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To most people studying statistics a contingency table is a contingency table. We tend to 
forget, if we ever knew, that contingency tables can be formed in different ways, and 
how the table is restricted may influence the analysis we run. 

 

The Mathematics of a Lady Tasting Tea 
 
Let’s start with a very famous example from R. A. Fisher. This is often known as the 
“Lady Tasting Tea” example, and, according to Fisher’s daughter, it is a true story. The 
basic idea is that one day when people who worked around Fisher were having 
afternoon tea, one of them, Muriel Bristol, claimed that she could tell whether the milk 
was added to the cup before or after the tea. Fisher immediately turned this into an 
experiment by preparing eight cups of tea, four of which had milk added first and four 
of which had milk added second. He then put the cups in front of Muriel and asked her 
to identify the four cups that had milk added first. By the way, Muriel was no slouch. 
She was a Ph.D. scientist, back in the days when women were not Ph.D. scientists and 
she established the Rothamstead Experiment Station in 1919. This was the place that 
Fisher was later to make famous. I think you should know what Muriel looked like, so 
here she is—stolen without permission from Wikipedia. (No, that isn’t Einstein, 
although it looks like him.) 
 

 
 
This was a great example for Fisher, and we’ll come back to it later, but first I want to 
modify the experiment to include 96 cups instead of 8. Assume that each day for 12 days 
Muriel was presented with eight cups, four of each kind, and asked to make the 
identification. (Also assume that observations across days were independent, which 
seems like a reasonable assumption.) The data are then collapsed over all 12 days. (I 
made this change to have a much larger total sample size.) 
 
Without looking at the data you know something about them. There will be 48 cups 
with milk first and 48 cups with milk second. In addition, because of the instructions to 
Muriel, there will be 48 guesses of First and 48 guesses of Second. Finally, there will be 
96 total observations. 
 
 



  True Condition  

  First Second  

First 29 19 48  
Guess 

Second 19 29 48 

  48 48 96 

  
 
I created these data with these cell frequencies so as to have a table whose Pearson chi-
square statistic will be significant at close to α = .05. In this case the probability under the 
null is .0412. (These data are more extreme that the actual data as far as Muriel’s ability 
to detect differences is concerned.) 
 
 

 

Pearson’s Chi-Square Test 
 
Let’s start with a simple Pearson chi-square test for a 2 × 2 table, along with the odds 
ratio. 
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As I said, this value of chi-square is significant at p = .0412. We can reject the null 
hypothesis and conclude that Muriel’s response and the way the tea was prepared are 
not independent. In other words she guessed correctly at greater than chance levels. 
(Note that I did not include Yates’ correction for these data, but if I had the chi-square 
would have been 3.38 with a p value of .0662. We will come back to that later.) 

 

 

Fisher’s Exact Test and the Hypergeometric Distribution 
 
Fisher specifically did not evaluate these data with a Pearson chi-square, and not just 
because he couldn’t stand Pearson, which he couldn’t. His reasoning involved the 
hypergeometric distribution. When both row and column totals (the “marginals”) are 
fixed, the hypergeometric distribution will tell us the probability that we will have a 
specified number of observations in cell11. (We could have picked on any cell, but cell11 



seems like a nice choice. We only need to worry about one cell because we only have 1 
df. If we had a 10 in cell11, then cell12 must be 38, cell21 but be 28, and cell22 must be 10.) 
 
The formula for the hypergeometric, if you must know, is 
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Where x = observation in cell11, n1. = total of row 1, n..2 = total of column 2, and N = total 
number of observations. But of course this will only give us the probability of exactly 29 
observations in cell11. We are going to want the probability of 29 or more observations in 
that cell, so we have to evaluate this expression for all values of 29 and higher. This is 
shown below, though I only carried 5 decimals and the entries rapidly drop to 0.00. But 
to make this a two-tailed test we also need to know the probability of 19 or fewer 
observations, which, because we have the same number of each type of tea, is the same. 
So the two-tailed probability is .0656. 
 
