4. Descriptive Statistics: Measures of Variability and Central Tendency

Objectives

- ♦ Calculate descriptive for continuous and categorical data
- ♦ Edit output tables

Although measures of central tendency and variability were presented as separate chapters in the *Fundamentals* text, they are presented together here because they are options located in the same command windows in SPSS. Descriptive statistics are calculated using the **Analyze** menu. Most are calculated using either the **Descriptives** or **Frequencies** command under **Descriptive Statistics**. When calculating descriptives for more complex designs including more than one independent variable, you can also use the **Means/ Compare Means** or the **Descriptive Statistics/ Crosstabs** command which allow you to calculate descriptive statistics of subgroups.

It is always important to take a moment to think about the type of data you are using and what descriptive statistics will be most useful given the type. For continuous or measurement data, you typically report measures of central tendency and measures of variability. For categorical data (i.e., nominal data) you typically report the frequency of each value. Though you don't typically report the frequencies for continuous data, it is often useful to observe the frequency distributions or histograms of continuous distributions to note if they are normal or skewed.

Descriptive Statistics

Let's begin by calculating descriptive statistics for the data in Appendix D which can be found on the web as appendix.dav. (In some editions of these books the file is referred to as "Appendix Data Set" or as Add.dat or as ADD.dat.) In this data set, I think of ADD symptoms, IQ score, English grade, and GPA as continuous variables. We'll calculate measures of central tendency and variability for each of these.

- ✓ **Open** *appendixd.sav*.
- ✓ In the Analyze menu, select Descriptive Statistics and then Descriptives.

Descriptives		×
id gender [sex] gender [sex] repeated grade [repeat] level of English in 9th gr social problems in 9th gr dropped out of high sct	Variable(s): ADD score in elementa IQ score [iq] grade in ninth grade En Grade point average in	OK Paste Reset Cancel Help
Save standardized values as vari	ables	Options

- ✓ Select each of the continuous variables by either double clicking them, which automatically puts them in the Variable list, highlight them one at a time by single clicking them and then clicking the arrow to shift them into the variable list, or by holding the control key down while highlighting all of the variables of interest and then shifting them into the variable list all at once by clicking the arrow. Then click **Options**.
- Select each of the measures you've been learning about (Mean, Std. deviation, Variance, Range, Minimum and Maximum). Then, select the Display Order you would prefer. This will determine the order they appear in for the resulting table. I like them in the order I indicated in the Variable list. Then click Continue.

Home	E Sum	Cantinua
, ■ Mean	Jouin	Continue
Std. deviation	Minimum	Cancel
I♥ Std. deviation		Help
I∕ Variance	Maximum	
🔽 Range	🔲 S.E. mean	
Distribution		
🔲 Kurtosis	Skewness	
Display Order		
 Variable list 		
C Alphabetic		
C. Ascending mea	ins	

✓ In the main descriptives dialog box, check the box that says Save standardized values as variables. SPSS will calculate z scores for each of the variables using the formula you learned about and append them to the end of your data file. Click Ok. The resulting output will look like this. Note that the variable labels are used rather than the variable names. Remember, we specified this as the default in Edit/Options/Output Labels.

	N	Range	Minimum	Maximum	Mean	Std. Deviation	Variance						
ADD score	88	59.0	26.0	85.0	52.602	12.4222	154.311						
English Grade	88	4	0	4	2.66	.945	.894						
GPA	88	3.33	.67	4.00	2.4562	.86143	.742						
IQ	88	62.00	75.00	137.00	100.2614	12.98496	168.609						
Valid N (listwise)	88												

Deservition Cardination

✓ Double click the table so you can edit it. As was the case with graphs, SPSS has many options to edit statistics in tables as well. Let's try some of them.

- ✓ Under Pivot, select Transpose Rows and Columns. Which orientation do you prefer? I like the first since it's more conventional, so I will Transpose the Rows and Columns again to return to the original orientation.
- ✓ Now, click on Format/Table properties. Take a moment to view all of the options in this dialog box. "General" allows you to specify the width of row and column labels. "Footnotes" allows you to chose numeric or alphabetic labels and subscript or superscript as the position for those labels. "Cell formats" allows you to change the font style and size, color, and the alignment. "Borders" allows you to select options such as rescaling tables to fit on paper. After you've viewed the options, hit Cancel.

