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This whole project started with a query about the sampling distribution of the 
standardized regression coefficient, β. I had a problem because one argument was that β 
is a linear transformation of b, and the sampling distribution of b is normal. From that it 
followed that the sampling distribution of β should be normal. On the other hand, with 
only one predictor, β is equal to r, and it is well known that the sampling distribution of r 
is skewed whenever ρ is unequal to zero. From that it follows that the sampling 
distribution of β would be skewed. 
 
To make a long story short, my error was in thinking of β as a linear transformation of 
b—it is not. The formula for β is 
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β =  

where si is the standard deviation of the ith  independent variable, and s0 is the standard 
deviation of the dependent (criterion) variable. 
 
But in creating the sampling distribution of β, these two standard deviations are random 
variables, differing from sample to sample. If I computed β using the corresponding 
population parameters that would be a different story. But that’s not the way you do it. So 
my statement about β being a linear transformation of was wrong. The unstandardized 
coefficient (b) is normally distributed, but the standardized coefficient (β) is not normally 
distributed. It has the same distribution as r. 
 
But all is not right in the world. There is something wrong out there, and I can’t figure 
out what. I recently received an e-mail from Alessio Toraldo, at Università di Pavia, Italy. 
He pointed out that when he did a sampling study similar to the one described below, 
using a sample size of n = 10, the distribution of b was distinctly leptokurtic. That should 
not be! Hogg and Craig (1978) clearly state that b will be normally distributed. And if 
Hogg and Craig say so, it is so! The one thing that I can say is that the distribution, 
whatever its shape, is so close to normal that it would not be worth worrying about if it 
weren’t for the fact that I had been looking for something to worry about. 
 
The following is an empirical demonstration of these sampling distributions. The first 
attempt at looking at the empirical sampling distribution of b was done using a program 
called Resampling Stats by Bruce and Simon (http://resample.com/). This program draws 
repeated samples from defined populations and plots the resulting sampling distributions. 

http://resample.com/


That is a very good program, but I haven’t used it in a long time and I had trouble 
deciphering what I had done. So I redid it in R (similar to S_PLUS) and that is given 
below. 
 
My program makes use of a simple algorithm for generating data from a population with 
a specified correlation (ρ). 
 

• Draw two large pseudo-populations of X and Y. (I used 10,000 cases.) 
 

• Standardize the two variables. 
 

• Compute 
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, where r is the desired correlation 

 
• Compute Z = aY + X 

 
• Now Y and Z have a correlation = r. 

 
From a population consisting of 10,000 X and Z pairs, I drew 10,000 samples of 50 
observations each. For each sample I computed b0 and b1, and beta (the standardized 
regression coefficient) and plotted their sampling distributions. I also plotted the 
sampling distribution of r for purposes of comparison. I then plotted the results as 
histograms and again as Q-Q plots. 
 
The R program that does the sampling follows. In the first run of this program I set rho to 
.60 and n to 50. I drew 1000 samples with replacement. 
 
 
 
# Sampling distribution of standardized regression coefficient 
 
# Plot sampling distribution of b and beta 
 
# Plot sampling distribution of b and beta 
 
r_array <- c(10000); b_array <- c(10000); beta_array <- c(10000) #Create some arrays  
x <- rnorm(10000,0,1) 
y <- rnorm(10000, 0, 1) 
zx <- (x - mean(x))/sd(x)   #Standardize the variables  
zy <- (y - mean(y))/sd(y) 
rho <- .60  # Choose a value for rho  
a <- rho/(sqrt(1-rho^2)) 
zz <- a*zy + zx  
cor(zy,zz) 
# the correlation between zy and zz is r = .60  



data <- cbind(zy, zz) 
# Now create functions to calculate skewness and kurtosis  
skew <- function(x) { 
m3 <- sum((x - mean(x))^3/length(x)) 
s3 <- sd(x)^3  
m3/s3 
} 
 
kurtosis <- function(x) { 
   m4 <- sum((x - mean(x))^4/length(x)) 
   s4 <- var(x)^2 
   m4/s4  - 3   #Subtract 3 so kurtosis = 0 for normal distribution 
} 
 
# Now do the resampling  
for (i in 1:1000) { 
   samp <- data.frame(data[sample(1:10000,50, replace = T),])  #Draw a n = 50 cases 
from data  
   r_array[i] <- cor(samp[,1],samp[,2])   #calculate r 
   regression <- lm(zy ~ zz, data = samp) 
   b_array[i] <- regression$coefficients[2]      #calculate b = the regression slope  
   beta_array[i] <- b_array[i]*sd(samp[,2])/sd(samp[,1]) #calculate beta 
}  # This will repeat 1000 times 
 
