11. Chi Square

Objectives

- ♦ Calculate goodness of fit Chi Square
- ♦ Calculate Chi Square for contingency tables
- ♦ Calculate effect size
- ♦ Save data entry time by weighting cases

A Chi Square is used to analyze categorical data. It compares observed frequencies to expected or predicted frequencies. We will examine simple goodness of fit Chi Squares that involved only one variable and more complicated contingency tables that include 2 or more variables. Each type is programmed through different menu options. Let's start with goodness of fit.

Goodness of Fit Chi Square All Categories Equal

Let's begin by using a new example in Chapter 19 on the frequency with which a school yard player will "throw" Rock, Paper, Scissors. We want to test the null hypothesis that they are thrown equally often.

• **Open** *RPS.sav.* This file contains a string variable (Choice), a numerical variable (NumChoice = 1, 2, 3) numbering the choices, and another numerical variable named Freq, containing the frequency of each choice. We need NumChoice because SPSS does not allow you to specify a string variable as a test variable.

✓ Go to **Data/Weight Cases** and select Freq as the weights.

✓ Select Analyze/Nonparametric Tests/Chi Square.

😢 Chi-Square Test		Test Variable List: NumChoice	 Options
	>		
Expected Range		Expected Values	
Oet from data		 All categories equal 	
Use specified range		O <u>V</u> alues:	
Upper:		Add Change	
		Remove	
ОК	easte	Reset Cancel Hel	0

 Select NumChoice as the Test
 Variable. Under Expected Values, All categories equal is the default. This is what we want since our null hypothesis is that each throw is equally likely to be chosen. Click Ok. The output follows.

Chi-Square Test

Frequencies

NumChoice				
	Observed N	Expected N	Resi	
1.00	30	25.0		
2.00	21	25.0		
3.00	24	25.0		
Total	75			

Test Statistics

	NumChoice
Chi-Square	1.680ª
df	2
Asymp. Sig.	.432

a. 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 25.0.

As you can see, the expected values were 25 each, just as we expected. Now, compare this Chi Square to the value computed in the text. Once again, they are in agreement.

Goodness of Fit Chi Square Categories Unequal

Now, let's try an example where the expected values are not equal across categories. The difference is we have to specify the expected proportions. This example is based on Exercise 19.3 in the text, but the numbers in the data set are slightly different. In the exercise, Howell discusses his theory that when asked to sort one-sentence characteristics like "I eat too fast" into piles ranging from "not at all like me" to "very much like me," the percentage of items placed in each pile will be approximately 10%, 20%, 40%, 20%, and 10%. In our data set, the frequencies are 7, 11, 21, 7, and 4 respectively.

✓ Open *unequal categories.sav*. There is no need to save *RPS.sav* since we did not change the data file in anyway.

Choose **Data/Weight Cases** and use Frequency as the weighting variable.

✓ Select Analyze/Nonparametric Statistics/Chi Square.

■ Chi-Square	Test	×
	Test Variable List:	OK Paste Reset Cancel
Expected Range	Expected Values	Help
Get from data	C All categories equal	
C Use specified range Lower: Upper: Upper:	Values: Add 10 Change Remove 10	Options

Select Category as the Test
 Variable. Under Expected Values, select Values. Now, we have to type in the expected *proportion* of cases that should fit each category. Note that even those it requests expected values, it really wants expected proportions. These must be specified in order to match the ascending numeric order of the categories in our data files (e.g., 1 = not at all like to 5 = very much like). So, type 10, click Add. Type 20,

Chi-Square Test Frequencies

	RATING		
	Observed N	Expected N	Residual
not at all like me	7	5.0	2.0
somewhat unlike me	11	10.0	1.0
neither like me or unlike me	21	20.0	1.0
somewhat like me	7	10.0	-3.0
very much like me	4	5.0	-1.0
Total	50		

Test Statistics

	RATING
Chi-Square ^a	2.050
df	4
Asy mp. Sig.	.727

a. 0 cells (.0%) hav e expected frequencies less than5. The minimum expected cell frequency is 5.0.

As you can see, SPSS calculated the expected values based on the proportions that we indicated-check the math if you would like. In this case, the fact that the Chi Square is not significant supports the hypothesis. The observed frequencies of ratings fit with the predicted frequencies.

Chi Square for Contingency Tables

Let's use an example illustrated in the text. We want to examine the hypothesis that Prozac is an effect treatment to keep anorexics from relapsing.

As you can see the data are nicely displayed in Table 19.4 in the text.

✓ Select File/New/Data.

- ✓ In Variable View, create two variables. Name one fault and specify the Values such that 1 = low fault and 2 = high fault. Name the other variable verdict and specify the Values such that 1= guilty and 2 = not guilty. Then return to the Data View.
- ✓ There are four possible combinations of the two variables, as illustrated in the text. They are Drug/Success, Drug/Relapse, Placebo/Success, and Placebo/Relapse. So, enter 1,1,2, 2 under Drug and 1, 2, 1, 2 under Outcome, in the first four rows. Then add a column labeled Freq containing the frequencies for each cell. A sample follows.