 
 

Number in  
Upper Left 

Probability 

29 .02070 

30 .00830 

31 .00280 

32 .00079 

33 .00018 

34 .00005 

39 .00000 

40 .00000 

… … 

48 … 
Sum .03282  

Number in Upper 
Left 

Probability 

19 .02070 

18 .00830 

17 .00280 

16 .00079 

15 .00018 

14 .00005 

13 .00000 

12 .00000 

… … 

0 .00000 
Sum .03282  

 
In case you are interested, the distribution is plotted below, where you can see that the 
vast majority of outcomes lie between about 18 and 31. 
 



  
 
Using Fisher’s Exact Test we have a one-sided probability of .033, which would lead us 
to reject the null hypothesis. The two-sided probability would be .0656, which would not 
allow us to reject the null. Notice that we did not reject the (two-tailed) null hypothesis 
using Fisher’s test but we did using the Pearson chi-square test. This is most likely a 
result of the fact that observations are discrete, whereas the chi-square distribution is 
continuous. 
 
I earlier gave the “corrected” version of chi-square, called Yates’ correction, which had a 
probability of .0662. That number is very close to Fisher’s value, which is as it should be. 
Yates was trying to correct for the continuousness of the chi-square distribution, and he 
did so admirably. 

 
 

Contingency Tables with One Set of Fixed Marginals 
 
In the data table that we just examined, both the row and marginal totals were fixed. We 
knew in advance that there would be 48 cups of each type of tea and that Muriel would 
make 48 choices of each type. But consider a different example where the row totals are 
fixed but not the column totals. I will take as an example Exercise 6.13 from the 6th 
edition of Statistical Methods for Psychology. In 2000 the State of Vermont, to their very 
great credit,—a slight editorial comment—approved a bill authorizing civil unions 
between gay and lesbian partners. The data shown below suggest that there was a 
difference on this issue between male and female legislators. I chose this example, in 
part, because the sample size (145 legislators) is reasonable and the probability (p = .019) 
is significant but not extreme. Notice that the row totals are fixed because if someone 
demanded a recount the number of male and female legislators would be the same (44 
and 101) but the number of votes for and against the legislation could change. The 
calculations of Pearson’s chi-square and the odds ratio are straightforward. 
 
 



 
 Vote  

 Yes No Total 

Women  35  9  44 
Men  60  41  101 
Total  95  50  145 
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The usual way to evaluate this test statistic is to compare it to the mathematically 
defined chi-square distribution. Although that distribution will not be an exact fit to the 
sampling distribution of this statistic, it will be very close. Using R, or any other 
statistical software, the two-tailed p value is .01899. 
 

 
By normal standards, this value is statistically significant and we can conclude that how 
legislators voted depended, to some extent, on their gender. Women were more likely 
than men to vote for the legislation. The odds ratio was 2.66. Notice that this is a two-
tailed test because we could have a large value of chi-square if either men outvoted 
women or women outvoted men—the difference is squared. 
 
Another, and equivalent, way of running this test is to notice that 82% of the female 
legislators supported the measure whereas on 59% of the male legislators did. You 
probably know from elsewhere that we can test the difference between two proportions 
using z 
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The two-tailed probability is .0190, which is what we found with chi-square. (The reason 
that they agree so well is that when you have 1 df a chi-square distribution is just the 
square of a normal distribution, so this is really the same test.) 
 
Fisher’s Exact Test 
Although the marginal totals on the columns in this example are not fixed, we could act 
as if they are and apply Fisher’s Exact Test. If we did so we would find a probability 
under the null of .0226, which is slightly higher than we found with chi-square. 
 



Resampling 
 
But let’s look at this still a third way. Even though we have a lot of cases (145) the 

distribution is still discrete (χ2 can only take on a specific set of different values) and is 
being fit against a continuous distribution. So suppose that we set up a simple 
resampling study for the case with one fixed set of marginals. 
 