# Now plot the three statistics  
par(mfrow = c(3,2))  
hist(r_array, breaks = 50)  
qqnorm(r_array)  
hist(beta_array, breaks = 50)  
qqnorm(beta_array)  
hist(b_array, breaks = 50)  
qqnorm(b_array) 
cat("\nSkew statistic for r = ", skew(r_array)) 
cat("\nSkew statistic for b = ",skew(b_array)) 
cat("\nSkew statistic for beta ",skew(beta_array)) 
cat("\nKurtosis statistic for r = ",kurtosis(r_array)) 
cat("\nKurtosis statisc for b = ",kurtosis(b_array)) 
cat("\nKurtosis statistic for beta = ",kurtosis(beta_array)) 
The printout for this program follows. 
 



 
 
 

 r beta b 
Mean .598 .598 .482 
St. Dev. .091 .091 .092 
skewness -.566 -.566 .071 
kurtosis .276 .276 .172 
 
If you look at the table you will see that the mean r = .598, which is nicely close to rho = 
.60. You will also notice that the distribution is negatively skews and somewhat 
leptokurtic. Again this is as it should be. With only one predictor, r and beta are equal, 
and we see that here. Looking at b we see that it has a skewness of only .07, but it does 
look a bit leptokuric in the table. But in the figures above, the Q-Q plot for b is 
remarkably straight with only a tiny bit of bumpiness at the extremes. 
 
Now let’s do the same thing but with a much smaller sample size. I well let n = 10 
instead of to. 
 



Rho = .60, n = 10 
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Histogram of beta_array
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Histogram of b_array
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 r beta b 
Mean .580 .580 .482 
St. Dev. .237 .237 .247 
skewness -1.232 -1.232 -.046 
kurtosis 1.823 1.823 1.066 
 
Oh Dear!  This is not nice. With such a small sample size the mean correlation stayed 
close to .60, but the skewness of r and beta just about doubled and it is clear that the 
distributions are quite leptokurtic. The same goes for b, and a look at the Q-Q plot shows 
that the line is distinctly not straight. It looks like things fall apart for small n’s. 
 
Now we will repeat the two analyses above, but with rho = 0. Here I would expect all 
three statistics to be centered on 0.00, and, because n = 50, things shouldn’t look too bad. 
Below is what we found. 
 



 
 
 

 r beta b 
Mean -.002 -.002 -.002 
St. Dev. .143 .143 .145 
skewness -.010 -.010 -.012 
kurtosis -.119 -.119 -.058 
 
That’s not too bad. I can live with that. But what happens if we do the same but drop 
down to n = 10? 
 



 
 
 

 r beta b 
Mean -.015 -.015 -.027 
St. Dev. .336 .336 .366 
skewness .046 .046 .046 
kurtosis -.529 -.529 .471 
 
That is definitely not good! The mean r is -.015, which is OK. The standard error of r 
(and the other statistics) are elevated, simply reflecting the smaller n. But look at the 
kurtosis. All three distributions should be normal, but two are platykurtic and one is 
leptokurtic. I suspected that what we are seeing here was just a huge amount of random 
error, so I repeated this last example 10 times. The kurtosis for b was always positive, 
ranging from 0.296 to 10.729, with a mean of 2.003. Something is weird. 
 
A Possible Explanation 
 
Perhaps when Hogg and Craig (and many other people) say that b is normally distributed, 
what they really mean is that b is asymptotically normally distributed. In other words if 
each sample were infinitely large the distribution would be normal.  
 
So I did it one last time, but this time with n = 500. I have not shown the graphics, but the 
table is below. 



 
 

 r beta b 
Mean .012 .012 .012 
St. Dev. .045 .045 .045 
skewness .086 .086 .078 
kurtosis -.003 -.003 -.008 
 
And if I set n = 10,000 things are even better.  
 
Alessio Toraldo offered another explanation which I have not had the time to pursue. He 
suggested that instead of treating X and Y as random variables, I should examine the case 
where X is fixed. This is more in line with the regression approach (as opposed to 
correlation) and by removing one source of variance we might in fact find a normal 
distribution for b. I want to try that. 
 
Another thought:  I am using the random number generator in R. No random number 
generator is perfect, and I notice that the kurtosis of the normally distributed random 
variables is not 0 either. Perhaps that is part of the problem. 
 
But Don’t Give Up! 
 
This exercise gave me something to do when I needed something to do, and I believe that 
the results are correct. But for all practical purposes the kurtosis in the distribution of b 
will not make the slightest difference to any practical analysis you want to do. You can 
just go ahead and believe the t test on b.  
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