable: GROUP

### 12.4 The output

 follows. There is a significant difference in recall based on condition.
## Ranks

|  | Mean Rank |
| :--- | ---: |
| COUNT | 1.55 |
| RHYMING | 1.50 |
| ADJECTIV | 3.70 |
| IMAGERY | 4.35 |
| INTENT | 3.90 |


| Test Statistics $^{\mathbf{a}}$ |  |
| :--- | ---: |
| N | 10 |
| Chi-Square | 31.474 |
| df | 4 |
| Asymp. Sig. | .000 |

a. Friedman Test

