
Where did Table 15.1 in Fundamentals text come 
from.  
I generated Table 15.1 (and Appendix D.5) in Fundamental 
Statistics for the Behavioral Sciences many years ago, and when I 
was recently asked about how I generated it I had to think for a 
while. But actually that is pretty easy after a bit of thought.  

The table that I refer to is shown below. 

 
First, keep in mind that the approach in that chapter is based on an 
approximation to power. That approximation is based on the 
standard normal distribution (z). (I will give a more exact solution 
below, but the normal approximation is really good enough for just 



about any purpose we want.) The advantage of the normal 
distribution is that the shape of the distribution does not depend on 
sample size, so I don’t have to worry about my degrees of freedom. 
When I come to using the (noncentral) t distribution to give a more 
exact solution I will have to pay attention to the degrees of 
freedom. The distribution will still be symmetric, but it will not be 
normal.  

I will start with an example that I expect to have a small effect size 
(d = 0.20). Imagine that I want to study to examine a product 
advertised to help you gain weight. If the product did not work I 
would expect a mean weight gain of 0 pounds (my null 
hypothesis), but from previous research I expect that the mean 
weight gain from 25 participants will be 3 pounds with a standard 
deviation of 15. (I have such a large standard deviation because 
many people will probably lose weight or even gain a large amount 
of weight even though the average gain is 3.) I want to compute the 
power of this experiment to find a significant mean weight gain if, 
as I expect, the true mean gain is 3 pounds with a standard 
deviation of 15.  

 
Notice that I have an effect size of .20, which Cohen would think 
of as a small effect. When we combine the effect size and the 
sample size to produce ™, which is required for use of Table 15.1, 
we have δ = 1.00. (When we come to working with t instead of z, 
δ will be known as the “noncentrality parameter.”)  



From Table 15.1 we see that for a two tailed test as α = .05 the 
predicted power for our experiment is only .17, meaning that if we 
are correct in our expectations, only 17% of the time that we run 
this experiment will we get a significant result. But where did that 
.17 come from?  

First of all remember that with a two-tailed z test (see Chapter 12, 
Section 12.2) the critical value at α = .05 is +1.96. In other words 
we will reject the null whenever we calculate a z on our sample 
data in excess of +1.96. Also, if the µ 1 really equals 3 with a 
standard deviation of 5, as we expect, the distribution of z values 
for a huge number of replications of this experiment would be have 
a standard normal distribution around δ  = 1 with a standard 
deviation of 5. So all we really need to ask is “How often would 
we get an obtained value of z greater than +1.96 from a normal 
distribution with mean = 1 and standard deviation = 5?”  

The diagram that follows illustrates that probability. Notice that on 
the left I have drawn the distribution of expected z values under the 
null, and on the right I have drawn expected z values under the 
alternative hypothesis. I have also given the areas under the right 
hand distribution for values outside the range of +1.96. If you add 
these two areas you get .002 + .169 = .171, which is the value 
given in the table for δ = 1, α = .05, two-tailed.  

 

 
 
 

 



What about other values of δ? ���  I now want to repeat the above 
but consider other values of δ, which is the effect size adjusted for 
n. I could alter δ in several ways. I could change the expected 
mean, the expected standard deviation, or the sample size (n). I am 
going to do the latter, and I will aim for δ= 1.50 and 2.00, which 
will require sample sizes of 56 and 100, respectively.  

The logic is exactly the same as it was for the first example except 
that I substitute the new values of δ. This will cause the alternative 
hypothesis to be displaced to the right, with more and more of the 
area under the alternative exceeding + 1.96, resulting in greater 
power.  

 



 

The results of these runs are shown in the figure below, where I 
have included the case with δ = 1 simply to make it easier to 
compare. If you add the areas in both tails of the distribution you 
will get .32 and .52 for δ = 1.5 and 2.0, respectively. These agree 
with the values shown in Table 15.1.  

  
But I Want to be More Exact—I Don’t Want an 
Approximation.  

The calculations given above assume that you are going to use the 
normal distribution to approximate the power of our test. But that 
means that the critical values are always +1.96 regardless of the 



sample size. The correct way to deal with this problem is to use the 
(noncentral) t distribution. It is called the noncentral t because it 
will be centered over the noncentrality parameter (δ) instead of 
over 0, as it is in the normal t tables.  

Because I will get a different distribution for each value of sample 
size and for each value of δ, I could generate a huge number of 
figures similar to the ones above. Instead I am going to stick with d 
= 0.20 and vary n from 25 to 56 to 100. This will give me  values 
of 1.0, 1.5, and 2.0.The only real change that I have to make to my 
program, other than to change the critical values in line with the 
changing degrees of freedom, is to replace commands to draw 
normal distributions with commands to draw t distributions.  

