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The Treatment of Missing Data 

David C. Howell 

(Howell, D.C. (2008) The analysis of missing data. In Outhwaite, W. & Turner, S. 

Handbook of Social Science Methodology. London: Sage.) 

 

The treatment of missing data has been an issue in statistics for some time, but it has 

come to the fore in recent years. The current interest in missing data stems mostly from 

the problems caused in surveys and census data, but the topic is actually much broader 

than that. (For an excellent discussion of the problems encountered by the 2000 US 

Census, and the question of whether or not to adjust for missing data, see the article by 

Freedman and Wachter (Chapter 13) in this volume.) In this chapter I will discuss the 

treatment of missing data across a range of experimental designs, starting with those 

designs whose treatment is relatively straightforward (though not necessarily satisfactory) 

and moving to situations where the optimal solution is elusive. Fortunately we have come 

a long way since someone could say that the best treatment for missing data is not to have 

any. That may be the best treatment, but recent techniques have come far in narrowing 

the gap between the ideal and the practical. 

 

The treatment of missing data is not an area that is particularly controversial, 

leaving aside the political issues involved in the US Census. There are a number of 

alternative approaches, but there is pretty much universal agreement about the strengths 

and weaknesses of each. Over time new procedures replace older ones, but this, like 

many areas in statistical methods, is an area that changes slowly. So we often find that the 
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older methods are still used, but that is mostly because in a specialized area like this, it 

takes a long time for newer methods to be understood and to replace the old. 

 

My goal in this chapter is to give the reader an understanding of the issues 

involved in the treatment of missing data and the ability to be conversant with the 

approach that is adopted. When it comes to selecting an approach, it is not necessary to 

have an in-depth knowledge of the technical issues, but it is necessary to understand the 

alternatives and to have a grasp of what is involved in each method. 

 

Types of Missingness   

 

Any discussion of missing data must begin with the question of why data are missing in 

the first place. They could be missing for perfectly simple and harmless reasons, such as 

a participant having an automobile accident and not being able to appear for testing. In 

such a case missingness is more of a nuisance than a problem to be overcome. On the 

other hand, data could be missing on the basis of either the participant’s potential score 

on the dependent variable (Y) or any of the independent variables (Xi). The reasons for 

missing data plays an important role in how those data will be treated.  

 

Missing Completely at Random (MCAR)   

 

Rubin (1976) defined a clear taxonomy of missingness that has become the standard for 

any discussion of this topic. This taxonomy depends on the reasons why data are missing. 
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If the fact that data are missing does not depend upon any values, or potential values, for 

any of the variables, then data are said to be missing completely at random (MCAR). The 

example of the careless motorist, who does not appear for testing because of an accident, 

having nothing to do with the study is a case in point. Pickles (2005) phrased the 

condition somewhat differently by saying that for MCAR the probability of missingness 

is a constant. Any observation on a variable is as likely to be missing as any other. If you 

are going to have missing data, this is the ideal case because treatment of the existing 

data does not lead to bias in the estimated parameters. It may lead to a loss in power—

which is often not a serious problem in census work, though it certainly can be in 

experimental studies—but it will not lead to biased parameter estimates. 

 

Little (1998) has provided a statistical test of the MCAR assumption. His MCAR 

test is a chi-square test. A significant value indicates that the data are not MCAR. This 

test is provided in the SPSSMissing Values Analysis (MVA), which is not part of the 

base system, and should be applied whenever there is some question about MCAR. SAS 

also includes this test in PROC MI. 

 

Missing at Random (MAR)   

 

Data are missing at random (MAR) if the probability of missing data on a variable (Y) is 

not a function of its own value after controlling for other variables in the design. Allison 

(2001) uses the example of ‘missingness’ for data on income being dependent on marital 

status. Perhaps unmarried couples are less likely to report their income than married ones. 
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Unmarried couples probably have lower incomes than married ones, and it would at first 

appear that missingness on income is related to the value of income itself. But the data 

would still be MAR if the conditional probability of missingness were unrelated to the 

value of income within each marital category. Here the real question is whether the value 

of the dependent variable determines the probability that it will be reported, or whether 

there is some other variable (X) where the probability of missingness on Y is conditional 

on the levels of X. To put it more formally, data are MAR if p(Y missing |Y,X) = p(Y 

missing | X). 