First we will assume that the null hypothesis is true so we are sampling from 
populations with the same proportion of Yes votes. Then our best estimate of the 
common population proportion is 95/145 = .6552. In our resampling study we will draw 
44 cases, corresponding to women in the legislature. For each woman we will draw a 
random number between 0 and 1. If that number is less than .6552 we will record her 
vote as Yes. After we have drawn for all 44 women we will compute the proportion of 
them who voted Yes. (I could have accomplished the same thing by drawing 44 
observations from a binomial with p = .6552—e.g. rbinom(n = 1, size = 44, 
prob = .6552). I did things the long way because it makes it easier to grasp the 
underlying process.) In the long run we would expect to have 65.52% of women voting 
Yes, if the null hypothesis is true, but the actual counts will vary due to normal sampling 
error. Then we will do the same thing for males, but this time making 101 draws with 
number of Yes votes equal to the number of times our random number was greater than 
.6552. We will record the difference between male and female Yes votes. We will then 
repeat this “experiment” 10,000 times, each time generating the number of votes for the 
legislation by both men and women. Notice that we have set the common probability in 
both cases at .6552, so, on average, the differences between males and females will come 
out to 0.00. When we are all done we will have the distribution of differences for 10,000 
cases based on a true null hypothesis, and we can ask what percentage of those 
differences exceeded .2013, the difference in proportions that we found from our study1. 
Notice that I am holding the number of males and females constant, but allowing the 
votes to vary. 
 
A histogram of the results is printed below. 
 

                                                

1 Although I am using the difference between the two sample proportions as my statistic, I could instead 
calculate chi-square for each resampling and use that as my statistic. I just need something that represents a 
measure of how similar or different are the behaviors of men and women. ( In the program that is attached, 
I use chi-square as my statistic, but I do not compare it to the chi-square distribution.) 



  
  
 The proportion of differences greater than .2013 is   0.0079 
 The proportion of differences less than -.2013 is        0.0105 
 
If we add together the two tails of the distribution we find that 1.84% of the observations 
exceeded + .2014, which was our obtained difference. These results are comforting 
because they very nearly duplicate the results of our chi-square test, which had a p value 
of .190. One important thing that this tells us is that chi-square is an appropriate statistic 
when one set of marginals are fixed—at least if we have relatively large sample sizes.  

 

The Case of No Fixed Marginals 
 
Now we will carry the discussion of contingency tables one step further by considering 
results in which we would not be willing to assume that either set of marginals is fixed. 
There have been a number of studies over the years looking at whether the imposition of 
a death sentence is affected by the race of the defendant (and/or the race of the victim). 
Peterson (2001) reports data on a study by Unah and Borger (2001) examining the death 
penalty in North Carolina in 1993-1997. The data in the following table show the 
outcome of sentencing for white and nonwhite (mostly black and Hispanic) defendants 
when the victim was white. The expected frequencies are shown in parentheses. 



 
Sentencing as a function of the race of the defendant 

 
 Death Sentence  

Defendant’s 
Race 

Yes No Total 

Nonwhite 33 
(22.72) 

251 
(261.28) 

284 

White 33 
(43.28) 

508 
(497.72) 

541 

Total 66 759 825 

  
 
This table is different from the others we have seen because if we went out and collected 
new data for some other time period or some other state, both the row totals and the 
column totals would be expected to change. Although it would be possible to do the 
arithmetic for Fisher’s Exact Test, it would be hard to argue that we should condition on 
these marginals. So let’s look at a different way of approaching the problem. 
 
First of all there is nothing to stop us from running a plain old Pearson chi-square, and, 
in fact, that is probably what we should do. These calculations follow. 
 