🚾 Anorexia Relapse.sav [DataSet12] - SPSS Statistics Data	Editor
<u>File Edit Vi</u> ew <u>D</u> ata <u>T</u> ransform <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilit	ies /
🗁 🗏 📴 🦛 🐡 🔚 📭 🔐 🖊 📲 💼	1
4 :	
Treatment Outcome Freq	var
1 1.00 1.00 13.00	
2 1.00 2.00 36.00	
3 2.00 1.00 14.00	
4 2.00 2.00 30.00	

✓ Select Data/Weight Cases.

🛃 Weight Cases	×
Ireatment I Outcome	Do not weight cases Weight cases by Frequency Variable: Freq
OK Paste	Current Status: Do not weight cases

✓ Select Weight cases by and select counts as the Frequency Variable. Click Ok. Until we turn this off, SPSS will run analyses based on the frequencies we have specified here.

✓ Select Analyze/Descriptive Statistics/Crosstabs.

To be consistent with the presentation in the text, select Treatment for Rows and Outcome for Columns. Select Display clustered bar charts to help us visualize the data. Click on Statistics.

🛃 Crosstabs		×
🖋 Freq	Column(s):	Statistics Cells Eormat
	Layer 1 of 1 Previous Next	
Display clustered <u>b</u> ar charts		
Suppress <u>t</u> ables		
ОК	aste <u>R</u> eset Cancel He	ql

Crosstabs: Statistics	×		
Chi-square	Correlations		
Nominal	Cordinal		
Contingency coefficient	<u>G</u> amma		
Phiand Cramer's V	Somers' d		
Lambda	🗌 Kendall's tau- <u>b</u>		
Uncertainty coefficient	Kendall's tau- <u>c</u>		
Nominal by Interval			
Eta	Risk		
<u>M</u> cNemar			
Cochran's and Mantel-Haenszel statistics Test common odds ratio equals:			
Continue Cancel Help			

 Select Chi-square, and then click Continue. (One would have thought that chi-square would be the default, but oddly enough it isn't. Under Nominal, select Phi and Cramer's V as well so we can get a measure of effect size. In the main dialog box, click on Cells.

 ✓ Under Count, select Observed and Expected. Under Percentages, select Row, Column, and Total. Then click Continue. In the main dialog box, click Ok. The output follows.

🚰 Crosstabs: Cell	Display	×
Counts	7	
Dbserved		
Expected		
-Dorcontagos		_
Fercentages		
✓ <u>R</u> ow	Unstandardized	
✓ Column	Standardized	
✓ <u>T</u> otal	Adjusted standardized	
_C Noninteger Weig	jhts	
Round cell could	nts 📀 Round case <u>w</u> eights	
🔘 Truncate ceḷi ca	ounts i O Truncate case weig <u>h</u> ts	s
◯ No adjust <u>m</u> ents	:	
Continue	Cancel Help	

			Outc	ome	
			Success	Relapse	Total
Treatment	Drug	Count	13	36	49
		Expected Count	14.2	34.8	49.0
		% within Treatment	26.5%	73.5%	100.0%
		% within Outcome	48.1%	54.5%	52.7%
		% of Total	14.0%	38.7%	52.7%
	Placebo	Count	14	30	44
		Expected Count	12.8	31.2	44.0
		% within Treatment	31.8%	68.2%	100.0%
		% within Outcome	51.9%	45.5%	47.3%
		% of Total	15.1%	32.3%	47.3%
Total		Count	27	66	93
		Expected Count	27.0	66.0	93.0
		% within Treatment	29.0%	71.0%	100.0%
		% within Outcome	100.0%	100.0%	100.0%
		% of Total	29.0%	71.0%	100.0%

Treatment * Outcome Crosstabulation

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.315ª	1	.575		
Continuity Correction ^b	.110	1	.740		
Likelihood Ratio	.314	1	.575		
Fisher's Exact Test				.650	.370
Linear-by-Linear Association	.311	1	.577		
N of Valid Cases	93				

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 12.77.

b. Computed only for a 2x2 table

Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	058	.575
	Cramer's V	.058	.575
N of Valid Cases		93	

Bar Chart

Compare the Expected Counts to the values in the text. Finally, compare the Chi Square values. We are interested in the Pearson Chi Square because it was calculated the same way as the one in the textbook. Once again, the results are consistent with the textbook.

In this chapter you learned to use SPSS to calculate Goodness of Fit tests with and without equal frequencies. You also learned to calculate Chi Square for contingency tables, and learned a trick to reduce data entry by weighting cases. Complete the following exercises to help you become familiar with these commands.

Exercises

- 1. Using *alley chosen.sav*, use a Goodness of Fit Chi Square to test the hypothesis that rats are more likely than chance to choose Alley D.
- 2. Solve Exercise 19.3 from the textbook using SPSS. Create the data file yourself.
- 3. Create your own data file to represent the observed data presented in the textbook in Table 19.2 using Weight Cases.
- 4. Using the data file you created in Exercise 3, calculate a Chi Square using crosstabs to examine the hypothesis that the number of bystanders is related to

seeking assistance. Be sure to calculate Cramer's Phi. Compare your results to the textbook.