 

Missing Not at Random 

 

Data are classed as missing not at random (MNAR) if either of the above two 

classifications are not met. Thus if the data are not at least MAR, then they are missing 

not at random. When data are MNAR there is presumably some model that lies behind 

missingness. If we knew that model we might be able to derive appropriate estimators of 

the parameters in the model underlying our data. For example, if people with low 

incomes are in fact more reluctant to report their income than people with higher 

incomes, we could presumably write an equation (a model) predicting missingness on the 

basis of income. Such an equation could then be incorporated into a more complex model 

for estimating missing values. Unfortunately we rarely know what the missingness model 

is, and so it is difficult to know how to proceed. In addition, incorporating a model of 

missingness is often a very difficult task and may be specialized for each application. See 

the article by Dunning and Freedman (2008) for a useful example of a model dealing 
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with missingness. Notice also Dunning and Freeman’s interesting example of a situation 

in which data are missing because of their score on the independent variable. That 

example illustrates that such data may seriously distort the correlation between the two 

variables, but may have little effect on the regression coefficient. 

 

Ignorable and Nonignorable Missingness  

 

As I have suggested, when we have data that are MNAR, life becomes very much more 

difficult. Here we say that the mechanism controlling missing data in nonignorable. That 

means that we cannot sensibly solve whatever model we have unless we are also able to 

write a model that governs missingness. Modeling missingness is a very difficult thing to 

do, and most discussions, including this one, do not discuss the treatment of data whose 

missingness is nonignorable. Freeman and Wachter’s discussion in this volume (see 

Chapter 13) of what is involved in dealing with missing census data illustrates just how 

difficult, and perhaps unsuccessful, such efforts can be. 

 

On the other hand, if data are at least MAR, the mechanism for missingness is 

ignorable. Thus we can proceed without worrying about the model for missingness. This 

is not to say that we can just ignore the problem of missing data. We still want to find 

better estimators of the parameters in our model, but we do not have to write a model that 

gets at missingness. We certainly have enough to do to improve estimation without also 

worrying about why the data are missing. 
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Missing Data and Alternative Experimental Designs  

 

How we deal with missing data depends in large part on the experimental design that we 

are employing. Consider the difference between a correlational study where data on many 

variables are collected and then subjected to an analysis of linear multiple regression and 

an experimental study where we have two independent variables, usually categorical in 

nature, and one dependent variable. In an analysis of variance setting we most often think 

in terms of ‘unequal sample sizes’ rather than ‘missing data’, although unequal sample 

sizes very often are the direct result of data being missing rather than a planned 

inequality. With unequal sample sizes the techniques are quite well worked out. But in 

regression, we often want to substitute pseudo-values of a variable (referred to hereafter 

as ‘imputing data’) and then solve the regression with a complete dataset. The way we 

approach these two examples is quite different. 

 

Traditional Experimental Designs   

 

For those whose main focus is experimental studies of behavior, the idea of missing data 

usually means that a person did not show up to participate in a study, or that one 

classroom had more students than another, or that a piece of equipment did not record the 

data correctly. In these situations missing data create problems, but they are nothing like 

the problems involved in survey research, for example. In this section I am not taking a 

strict interpretation of ‘experimental’ by always requiring that observations be assigned 
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to levels of the independent variable(s) at random. But I am distinguishing those studies 

which we loosely call ‘experimental’ from those that we think of as ‘observational’.  

 

In experimental studies we most often have data missing on the dependent 

variable, though there are times when it is the independent variable that is missing. The 

latter situation is most common when the level of the independent variable is defined by 

self-report on the part of the participant, though there can be other causes. We have 

somewhat different problems depending on whether it is the independent or dependent 

variable that is missing. 

 

Missing data on the independent variable   

 

We will begin with the situation in which we class observations into groups on the basis 

of self-report, and then try to compare those groups on some dependent variable. For 

example, Sethi and Seligman (1993) compared three religious groupings—‘Liberal, 

Moderate, and Fundamentalist’—on their level of optimism. In their study they were able 

to identify religious groups on the basis of direct observation, though obviously random 

assignment was not an option. But what if they had identified groups on the basis of a 

separate item that they included on the questionnaire that they gave out to measure 

optimism? Certainly there are a number of people who would fail to disclose their 

religious affiliation, and it is unlikely that the probability of disclosure is constant across 

all religious groups. (Certainly if you consider your religious affiliation to be a local 
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coven, you would probably be less likely to report it than if you went to the local 

Methodist church.) 

 

In this situation the simplest approach is to form four groups instead of three. In 

other words we identify participants as Liberal, Moderate, Fundamentalist and Missing, 

and then run the analysis using those four groups. If contrasts show that the Missing 

group is not different from the other groups, we might be justified in dropping the 

missing data and proceeding normally with our analysis of the other three groups.  