 

2
2

2 2 2 2

( )

(33 22.72) (251 261.28) (33 43.28) (508 497.82)

22.72 261.28 43.28 497.72

7.71

O E

E
χ −= Σ

− − − −= + + +

=

 

 
The probability of chi-square = 7.71 on 1 df, if the null is true, is .0055, leading us to reject 
the null. (The probability for Fisher’s test, which I think is not appropriate here, is .007.) 

 
 
The Resampling Approach Again 
 
Fisher met a lot of resistance to his idea on contingency tables because people objected to 
holding the marginal totals fixed. They argued that if the experiment were held again, 
we would be unlikely to have the same numbers of white and black defendants. Nor 
would we have the same number of death sentences. (This argument actually went on 
for a very long time, and we still don’t have good resolution. I, myself, have moved back 
and forth, but I now think that I would recommend Fisher’s Exact Test only for the case 
of fixed marginals.) 



 
One of the huge problems in this debate was that the calculations became totally 
unwieldy if you let go of the fixed marginals requirement. BUT now we have computers, 
and they like to do things for us. Computers, like Google, are our friends! as you saw in 
the previous problem.  Suppose that we pose the following task. We have 825 
defendants. For this sample, 284 of them are nonwhite and 541 of them are white. Thus 
284/825  = .2442 is the proportion of nonwhite defendants. Similarly, 66/825 = .08 is the 
proportion of defendants who were found guilty. From now on I don’t care about how 
many nonwhite or guilty defendants we will have in any sampling, but if the null 
hypothesis is true, .2442 * .08 =  .0195 is the expected proportion of nonwhite guilty 
defendants we would have in any sample. So what we can do is draw a sample of 825 
observations where the probability of landing in cell11 is .0195. Similar calculations will 
give us the expected proportions landing in the other cells. Notice that these proportions 
are calculated by multiplying together the proportions of each race and the proportions 
of each verdict. This would only be the case if the null hypothesis were true. 
 
Instead of looking at all possible outcomes and their probability, which would be a huge 
number, I’ll instead take a random sample of all of those outcomes. Let’s run 10,000 
experiments. Each time we run an experiment we let a random number generator put 
the observations in the four cells randomly based on the calculated probabilities under 
the null. For example, the random number generator (drawing from the set of numbers 
1-4) might pick a 1 with a probability of .0195 and thus add the defendant to the 1st  cell, 
which is cell1,1, which is the cell for NonWhite/Yes. The program makes 825 of these 
random assignments and pauses.  We have filled up our contingency table with one 
possible outcome of 825 observations, but we need some way to tell how extreme this 
particular outcome is. One way to do this is to calculate a chi-square statistic on the data. 
That is easy to do, and we calculate this statistic for each particular sample. Keep in mind 
that we are using chi-square just as a measure of extremeness, not because we will evaluate the 
statistic against the chi-square distribution. We could have used the difference between the cross 
products in the matrix.  The more extreme the results, the larger our chi-square. We just 
tuck that chi-square value away in some array and repeat the experiment all over again. 
And we do this 10,000 times.  
 
I actually carried out this experiment. (That took me 37 seconds, which is faster than I 
could calculate Pearson’s chi-square once by hand.) For my 10,000 resamples, the 
proportion of cases that were more extreme than a chi-square of 7.71 was .0056, which is 
in excellent agreement with the chi-square distribution itself, which gave a probability of 
.0055. Remember that these data were drawn at random, so the null hypothesis is 
actually true. This is beginning to look as if the chi-square distribution is an excellent 
approximation of the results we obtained here, even when neither set of marginals is 
fixed. We can look more closely at the results of the resampling study to see if this is 
really true. 
 
The results of this sampling procedure are shown below. What I have plotted is not the 
mathematical chi-square distribution but the distribution of chi-square values from our 
10,000 resampling. It certainly looks like a chi-square distribution, but looks can be 
deceiving. 



 
One nice feature of the results is that the mean of this distribution is 0.98 with a variance 
of 1.89. (On a second run those values were 1.022 and 2.0027, respectively.) For the true 
chi-square distribution the mean and variance are df and 2df, or 1 and 2, which is very 
close. Let’s see how well they agree across a range of values.  
 