 



From this figure you can see how power increases as sample size 
increases. You can also see that in the top plot power is .162, 
which is close to what we obtained with our approximation. 
However, the approximation is not good for very small sample 
sizes. Below I have included the same plot as above but with n = 5. 
Here you can see that the true power is .064 rather than the .17 that 
our approximation gives. However when you are working with 
such low power values you probably should not run that 
experiment to begin with.  

 
 
The R program that generated these plots is shown below, but it 
was assembled quickly and is far from elegant.  

################################################## 

   # Generate a sequence of x values 

x <- seq(-6, 6, by = 0.001) 

par(mfrow = c(3,1)) 

# Plot normal curve over x  with mean at 1.0 

plot(x, dnorm(x, mean = 0, sd = 1), type = "l") 

par(new = T) 

plot(x, dnorm(x, mean = 1, sd = 1), type = "l") 

# Define left side boundary using min(x) 



# and CritVal using alpha = 0.05 

alpha <- 0.05 

LCrit <- qnorm(alpha / 2)       #LCir = -1.96 

UCrit <- qnorm(1-alpha/2) 

xl <- seq(min(x), LCrit, length = 100) 

yl <- c(dnorm(xl,1,1), 0, 0) 

PUpper <- 1-pnorm(UCrit, 1,1) ; PUpper 

PLower <- pnorm(LCrit,1,1); PLower 

PTwotailed <- PUpper+PLower;  PTwotailed 

# add CritVal, min(x) to complete polygon 

xl <- c(xl, LCrit, min(x)) 

# draw and fill left region 

polygon(xl, yl, density = 50) 

arrows(-4,.1,-1.96,.01) 

arrows(4,.1,1.96,.07) 

text(-4.0, .15, "p(z < -1.96) = .002") 

text(4.0,.15,"p(z > +- 1.96) = .169") 

text(-1.5,.35,"Null" ) 

text(2.5,.35,"Alternative") 

# Do the same for right side boundary using max(x) 

# and Crit Val 



 

 

xu <- seq(UCrit, max(x), length = 100) 

yu <- c(dnorm(xu,1,1), 0,0) 

# add max(x) and CritVal to complete polygon 

xu <- c(xu, max(x) , UCrit) 

# draw and fill left region 

polygon(xu, yu, density = 50) 

 

Now put the mean of the normal distribution at 1.5 and then 2.0 

# Generate a sequence of x values 

x <- seq(-6, 6, by = 0.001) 

 

# Plot normal curve over x  with mean at 1.0 

plot(x, dnorm(x, mean = 0, sd = 1), type = "l") 

par(new = T) 

plot(x, dnorm(x, mean = 1.5, sd = 1), type = "l", ylab = "") 

# Define left side boundary using min(x) 

# and CritVal using alpha = 0.05 

alpha <- 0.05 

LCrit <- qnorm(alpha / 2)       #LCir = -1.96 



UCrit <- qnorm(1-alpha/2) 

xl <- seq(min(x), LCrit, length = 100) 

yl <- c(dnorm(xl,1.5,1), 0, 0) 

PUpper <- 1-pnorm(UCrit, 1.5,1) ; PUpper 

PLower <- pnorm(LCrit,1.5,1); PLower 

PTwotailed <- PUpper+PLower;  PTwotailed 

# add CritVal, min(x) to complete polygon 

xl <- c(xl, LCrit, min(x)) 

# draw and fill left region 

polygon(xl, yl, density = 50) 

arrows(-4,.1,-1.96,.01) 

arrows(4,.1,1.96,.07) 

text(-4.0, .15, "p(z < -1.96) = .000") 

text(4.0,.15,"p(z > +- 1.96) = .323") 

text(-1.5,.35,"Null" ) 

text(2.5,.35,"Alternative") 

# Do the same for right side boundary using max(x) 

# and Crit Val 

xu <- seq(UCrit, max(x), length = 100) 

yu <- c(dnorm(xu,1.5,1), 0,0) 

 



# add max(x) and CritVal to complete polygon 

xu <- c(xu, max(x) , UCrit) 

# draw and fill left region 

polygon(xu, yu, density = 50) 

 

#################################################### 

# Generate a sequence of x values 

x <- seq(-6, 6, by = 0.001) 

# Plot normal curve over x  with mean at 1.0 

plot(x, dnorm(x, mean = 0, sd = 1), type = "l") 

par(new = T) 

plot(x, dnorm(x, mean = 2, sd = 1), type = "l") 