 

If we discover that the mean optimism score from those participants for whom 

group membership is unknown is significantly different from some other means (but 

perhaps not from all), we have a problem of interpretation, but at least we have learned 

something about missingness. A major interpretive problem here is that not only do we 

not know anything about the religious orientation of those for whom we have missing 

data, but we also have some concerns about those for whom we do have data. Suppose, 

for example, that religious liberals were far more likely to refuse to identify their 

religious preferences than the other two groups. What does that say about the data from 

those liberals who do self-identify? Do we actually have a distorted sample of liberals, or 

are the ones who didn’t self-report just a random sample of liberals (for a more complete 

discussion of this issue, see Cohen et al., 2003). 
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Missing data on the dependent variable   

 

We have somewhat different problems when data are missing on the dependent variable. 

When we have a design that reduces to a one-way analysis of variance or a t test, the 

treatment of missing data on the dependent variable is usually straightforward if we can 

assume that the data are at least MAR. Any software solution for an analysis of variance 

or t will provide a satisfactory result. The most serious problems we have are that our 

parameter estimates are better for large groups than for small ones. This assumes, of 

course, that our missingness is MAR and therefore ignorable. I don’t mean to suggest that 

missing data are harmless in this situation, but the problem is more one of statistical 

power than interpretation. 

 

But what about those situations where we would not be willing to assume that 

data are MAR, and therefore that the missingness mechanism is nonignorable? There are 

certainly situations where nonignorable missingness arises and creates problems. Imagine 

that we are running a treatment study for hypertension and people who are not receiving 

much benefit from the treatment start dropping out. Here missingness falls in the 

nonignorable category. We will probably see that average blood pressure falls for those 

remaining in our study, but that may simply mean that we no longer have those 

unsuccessfully treated patients remaining in the study and raising the mean. All we have 

are data from those who remain, which largely means from those who derive benefit. In 

this case means and standard errors are going to be decidedly biased with respect to the 
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parameters in the population, and we will be hard pressed to draw meaningful 

conclusions. 

 

When it comes to designs that lead to a factorial analysis of variance, missing data 

are more of a problem. But even here the solutions are at least well spelled out, even if 

there is not always complete agreement on which solution is best.  

 

It is easy to illustrate the problem caused by missing data in a factorial design. 

When we have a factorial with equal number of observations in each cell, then the main 

effects and interaction(s) are orthogonal to one another. Each effect is estimated 

independent of the others. We do not have to draw any conclusion conditional upon the 

level of another independent variable. When we have unequal sample sizes however,  

row, column and interaction effects are confounded. As a simple, though extreme, 

example, consider the following design. In this experiment with hypothetical data we 

recorded data on driving errors both from participants who had and had not been 

drinking. We further broke the data down into those collected in Michigan and Arizona. 
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Table 11.1: Illustration of the contaminating effects of unequal sample sizes 

 

 Non-Drinking Drinking Row Means 

Michigan 13 15 14 16 12 

 

 X 11 = 14 

18 20 22 19 21 23 

17 18 22 20 

 X 12 = 20 

 

 X 1. = 18.0 

Arizona 13 15 18 14 10 

12 16 17 15 10 14 

 X 21 = 14 

24 25 17 16 18 

 

 X 22 = 20 

 

 X 2. = 15.9 

Column 

Means 

 

 X .1 = 14 

 

 X .2 = 20 

 

 

 

 

The most obvious, and expected, result is that drivers who have been drinking 

make far more errors than drivers who have not been drinking. That will probably 

surprise no one. But notice also that drivers from Michigan appear to make more errors 

than drivers from Arizona. Is that really true? Are drivers from Michigan really that bad? 

If you look at the non-drinking drivers you see that Michigan and Arizona both have 

means of 14. And if you look at drinking drivers, the two states both have means of 20. 

So when we control for drinking—in other words, when the results are treated as 

conditional on drinking—there is no between-state effect. The higher score in Michigan 

actually came from the fact that there were proportionally more drinking drivers in that 

sample, and they made more errors because they had been drinking. 
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The example of drinking and driving errors was intended to point to the fact that 

missing data can cause important problems even in a simple factorial design. How we 

treat these data depends on why data are missing. Perhaps the data were collected by two 

different groups of researchers working in conjunction. The ones in Michigan decided 

that they would rather have twice as many drinking than non-drinking drivers. The 

researchers in Arizona made just the opposite choice for some reason. Then missingness 

does not depend in any way on the variables in the study, and is ignorable. In this case we 

would most likely want to partial all other effects out of the effect in question. Thus we 

look at states after partialling drinking and the state x drinking interaction (which would 

in this example would be zero). Similarly for drinking and for the interaction. This is the 

solution which SPSS and SAS call the Type-III solution. It has been the default in that 

software through many versions and should be used unless there is a very specific reason 

to do something else. 