eneral Footnotes Cell Format	s Borders	Pri	nting						
General		ר ר	Sample-						
✓ Hide empty rows and columns			Laver:Tay	rer1		Table Title	2		
Daw Dimension Labels							bb	bb	
Row Dimension Labers						bbb	ob1	bbt	ob2
 In Corner 						аа	аа	аа	аа
			dddd		0000	aaaa1	aaaa2	aaaa1	aaaa2
○ <u>N</u> ested			dddd1		cccc1	0	abod	212.4	abod
					cccc2	88.6	abod	83.65	abod
Column Widths		- 1	group	dddd2	00001	105	abod	58.53	abod
					cccc2	11.42	abod	205	abod
Minimum width for column labels:	50 📮			dddd3	cccc1	89.45	abod	30.0	abod
Maximum width for column labels:	72		Table Ca a. Tex	aption ct for footn	ote a.				
Minimum width fo <u>r</u> row labels:	36		b. Te	d for footn	ote b.				
Maximum width for row labels:	120								
	ок	Са	incel	<u>A</u> pply	ŀ	lelp			

 Now, select Format/Table Looks. Scroll through the TableLook Files and look at the samples. Select one you like and click Ok. I chose Academic.

		Sample						
As Displayed>	-				Table 1	litle		
⊗ystem Default>		Layer:lay	/er'					
cademic						bt	bb	
vantGarde					bb	bb1	bb	bb2
lueYellowContrast					aa	333	aa	аа
loxed		dddd		cccc	aaaa1	aaaa2	aaaa1	aaaa2
ompact		dddd1		cccc1	٥	abod	212.4	abod
ompactAcademic				cccc2	88.6	abod	83.65	abod
ompactAcademicTimesRoman		group	dddd2	cccc1	105	abod	58.53	abod
ompactBoxed				cccc2	11.42	abod	205	abod
ontrast			dddd3	cccc1	89.45	abed	30.0	abed
lorizontal		Table Ca	ption			1		
cicle	-							
		a. Tex	t for footi	iote a.				
Browse		h Tex	t for foot	note h				
<u>R</u> eset all cell formats to the TableLo	ok		Save L	ook	S <u>a</u> ve A	4s	<u>E</u> dit Loo	k

✓ The resulting table is below. I could edit each individual cell by double clicking on it and then edit the text. For example, I could alter each statistic to include 2 decimal places if I wanted. You try it.

	Descriptive Statistics										
	N	Range	Minimum	Maximum	Mean	Std. Deviation	Variance				
ADD score	88	59.0	26.0	85.0	52.602	12.4222	154.311				
English Grade	88	4	0	4	2.66	.945	.894				
GPA	88	3.33	.67	4.00	2.4562	.86143	.742				
IQ	88	62.00	75.00	137.00	100.2614	12.98496	168.609				
Valid N (listwise)	88										

Now, click on Window/SPSS Statistics Data Editor and look at the standardized values (z scores) SPSS added to your file. A brief portion of the Data Editor appears below. You can see that SPSS named each variable with a z. SPSS also labeled the new variables. Check this out in Variable View.

🛃 *ар	opendi	xd. sav	[DataSe	t1] - SPS	S Statistics D	ata Editor				
Eile	<u>E</u> dit	⊻iew	<u>D</u> ata]	[ransform	<u>A</u> nalyze <u>G</u>	raphs <u>U</u> tilit	ies Add- <u>o</u> n:	s <u>W</u> indow	<u>H</u> elp	
🕞 🗖	🔒		+	1	P 👫 🔸		d 📰 👒	G 🕒 🤹	7	
1 : id			27	.0						
			dropout		Zaddsc		Ziq	Zen	gg	Zgpa
	1		()	-2.14151		2.82932		0.36057	0.63122
	2		(0	-1.90001		2.05920		1.41823	1.50186
	3		()	-1.81951		0.67298		1.41823	1.21165
	4		()	-1.57800)	0.44195		1.41823	1.50186
	5		()	-1.49750)	2.36725		1.41823	1.50186

Frequencies

Now, we'll use the frequencies command to help us examine the distributions of the same continuous variables.

✓ Select Analyze/Descriptive Statistics/Frequency.

🖶 Frequencies		×
Gender [sex] Repeat Grade [repeat] English Level [engl] Social Problems [soc Dropout [dropout] Zscore(addsc) [Zad Zscore(ing) [Zin] Zscore(apa) [Zgpa]	Variable(s):	Statistics Charts Eormat
Display frequency tables	Reset Cancel I	Help

- Put the variables of interest in the Variable list box. Unselect
 Display frequency tables, because this will be a list of the frequency of every value. (Ignore what looks like an error message.) Click on Charts, select
 Histogram with normal curve
- Click on Statistics. This dialog box has all of the same options we selected under Descriptives earlier. However, the Descriptives dialog box did not include the median and mode. Select all of the statistics of interest and click Continue. Then, click Ok. A sample of the output follows.