# Define left side boundary using min(x) 

# and CritVal using alpha = 0.05 

alpha <- 0.05 

LCrit <- qnorm(alpha / 2)       #LCir = -1.96 

UCrit <- qnorm(1-alpha/2) 

xl <- seq(min(x), LCrit, length = 100) 

yl <- c(dnorm(xl,2,1), 0, 0) 

PUpper <- 1-pnorm(UCrit, 2,1) ; PUpper 

PLower <- pnorm(LCrit,2,1); PLower 



PTwotailed <- PUpper+PLower;  PTwotailed 

# add CritVal, min(x) to complete polygon 

xl <- c(xl, LCrit, min(x)) 

# draw and fill left region 

polygon(xl, yl, density = 50) 

arrows(-4,.1,-1.96,.01) 

arrows(4,.1,1.96,.07) 

text(-4.0, .15, "p(z < -1.96) = .000") 

text(4.0,.15,"p(z > +- 1.96) = .516") 

text(-1.5,.35,"Null" ) 

text(2.5,.35,"Alternative") 

# Do the same for right side boundary using max(x) 

# and Crit Val 

xu <- seq(UCrit, max(x), length = 100) 

yu <- c(dnorm(xu,2,1), 0,0) 

# add max(x) and CritVal to complete polygon 

xu <- c(xu, max(x) , UCrit) 

# draw and fill left region 

polygon(xu, yu, density = 50) 

 

###################################################### 



# This is the beginning of using the t distribution 

# Now hold delta at 1.5, let n = 25, 56, and 100, and use noncentral 
t distribution. 

# Generate a sequence of x values 

df <- 24 

ncp <- 1 

x <- seq(-6, 6, by = 0.001) 

par(mfrow = c(3,1)) 

# Plot t curve over x  with mean at 1.0 

plot(x, dt(x, df = df, ncp = 0), type = "l") 

par(new = T) 

plot(x, dt(x, df = df, ncp = ncp), type = "l",ylab = "", yaxt = "n") 

# Define left side boundary using min(x) 

# and CritVal using alpha = 0.05 

alpha <- 0.05 

LCrit <- qt(alpha / 2, df = df, ncp = 0) 

UCrit <- qt((1-alpha/2),df = df, ncp = 0) 

xl <- seq(min(x), LCrit, length = 100) 

yl <- c(dt(xl,df = df, ncp = ncp), 0, 0) 

PUpper <- 1-pt(UCrit, df = df, ncp = ncp) ; PUpper 

PLower <- pt(LCrit,df = df, ncp = ncp); PLower 

PTwotailed <- PUpper+PLower;  PTwotailed 



 

# add CritVal, min(x) to complete polygon 

xl <- c(xl, LCrit, min(x)) 

# draw and fill left region 

polygon(xl, yl, density = 50) 

arrows(-4,.1,-2.064,.01) 

arrows(4,.1,2.064,.07) 

text(-4.0, .15, "p(t < -2.064) = .002") 

text(4.0,.15,"p(t > + 2.064) = .160") 

text(-1.5,.35,"Null" ) 

text(2.5,.35,"Alternative") 

# Do the same for right side boundary using max(x) 

# and Crit Val 

xu <- seq(UCrit, max(x), length = 100) 

yu <- c(dt(xu,df = df, ncp = ncp), 0,0) 

# add max(x) and CritVal to complete polygon 

xu <- c(xu, max(x) , UCrit) 

# draw and fill left region 

polygon(xu, yu, density = 50) 

text(-5,.3,"N = 25, Power = .162") 

text(-5, .25, "Critical Value = 2.064") 



#################################################### 

# Plot 

df <- 55 

ncp = 1.5 

plot(x, dt(x, df = df, ncp = 0), type = "l") 

par(new = T) 

plot(x, dt(x, df = df, ncp = ncp), type = "l",ylab = "", yaxt = "n") 

# Define left side boundary using min(x) 

# and CritVal using alpha = 0.05 

alpha <- 0.05 

LCrit <- qt(alpha / 2, df = df, ncp = 0) 

UCrit <- qt((1-alpha/2),df = df, ncp = 0) 

xl <- seq(min(x), LCrit, length = 100) 

yl <- c(dt(xl,df = df, ncp = ncp), 0, 0) 

PUpper <- 1-pt(UCrit, df = df, ncp = ncp) ; PUpper 

PLower <- pt(LCrit,df = df, ncp = ncp); PLower 

PTwotailed <- PUpper+PLower;  PTwotailed 

# add CritVal, min(x) to complete polygon 

xl <- c(xl, LCrit, min(x)) 

 

 



# draw and fill left region 

polygon(xl, yl, density = 50) 

arrows(-4,.1,-2.004,.01) 

arrows(4,.1,2.004,.07) 

text(-4.0, .15, "p(t < -2.004) = .000") 

text(4.0,.15,"p(t > + 2.004) = .314") 

text(-1.5,.35,"Null" ) 

text(2.5,.35,"Alternative") 