 

However let us assume for the moment that there are just many more drinking 

drivers in Michigan than in Arizona (I have absolutely no reason to think this is really the 

case). Then it may be meaningful to say that Michigan drivers, on average, make more 

errors than Arizona drivers. The apparent cause is the higher percentage of drunken 

drivers in Michigan, but, whatever the cause, there are still more driving errors in that 

state. This points out the important fact that even with a nice neat tidy analysis of 

variance, determining why the data are missing is important both in selecting an 

appropriate analysis and in drawing meaningful conclusions. If I really did think that 
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there were a higher percentage of drinking drivers in Michigan, I would not want to 

partial the Drinking variable in calculating a main effect for State. 

 

Repeated measures designs   

 

Within the category of experimental research designs we have repeated measures designs 

where participants are measured repeatedly over time or trials. The nice feature of these 

designs is that very often if you do not have data for one trial for a particular participant, 

you probably do not have data for other trials. The only thing you can do there is drop the 

participant from the analysis. Assuming that nonresponse is at least MAR, your 

parameter estimates will remain unbiased. 

 

In some repeated measures (or time series) designs that take place over a period of 

time, there may be a different kind of problem with missing data. For example, if the 

study takes place over a year and participants move away, get sick, or just get tired of the 

experiment, you will have data for the first few trials but not for later trials. There is no 

simple solution to this problem. Simply dropping those individuals from the study is one 

possibility, and it may be an acceptable one if the data are MAR. If the data are not 

MAR, with the poorer-performing participants tending to drop out, then deleting whole 

cases will lead to bias in our estimates. 

 

One solution that is sometimes employed, more often in medical research than in 

the social sciences, is called Last Observation Carried Forward (LOCF). As the name 
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implies, the last observation a participant gave is entered into the empty cells that follow 

(and hopefully the degrees of freedom are adjusted accordingly). In the past the FDA 

recommended this approach in clinical trials, but we now know that it leads to biased 

results and underestimates variability across trials. Similar strategies involve replacing 

missing observations with the participant’s mean over the trials on which data are 

present, or basing imputed values on trends from past trials. All these approaches carry 

with them assumptions about what the data would have looked like if the participant had 

not dropped out, and none of them is to be recommended. Methods discussed later in this 

article offer somewhat better solutions with less bias. 

 

The intention-to-treat model   

 

A common procedure in medical research, which is far less often used in the behavioral 

sciences, but which does have much to offer in many behavioral studies, is known as the 

intention-to-treat model. While it is not always thought of as a technique for missing data, 

that is exactly what it is, since some number of participants in one condition are actually 

‘missing for that condition’ because they were switched to a different treatment.i 

 

Assume that we are doing a clinical study of two different treatments for angina. 

(I use a medical example because I have useful data for that, but you could just as easily 

think of this study as a comparison of cognitive behavior therapy and family therapy as 

treatments for anorexia.) Assume further that patients were randomly assigned to a 
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surgical or a pharmacological treatment of angina. Two years later we record the number 

of patients who are still alive and who have died. 

 

This sounds like a perfectly reasonable experimental design and we would expect 

a clear answer about which approach is best. But our patients are actual human beings, 

and the physicians who treat them have an ethical obligation to provide the best care 

possible. So although a patient is randomized to the pharmacological treatment group, his 

physician may decide part way through the study that he really needs surgery. So what do 

we do with this patient? One approach would be to drop him from the study on the 

grounds that the randomized treatment assignment was not followed. However, that 

would bias the remaining sample toward those who did well on medication. Another 

possibility would be to reassign that patient to the surgical group and analyze his data 

‘As-Treated’. The third way would be to continue to regard him as being in the 

pharmacological group regardless of what actually happened. This is the intention-to-

treat model, and at first it sounds foolish. We know the guy had surgery, but we pretend 

that he received only medication. 

 

The first thing to recognize is that under the intention-to-treat model a null 

difference between groups must not be taken to mean that the two therapies are 

equivalent. As originally proposed by Richard Peto in the early 1980s, that was clearly 

part of the model, though this often gets forgotten. This is especially troublesome as 

‘equivalence testing’ is becoming more important in clinical settings. Suppose that we 

imagine that the pharmacological group was treated with a daily dose of castor oil. (I am 
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of the generation that still remembers that wonderful stuff.) I would assume, though I am 

not a physician, that castor oil will not do anything for angina. (The only thing it does is 

taste awful.) After a short period the doctors of those in the castor oil group decide that it 

is a useless therapy and move most of their patients to the surgical group, which they 

have some ethical responsibility to do. So what has happened is that almost all of the 

patients were actually treated surgically, and, because they were treated alike, we would 

expect that they would respond alike. So when we run our statistical test at the end of 

treatment we would not be able to reject the null hypothesis. This certainly should not be 

taken to mean that castor oil is as good as surgery—we know that it clearly does not 

mean that. It simply says that if you assign some people to castor oil and some to surgery, 

they will all come out the same at the end. However, if the surgery group does come out 

with a significantly greater survival rate than the castor oil group, we have evidence that 

surgery is better than castor oil. So a statistically significant difference here means 

something, but a non-significant difference is largely uninterpretable. (Of course this was 

Fisher’s model all along, but we often lose sight of that.) 