Frequencies: Statistics	×
Percentile Values	Central Tendency
Quartiles	✓ Mean
Cut points for: 10 equal groups	🗹 Me <u>d</u> ian
Percentile(s):	✓ Mode
Add	✓ Sum
Change	
Remove	
	🗌 Values are group midpoints
Dispersion	Distribution
Std. deviation 🗹 Minimum	Ske <u>w</u> ness
✓ <u>V</u> ariance ✓ Ma <u>x</u> imum	<u>K</u> urtosis
Range S.E. mean	
Continue Cancel	Help

Frequencies

	Statistics									
		ADD score	IQ	English Grade	GPA					
N Va	alid	88	88	88	88					
Mi	issing	0	0	0	0					
Mean		52.602	100.2614	2.66	2.4563					
Median	Median		100.0000	3.00	2.6350					
Mode		50.0	95.00	3	3.00					
Std. Deviat	ion	12.4222	12.98496	.945	.86143					
Variance		154.311	168.609	.894	.742					
Range		59.0	62.00	4	3.33					
Minimum		26.0	75.00	0	.67					
Maximum		85.0	137.00	4	4.00					
Sum		4629.0	8823.00	234	216.15					

Histogram

Take a moment to review the output. It looks like ADD is somewhat normally distributed, though a bit negatively skewed. Looking at your own output, are the other variables normally distributed? I also remember now that English grade is nominal too. Variables were scored as A, B, C, D, and F, though coded as 1 - 4. As noted in the text,

we could analyze this as continuous data, but it seems that reporting the frequencies rather than measures of central tendency and dispersion may be more appropriate for this variable.

As before, you can edit the tables or the graphs by double clicking on them. One difference we have seen between the **Descriptives** and **Frequencies** options is that **descriptives** only include mean for measures of central tendency whereas **Frequencies** include the mean, median, and mode. Further, **Descriptives** does not have any built in graphing options, but **Frequencies** does.

Now let's use Frequencies to describe categorical data.

✓ Select Analyze/Descriptive Statistics/Frequencies.

✓ This time, put gender, level of English class, English grade, repeated a grade, social problems, and drop out status in the variable list. Select **Display frequency table**. Since there is a finite number of values, we want to know how many people fit in every category. Click on **Statistics** and unselect all of the options because we decided that measures of central tendency and variability are not useful for these data. Then click **Continue**. Next, click on **Charts**. Click on **Bar chart** and select **Percentages** as the Chart Values. Click **Continue** and then **Ok**. A sample of the resulting output is below. Take a moment to review it.

	rehegi										
		Frequency	Percent	Valid Percent	Cumulative Percent						
Valid	0 Did not repeat	76	86.4	86.4	86.4						
	1 Did repeat	12	13.6	13.6	100.0						
	Total	88	100.0	100.0							

		0			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	College Prep	14	15.9	15.9	15.9
	Geneeral	64	72.7	72.7	88.6
	Remedial	10	11.4	11.4	100.0
	Total	88	100.0	100.0	

Fnalis	hlevel

English Grade

Notice that the frequency tables include a column labeled **Percent** and another labeled **Valid percent**. This is an important distinction when you have missing cases. The percent column indicates the percent of cases in each category out of those cases for which there is complete data on the variable. Valid percent indicates the percent of cases in each category out of the total number of cases, even if some data are missing. For example, imagine a sample of 100 students. Fifty cases are women, 40 are men, and 10 are missing the data. The percent of men would be 44.4%, but the valid percent of men would be 40%. Which do you believe is the more accurate way to describe the sample? I'd argue the valid percent. Now let's move on to a more complicated type of frequency table.

Crosstabs

Sometimes we need to know the number and percent of cases that fall in multiple categories. This is useful when we have multiple categorical variables in a data set. For example, in the data set we have been using, I'd like to know what percent of dropout and nondropout students had social problems. We'll use crosstabs to calculate this.

✓ Click Analyze/Descriptive Statistics/Crosstabs.

Crosstabs		×	
 id ADD score in elementa gender (sex) repeated grade (repeat IQ score [iq] level of English in 9th g grade in ninth grade Er Grade point average in 	Row(s): social problems in 9th ; Column(s): Column(s):	OK Paste Reset Cancel Help	
Display clustered bar charts Suppress tables			
	Statistics Cells Format		

 ✓ Select social problems for Rows and dropped out for Columns. Click on Cells and select Observed for Counts, and select Row, Column, and Total under Percentages. The click Continue. Let's select Display clustered bar charts to see if we find this option useful. Then, click Ok. The output follows. You can edit both the table and the chart as you have learned.