# Do the same for right side boundary using max(x) 

# and Crit Val 

xu <- seq(UCrit, max(x), length = 100) 

yu <- c(dt(xu,df = df, ncp = ncp), 0,0) 

# add max(x) and CritVal to complete polygon 

xu <- c(xu, max(x) , UCrit) 

# draw and fill left region 

polygon(xu, yu, density = 50) 

text(-5,.3,"N = 25, Power = .314") 

text(-5, .25, "Critical Value = 2.064") 

#################################################### 

# Plot t curve over x  with mean at 1.0 

plot(x, dt(x, df = df, ncp = 0), type = "l") 



df = 99 

ncp = 2.0 

par(new = T) 

plot(x, dt(x, df = df, ncp = ncp), type = "l",ylab = "", yaxt = "n") 

# Define left side boundary using min(x) 

# and CritVal using alpha = 0.05 

alpha <- 0.05 

LCrit <- qt(alpha / 2, df = df, ncp = 0) 

UCrit <- qt((1-alpha/2),df = df, ncp = 0) 

xl <- seq(min(x), LCrit, length = 100) 

yl <- c(dt(xl,df = df, ncp = ncp), 0, 0) 

PUpper <- 1-pt(UCrit, df = df, ncp = ncp) ; PUpper 

PLower <- pt(LCrit,df = df, ncp = ncp); PLower 

PTwotailed <- PUpper+PLower;  PTwotailed 

# add CritVal, min(x) to complete polygon 

xl <- c(xl, LCrit, min(x)) 

# draw and fill left region 

polygon(xl, yl, density = 50) 

arrows(-4,.1,-1.984,.01) 

arrows(4,.1,1.984,.07) 

text(-4.0, .15, "p(t < -1.984) = .000") 



text(4.0,.15,"p(t > + 1.984) = .508") 

text(-1.5,.35,"Null" ) 

text(2.5,.35,"Alternative") 

# Do the same for right side boundary using max(x) 

# and Crit Val 

xu <- seq(UCrit, max(x), length = 100) 

yu <- c(dt(xu,df = df, ncp = ncp), 0,0) 

# add max(x) and CritVal to complete polygon 

xu <- c(xu, max(x) , UCrit) 

# draw and fill left region 

polygon(xu, yu, density = 50) 

text(-5,.3,"N = 25, Power = .508") 

text(-5, .25, "Critical Value = 1.984") 

#######Now with sample size of only 5. ncp = .447 

# Generate a sequence of x values 

df <- 4 

ncp <- .447 

x <- seq(-6, 6, by = 0.001) 

par(mfrow = c(3,1)) 

# Plot t curve over x  with mean at 1.0 

plot(x, dt(x, df = df, ncp = 0), type = "l") 



par(new = T) 

plot(x, dt(x, df = df, ncp = ncp), type = "l",ylab = "", yaxt = "n") 

# Define left side boundary using min(x) 

# and CritVal using alpha = 0.05 

alpha <- 0.05 

LCrit <- qt(alpha / 2, df = df, ncp = 0) 

UCrit <- qt((1-alpha/2),df = df, ncp = 0) 

xl <- seq(min(x), LCrit, length = 100) 

yl <- c(dt(xl,df = df, ncp = ncp), 0, 0) 

PUpper <- 1-pt(UCrit, df = df, ncp = ncp) ; PUpper 

PLower <- pt(LCrit,df = df, ncp = ncp); PLower 

PTwotailed <- PUpper+PLower;  PTwotailed 

# add CritVal, min(x) to complete polygon 

xl <- c(xl, LCrit, min(x)) 

# draw and fill left region 

polygon(xl, yl, density = 50) 

arrows(-4,.1,-2.776,.01) 

arrows(4,.1,2.776,.07) 

text(-4.0, .15, "p(t < -2.776) = .010") 

text(4.0,.15,"p(t > + 2.776) = .054") 

text(-1.5,.35,"Null" ) 



text(2.5,.35,"Alternative") 

# Do the same for right side boundary using max(x) 

# and Crit Val 

xu <- seq(UCrit, max(x), length = 100) 

yu <- c(dt(xu,df = df, ncp = ncp), 0,0) 

# add max(x) and CritVal to complete polygon 

xu <- c(xu, max(x) , UCrit) 

# draw and fill left region 

polygon(xu, yu, density = 50) 

text(-5,.3,"N = 5, Power = .064") 

text(-5, .25, "Critical Value = 2.776") 

___________________________________________________________ 

dch: 7/6/2015  

	  