 

In addition to analyzing the data as intent-to-treat, there is another analysis that 

we should be doing here. We should simply count the number of patients who ended up 

receiving each kind of treatment. When we discover that almost all patients were 

switched away from castor oil, this tells us a lot about what their physicians thought of 

the castor oil treatment. It may also be very profitable to also run an analysis on groups 

‘as-treated’ and to present that result as well as the intent-to-treat result. 
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Table 11.2 shows the results of a study by the European Coronary Surgery Study 

Group, reported by Hollis and Campbell (1999), on surgical and pharmacological 

treatment for angina pectoris. In that study 769 men were randomized to the two groups, 

373 to the pharmacological treatment and 394 to the surgical treatment. 

 

 

Table 11.2: Results from Hollis and Campbell (1999) 

 As Assigned As Treated 

 Drug Surgical Drug Surgical 

Survivors 344  373  316  401 

Deaths  29  21  33  17 

Total 373 394   349  418 

Mortality 

(%) 

7.8% 5.3% 9.5% 4.1% 

 

 

We can see from the table that the As-Treated analysis would suggest that the 

surgery condition has a much lower mortality rate than the pharmacological condition. 

There were six patients who were assigned to surgery but died before that surgery could 

be performed, and so were actually only treated pharmacologically. In the Intent-to-Treat 

(As-Assigned) analysis those six deaths raise the death rate for the surgical group. In the 

As-Treated analysis we see that there are much larger, and significant, differences 

between groups. 
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Contingency tables   

 

Missing data are also a problem when the data are collected in the form of contingency 

tables, as they were in the intent-to-treat example above. Here we often cross our fingers 

and hope that the data are at least MAR. If they are not MAR, the interpretation of the 

results is cloudy at best. Here again the problems are the same ones that we have been 

discussing. If there is systematic dropout from one or more cells, the missing data 

mechanism is confounded with the results of the data that are there.  

 

We will take as an example a study by Gross (1985). She investigated attitude 

about weight in African-American and White high-school girls. She classified by ethnic 

group and recorded whether the girls wanted to gain weight, lose weight or maintain their 

current weight. The data in Table 11.3 are from her study, except for the fact that she did 

not have any missing data; I have added the missing data to create an example. 

 

Cohen et al. (2003) discuss the analysis of categorical data in detail and describe 

an imputation method that assigns missing data to the non-missing cells of the table on 

the basis of a reasonable model of missingness. This is conceptually a very simple 

procedure. If we look at the African–American row in the following table we see that 

there are 30 missing observations—cases in which we know the ethnic group, but not 

their goals about weight gain or loss. But we also know that 24/99 = 24% of the African–

American cases for which we did know the goal fell in the Gain column. So it seems 
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reasonable to assume that 24 percent of the 30 missing cases would also have fallen in 

that column if we had been able to collect their data on Goal. Similarly, 24/55 = 44% of 

the group that wanted to gain weight were African–American, and so it is reasonable that 

44 percent of the 10 missing cases in that column should be assigned to African–

Americans. Therefore our new estimate of the count in the African–American/Gain cell 

should be 24 + (24/99)*30 + (24/55)*10 = 35.63. If we do the same for the rest of the 

cells we find the values indicated in parentheses in each cell. 

 

Table 11.3: Attitude about weight gain/loss in African-American and White high-

school girls 

 Goal   

Ethnic 

Group 

Gain Lose Maintain Missing Total 

Non-

missing 

African–

American 

24 

(35.63) 

47 

(63.60) 

28 

(41.15) 

30 99 

White 

 

31 

(40.12) 

352 

(409.12) 

152 

(194.38) 

60 535 

Missing 

 

10 20 30   

Total Non-

Missing 

55 399 180  634 
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Source: Gross (1985) with hypothetical missing data added 

 

At this point we have allocated a total of 140.38 cases to the first row. Of those, 

35.63/140.38 = 25.38% are in the African–American/Gain cell (whereas we formerly had 

24/99 = 24.24% in that cell. In other words we have slightly changed our estimate of the 

percentage of observations falling in cell11. Cohen et al. (2003) suggest reallocating the 

30 missing observations in row 1 on the basis of this revised estimate, and performing 

similar calculations on each cell. If you do this you will again change, slightly, the 

percentage of observations in each cell. So you again reassign missing observations on 

the basis of those revised estimates. Eventually this iterative process will stabilize, with 

no further changes as a result of reallocation. At that point we declare the process 

completed, and run a standard chi-square test of the revised contingency table. For these 

data it took eight iterations for this process to stabilize when I did the calculations, and 

the resulting observed frequencies are shown in Table 11.4. 
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Table 11.4: Observed frequencies after iteratively reallocating missing observations 

to Table 11.3  

 Goal  

Ethnic 

Group 

Gain Lose Maintain Total 

African-

American 

36.49 63.01 42.30 141.80 

White 

 

39.96 407.38 194.86 642.20 

Total 

 

76.45 470.39 237.15  

 

 

The Pearson chi-square value for this table is 51.13 on 2 df which is clearly 

significant. For Gross’s data (recall that she did not have the extra observations that I 

added as missing values), the chi-square was 37.23. 