In Statistical Methods for Psychology, 7th ed. I used QQ plots to test normality. I just plotted 
the obtained quantiles against the ones expected from a normal distribution. I will do 
the same thing here except that I will plot my obtained chi-square values against the 
quantiles of the chi-square distribution. For example, I would expect 1% of a chi-square 
distribution with 1 df to exceed 6.63. Actually I found 94 / 10,000 = .94% at 6.63 or above. 
I would expect 50% of the results to be greater than or equal to 0.45, and actually 49.8% 
met that test. If I I obtain similar pairs of values for all of the percentages between 0 and 
100, I would have the following result. 
 
 

 
 
Notice that the values fall on a straight line. There are only trivial deviations of the 
results from that line. (The dashed lines represents confidence intervals.) 
 
So now we have at least four ways to evaluate data in 2 × 2 contingency tables. We can 
run a standard Pearson’s chi-square test (or a likelihood ratio test, which I have not 
described), we can assume that both sets of marginals are fixed and use Fisher’s Exact 
test, we can assume that row marginals are fixed but not the column marginals, or we 
can assume nothing about the marginals (other than the total number of observations) 
and run a resampling test. In the language of statisticians we are moving from the 
hypergeometric to the binomial to the multinomial distributions. The fact our results 
generally come out to be close is encouraging. I’m a great fan of randomization tests, but 
that is partly because I like to write computer programs. For those who don’t like to 
write programs, you can use either Fisher’s Exact Test or Pearson’s chi-square. There is a 
slight bias toward Fisher’s test in the literature when you have small sample sizes, but 
don’t settle for it until you have read the rest of this document. 



 
The one thing that I would not recommend is using Yates’ Correction with the standard 
Pearson chi-square. If you are worried about discreteness of the probability distribution 
go with Fisher’s Exact Test. 
 
Remember that Fisher’s Exact Test applies only to 2 × 2 tables. It can be expanded to 
larger tables, (Howell and Gordon, 1976), but that is not commonly done. (In R and S-
Plus there are no restrictions on dimensionality if you use “fisher.test( ) 

 

But are Things Really That Good?? 
 
It’s nice to know that with reasonably large samples the randomization tests (and the 
hypergeometric) produce results very similar to those produced by chi-square. But what 
if we don’t have large samples? In that case the chi-square distribution may not be an 
adequate fit to the resulting test statistic. I will start with Fisher’s original experiment, 
which only had 8 cups of tea. His results are below. 
 
  

  True Condition  

  First Second  

First 3 1 4  
Guess 

Second 1 3 4 

  4 4 8 

  
Suppose that we compute chi-square on these data. Our result will yield of chi-square of 
2.00 on 1 df with an associated probability of .1573. But Fisher’s exact test gives a 
probability of .4857!!!  The reason is fairly simple. There are only a few ways the data 
could have come out. The table could have looked like any of the following. 
 
 4     0  3   1  2   2  1   3  0   4 
 0     4  1   3  2   2  3   1  4   0 
 

χ2 =      8.00   2.00  0.00  2.00  8.00 
 
p .005  .157  1.00  .157  .005 
 
Fisher  .029  .486  1.00  .486  .029 
2-tail 
 
Fisher .014  .243  .757  .986  1.00 
1-tail 
 
Notice how discrete the results are and how far the (correct) Fisher probabilities are 
from the chi-square probabilities. With small samples and fixed marginals I strongly 



suggest that you side with Fisher—he could use some company. We know that for fixed 
marginals his values are theoretically correct, and we now know that chi-square 
probabilities are not even close. 
 