			Dropout		
			0	1	Total
Social Problems	0	Count	73	5	78
		% within Social Problems	93.6%	6.4%	100.0%
		% within Dropout	93.6%	50.0%	88.6%
		% of Total	83.0%	5.7%	88.6%
	1	Count	5	5	10
		% within Social Problems	50.0%	50.0%	100.0%
		% within Dropout	6.4%	50.0%	11.4%
		% of Total	5.7%	5.7%	11.4%
Total		Count	78	10	88
		% within Social Problems	88.6%	11.4%	100.0%
		% within Dropout	100.0%	100.0%	100.0%
		% of Total	88.6%	11.4%	100.0%

Social Problems * Dropout Crosstabulation

Both the table and the graph show that of those youth with social problems, an equal number did and did not ultimately drop out. This suggests that social problems in ninth grade and drop out status are independent, something we can test later using chi square.

Compare Means

Now, let's consider a case where we want to describe a continuous variable but at different levels of a categorical variable. This is often necessary when you are comparing group means. For example, we can compare ADD symptoms for males and females. Let's try it together.

 Select Analyze/Compare Means/Means. Notice this is the first time we haven't selected Descriptive Statistics in this chapter.

1	🙀 Means	<u>×</u>
		Dependent List: Options
•	💉 ID number [id]	ADD score [addsc]
!	📲 Repeat Grade [repeat]	
ł	🎺 lQ [iq]	
	📲 English Level (engl) 🛛 🔅	Layer 1 of 1
	English Grade [engg]	
ł	🛷 GPA [gpa]	Pre <u>v</u> ious <u>N</u> ext
	Social Problems [soc	Independent List:
÷	Dropout [dropout]	Gender [sex]
1	🛷 Zscore(addsc) [Zad	
	🔗 Zscore(iq) [Ziq] 📃	
	🗸 Zscore(enga) [Zenga]	
	ОК	Paste Reset Cancel Help

 Select ADD score for the Dependent List and Gender for the Independent List. Click Options. Notice that mean, standard deviation and number of cases are already selected under statistics. Add any other descriptive you are interested in, then click Continue and then Ok. The output follows.

Report

ADD SLUIG	ADD SCORE				
Gender	Mean	N	Std. Deviation		
Male	54.291	55	12.9023		
Female	49.788	33	11.2048		
Total	52.602	88	12.4222		

Do you think males and females differed in their ADD symptoms?

Let's try another more complicated example. This time, let's calculate descriptive statistics for ADD symptoms broken down by gender and whether or not a child had social problems.

✓ Select Analyze/Compare Means/Means.

 Just like before, select ADD score for the Dependent List, and gender for the Layer 1 Independent List. Then click Next. Select social problems as the Layer 2 Independent List. Select whatever statistics you want under Options and then click Continue and Ok. The output is below.

Report

ADD score				
Gender	Social Problems	Mean	N	Std. Deviation
Male	No social problems	52.250	48	11.6135
	Social Problems	68.286	7	13.4129
	Total	54.291	55	12.9023
Female	No social problems	48.900	30	11.1830
	Social Problems	58.667	3	8.0829
	Total	49.788	33	11.2048
Total	No social problems	50.962	78	11.4941
	Social Problems	65.400	10	12.4918
	Total	52.602	88	12.4222

Notice that this table gives you the marginal descriptives (i.e., the descriptive for gender independent of social problems and vice versa) under totals and the cell descriptives (i.e., the descriptives at each level of the variables-e.g., for boys with social problems).

✓ Exit SPSS. There is no need to save the Data File since we haven't changed it. It is up to you to decide whether or not you would like to save the output file for future reference.

We've reviewed a variety of options for calculating descriptive statistics depending on the type of data and the kinds of questions. We've also seen that many of the graphs we reviewed in Chapter 3 are options in the subcommands under Descriptive Statistics. In the following chapters you will discover that descriptive statistics are an option embedded within many other analyses dialog boxes (e.g. t-test, ANOVA, etc). Try the following exercises to be sure you understand all of the various options for calculating descriptives and to help you identify your own preferences.

Exercise

- 1. Using *mergel.sav* calculate the mean, median, mode, range, variance, and standard deviation for the following variables: self-esteem, anxiety, coping, and health. Create a histogram for anxiety. Note how you did each.
- 2. Using the data in *appendixd.sav*, calculate the frequency and percent of females and males who did and did not have social problems.
- 3. Using the data in *appendixd.sav*, calculate the mean, variance, and standard deviation for GPA broken down by social problems and drop out status.