 

Observational Studies   

 

A high percentage of the research studies reported in the literature are non-experimental. 

Among others, these include standard regression studies, many studies of structural 

equation models, and survey studies. These studies do not use random assignment and are 

often limited to those who happen to fall within the sample at hand. Here there is even 
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more opportunity for missing data, and perhaps even less chance of adequately modeling 

missingness. Moreover missing values are nearly as likely to occur with the independent 

variable (if there is one) as the dependent variable. Many methods have been developed 

to handle missingness in these situations, and the remainder of this chapter will focus on 

those. But keep in mind that these methods apply only when the data are at least missing 

at random. 

 

Linear regression models    

 

Many of our problems, as well as many of the solutions that have been suggested, refer to 

designs that can roughly be characterized as linear regression models. The problems—

and the solutions—are certainly not restricted to linear regression: they apply to logistic 

regression, classification analyses and other methods that rely on the linear model. But I 

will discuss the problem under the heading of linear regression, because that is where it is 

most easily seen. 

 

Suppose that we have collected data on several variables. One or more of those 

variables is likely to be considered a dependent variable, and the others are predictor, or 

independent, variables. We want to fit a model of the general form 

 

  
Yij = b0 + b1X1i + b2 X2i + eij  
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In this model data could be missing on any variable, and we need to find some way of 

dealing with that situation. We will assume that the missing data are either MCAR or 

MAR. A number of approaches to missingness in this kind of situation have been used 

over the years. 

 

Casewise deletion   

 

Probably the most common approach to missing data in regression analyses is what is 

called casewise deletion (or ‘listwise deletion’, or ‘available case analysis’). Using this 

approach we simply drop from the analysis all cases that include any missing 

observation. The analysis is then carried out on the data that remain. This is usually the 

default analysis for most statistical software. 

 

There are definite advantages to casewise deletion. If the missing data are at least 

MAR, casewise deletion leads to parameter estimates that are unbiased. The only loss is 

to statistical power, and in many situations this is not a particularly important 

consideration because this type of study often has a high level of power to begin with. 

 

If the data are MNAR, this approach produces biased estimates. The resulting 

model is difficult to interpret because of confounding with missingness. However, in 

many situations this approach has much to recommend it. It is certainly better than many 

of the alternatives. 
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Pairwise deletion    

 

In pairwise deletion, data are kept or deleted on the basis of pairs of scores. In computing 

the overall covariance or correlation matrix, a pair of scores contributes to the correlation 

if both scores are present, but does not contribute if one or both of them are missing. 

Thus if a participant has data on Y, X1, X2, and X5, but not on X3 or X4, that participant 

would be included in computing 
1YXr , 

2YXr , and 
5YXr , but not in computing 

3YXr  or 

4YXr (and similarly for the rest of the pairs of observations). All available observations 

would be used in estimating means and standard deviations of the variables. 

 

This method has one advantage, which is that it makes use of all available data 

and thus estimates parameters on the maximum sample size. But that is its only 

advantage. The major disadvantage is that each correlation, mean and standard deviation 

is estimated on a somewhat different dataset. In addition, it is not only possible but also 

not uncommon that the covariance or correlation matrices resulting from this approach 

and needed for the analysis will not be positive definite. This means that it is impossible 

to calculate a normal inverse of either matrix, and thus be able to solve the necessary 

equations.  

 

Pairwise deletion is generally a bad idea and I can think of no situation in which I 

would recommend it. As someone once said of stepwise regression, I would characterize 

pairwise deletion as ‘unwise’ deletion. 
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Mean substitution   

 

One approach that is sometimes taken when data on an independent variable are missing 

is to substitute for the missing scores the mean on that variable for all nonmissing cases. 

This approach has the dubious advantage of using all the cases, but it has several 

disadvantages. 

 

The results in Table 11.5 were obtained using a data file from Cohen et al. (2003). 

In this situation we were predicting the salary of members of the university faculty solely 

on the basis of the number of times their publications were cited. There are 62 cases with 

complete data and another 7 cases with Salary but without Citation. The results for an 

analysis of complete cases (N = 62) and an analysis of all cases with mean substitution 

for missing data (N = 69) are shown in the first two rows of the following table. Ignore 

the last row of the table for a moment. 