So the p values assigned by Fisher and by the chi-square distribution are greatly 
different.  But perhaps this is a bad example because the frequencies are so very small. 
So let’s go back to the example of the Vermont legislature and cut the sample sizes in 
each cell by approximately 5. (I had to cheat a bit to get whole numbers.) Remember that 
this is not a case where we would prefer to use Fisher’s Exact test because only the row 
totals are constant. So I will compare a standard chi-square test with the resampling 
procedure that we used earlier. 
 
 
  

 
 Vote  

 Yes No Total 

Women  7  2  9 
Men  12  8  20 
Total  19  10  29 
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The p value (two-sided) from chi-square = .351, which is not significant. If we had asked 
for Yates correction, chi-squared would have been .2597 with a p value of .61 whereas 
Fisher’s test would have had a p value of .43. Notice that these values are all over the 
place.  
 
Now let’s use the same resampling approach that we used earlier, holding the row 
marginals fixed but not the columns. The obtained difference in the two proportions 
were .7778 - .6000 = .1778. The probability of an outcome more extreme than this, in 
either direction, was .1703 + .1818 = .3521, which is virtually the same as the chi-square 
probability, but quite different from the probability given by Fisher’s test (.43). I prefer 
the resampling approach because it is in certain ways an exact test. But notice that the 
standard chi-square test produces almost the same statistic. This tells me that chi-square 
is a good fallback when you don’t want to do a randomization test. 
 
Now let’s go back to the death sentence data where neither set of marginals are fixed. If I 
cut my cell frequencies by approximately 9, I obtain the following data. The total sample 
sizes are larger than I would like for an example, but I can’t reduce the cells by much 
more and still have useful data.  
 
  



  
 Death Sentence  

Defendant’s 
Race 

Yes No Total 

Nonwhite 4 28 32 

White 4 56 60 

Total 8 84 92 

 
   
The standard Pearson chi-square on these data is 0.8944 for p = .3443. When we run a 
randomization test with the null hypothesis true and no constraints on the marginal 
totals we find 3518 results that are greater than our obtained chi-square, for p = .3518. 
Notice how well that agrees with the Pearson chi-square. Yates correction gave a p value 
of .5773, whereas Fisher’s Exact Test gave a p = .4422. Again we see that the standard 
chi-square test is to be preferred. (Well, I later reduced my cells by a factor of 
approximately 10 and found a chi-square probability of .395 and a resampling 
probability of .410—who can complain about that?) 

 

So what have we learned? 
 
Well, I have learned a lot more than I expected. When the data can reasonably be 
expected to have both sets of marginal totals fixed, then conditioning on those 
marginals, which is what Fisher’s Exact Test does, is the preferred way to go. However 
when one or both sets of marginals are not fixed, and when the sample size is small, 
Fisher’s test gives misleading values. Both when one set of marginals is fixed and when 
no marginals are fixed, the standard Pearson chi-square test, without Yates correction, is 
to be preferred. This would appear to be in line with the recommendation given by 
Agresti (2002), which is always reassuring. The chi-square test (when one or zero 
marginals are fixed) agrees remarkably well with randomization tests that seem to be 
reasonable ways of conceiving of the data. I had expected to find something like this, but 
I never thought that it would be anywhere as neat as it is. Now I have to go back to the 
book that I am revising and re-revise the section on Fisher’s Exact Test.  

 

The Programs 
 
The programs that I created with R can be easily downloaded. They are not 
particularly elegant, but they work just fine. In each of them I have several sets of 
data, with a “#” in front of all but one. A # simply comments out the line. You 
can create your own data matrix by mimicking what I have there. 
 

 



Plot the Hypergeometric Distribution 

www.uvm.edu/~dhowell/StatPages/More_Stuff/Chi-square/hypergeometric.r  
 
 

 
Row Marginals Fixed 

www.uvm.edu/~dhowell/StatPages/More_Stuff/Chi-square/rowfixed.r 
 
 

 
No Fixed Marginals 
 
www.uvm.edu/~dhowell/StatPages/More_Stuff/Chi-square/NoMarginalsFixed.r  
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