  

Table 11.5: Salary and citations of members of university faculty 

Analysis N r b1 Standard 

error (b1) 

Complete cases 62 .55 310.747 60.95 

Mean substitution 69 .54 310.747 59.56 

Mean substitution 

plus Missingness 

69 .56 310.747 59.13 
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Source:  Derived from Cohen et al. (2003) 

 

In this table you should notice that the regression coefficient for citations (b1) is 

the same in the two analyses. However the standard error of the coefficient is smaller in 

the mean substitution analysis. This is because we have added seven cases where the 

deviation of the observation from the mean is 0, but we have increased the sample size. 

Holding the numerator constant while increasing the denominator automatically reduces 

the result. Although we have added cases, we have added no new information, and any 

change is in some way spurious. What we have is a standard error that is biased 

downward, leading to an inappropriate test on b1 and incorrect confidence limits. This is 

one of the reasons why mean substitution is not a particularly good way to proceed when 

you have missing data. It has been argued that if you have only a few missing cases, the 

use of mean substitution will lead to only minor bias. But if you have only a few missing 

cases, you also have very little to gain by finding a way to add those cases into the 

analysis. I suggest that you do not even consider mean substitution. 

 

Missing data coding   

 

One way to improve on the mean substitution approach is to make use of any information 

supplied by missingness. A good way to do this is to add a variable to the regression that 

is coded ‘1’ if the observation is missing and ‘0’ if the observation is present. We again 

use mean substitution for the missing data. 
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Jacob Cohen was once an advocate of this approach, but his enthusiasm cooled 

over the years. The result of using both mean substitution and coding for missingness is 

shown in the bottom row of the Table 11.5. There you can see that the coefficient for 

Citations remains the same, but the standard error is still underestimated. The one 

advantage is that the coefficient for the missingness variable of 4439 (not shown) 

represents the difference in mean income between those who do and those who do not 

have missing data on Citations. This is useful information, but we did not need a 

regression solution to find it. 

 

Jones (1996) has shown that coding for missingness when we have multiple 

independent variables can lead to bias in both the regression coefficients and their 

standard errors. He examined a somewhat less biased approach, but still found that 

wanting. Coding for missingness in conjunction with mean substitution has not been 

particularly successful, and is no longer to be recommended. 

 

Regression substitution (Imputation by least squares)    

 

One additional fairly simple approach to the treatment of missing data is to regress the 

variable that has missing observations on the other independent variables (or even 

variables not used in the study), thus producing a model for estimating the value of a 

missing observation. We then use our regression equation to impute (substitute) a value 

for that variable whenever an observation is missing. 
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When there is a strong relationship between the variable that has missing 

observations and other independent variables, regression substitution is thought to work 

reasonably well. Lynch (2003) has characterized it as perhaps the best of the simple 

solutions to missing data. However regression imputation will increase the correlations 

among items because some of the items will have been explicitly calculated as a linear 

function of other items. This will affect the regression coefficients that result from the 

analysis. The imputed values would be expected to have less error than if the values were 

not missing. Thus regression imputation is likely to underestimate the standard error of 

the regression coefficients by underestimating the variance in the imputed variable. But 

this leads to an alternative solution, which will be discussed later, wherein we resolve this 

problem by deliberately adding random error to our imputed observation. 

 

In computing regression imputations, a fairly new procedure in SPSS, known as 

missing value analysis, by default adds a bit of error to each observation. We will see this 

in more detail later, but it is an attempt to reduce the negative bias in the estimated 

standard errors (see Acock, 2005) This additional error does not solve the problem, but it 

reduces it somewhat. Like most imputation procedures, regression imputation assumes 

missing values are MAR (but not necessarily MCAR). The regression method also 

assumes homogeneity of regression, meaning that the same model explains the data for 

the non-missing cases and for the missing cases. If this assumption is false, the imputed 

values may be quite different from what the values would be if we had been able to 

measure them.  
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Hot deck imputation    

 

One of the earliest methods of imputing missing values is known as hot deck imputation. 

Scheuren (2005) provides an interesting glimpse of how hot deck procedures developed 

within the US Census Bureau. In the 1950s people generally felt that they had an 

obligation to respond to government surveys, and the non-response rate was low. In an 

effort to deal with unit non-response (the case where all data from a participant are 

missing), data cards (yes, they did use Hollerith cards in those days) for respondents were 

duplicated, and non-responders were replaced by a random draw from these duplicate 

cards. Thus if you were missing a respondent of a certain gender from a certain census 

track, a draw was made from the data of respondents of that gender residing in that 

census track. The method worked well when only a small amount of data were missing, 

and the variance properties of the method were understood (Hansen et al. 1953). 

 

If it was acceptable to substitute ‘pseudo-respondents’ for missing respondents, it 

was not a big step to replace missing items (questions) with pseudo-items. Again, items 

were replaced by a random draw from records selected on the basis of values on 

appropriate covariates. As long as the amount of missing data was minimal, this 

procedure worked well and was well understood. Unfortunately, the response rate to any 

survey or census has fallen over the years, and as we replace more and more data, the 

properties of our estimators, particularly their standard errors, become a problem. Hot 

deck imputation is not common today, although it is apparently useful in some settings. 
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Expectation–Maximization (EM)   

 

The two most important treatments of missing data in the recent literature are 

expectation/maximization (known as the EM algorithm) (Dempster et al., 1977) and 

multiple imputation (MI) (Rubin, 1978). These are not distinct models, and EM is often 

used as a starting point for MI. I will discuss the two in turn, though they tend to blend 

together. 

 

EM is a maximum likelihood procedure that works with the relationship between 

the unknown parameters of the data model and the missing data. As Schafer and Olsen 

(1998) have noted, ‘If we knew the missing values, then estimating the model parameters 

would be straightforward. Similarly, if we knew the parameters of the data model, then it 

would be possible to obtain unbiased predictions for the missing values.’(p. 553-554). 

This suggests an approach in which we first estimate the parameters, then estimate the 

missing values, then use the filled-in dataset to re-estimate the parameters, then use the 

re-estimated parameters to estimate missing values, and so on. When the process finally 

converges on stable estimates, the iterative process ends. 

 

For many, perhaps even most, situations in which we are likely to use EM, we 

will assume a multivariate normal model. Under that model it is relatively easy to explain 

in general terms what the EM algorithm does. Suppose that we have a dataset with five 

variables (X1 – X5), with missing data on each variable. The algorithm first performs a 
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straightforward regression imputation procedure where it imputes values of X1, for 

example, from the other four variables, using the parameter estimates of means, 

variances, and covariances or correlations from the existing data. (It is not important 

whether it calculates those estimates using casewise or pairwise deletion, because we will 

ultimately come out in the same place in either event.) After imputing data for every 

missing observation in the dataset, EM calculates a new set of parameter estimates. The 

estimated means are simply the means of the variables in the imputed dataset. But recall 

that when I discussed regression imputation, I pointed out that the data imputed with that 

procedure would underestimate the true variability in the data because there is no error 

associated with the imputed observations. EM corrects that problem by estimating 

variances and covariances that incorporate the residual variance from the regression. For 

example, assume that we impute values for missing data on X1 from data on X2, X3 and 

X4. To find the estimated mean of X1 we simply take the mean of that variable. But when 

we estimate the variance of that variable we replace   
Σ Xi − X( )2  with Σ Xi − X( )2 + s1.234

2 . 

Similarly for the covariances. This counteracts the tendency to underestimate variances 

and covariances in regression imputation. Now that we have a new set of parameter 

estimates, we repeat the imputation process to produce another set of data. From that new 

set we re-estimate our parameters as above, and then impute yet another set of data. This 

process continues in an iterative fashion until the estimates converge.  

 

EM has the advantage that it produces unbiased—or nearly unbiased—estimates 

of means, variances and covariances. Another nice feature is that even if the assumption 
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of a multivariate normal distribution of observations is in error, the algorithm seems to 

work remarkably well. 

 

One of the original problems with EM was the lack of statistical software. That is 

no longer a problem. The statistical literature is filled with papers on the algorithm and a 

number of programs exist to do the calculations. A good source, particularly because it is 

free and easy to use, is a set of programs by Joseph Schafer. He has developed four 

packages, but only NORM is available to run as a stand-alone under the Windows 

operating system. The others—CAT, which handles categorical data; MIX, for mixed 

models; and PAN, for panel or cluster data—are available as S-Plus libraries. 

Unfortunately S-Plus is not simple to use for those without experience with that 

programming environment. These programs are available from 

http://www.stat.psu.edu/~jls/misoftwa.html. I show printout from NORM below, and it is 

quite easy to use. The paper by Schafer and Olson (1998) listed in the references is an 

excellent introduction to the whole procedure. SPSS version 13 also includes a missing 

data procedure (as a separate add-on) that will do EM. The results of that procedure 

closely match that of NORM, but in my experience the standard errors in the resulting 

regression are smaller than those produced by data imputed using NORM. 

 

An example    

 

The following example is based on data from a study by Compas (1990, pers. comm.) on 

the effect of parental cancer on behavior problems in children. The dependent variable is 
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the Total Behavior Problem T score from the Achenbach Child Behavior Checklist 

(Achenbach, 1991). One might expect that the gender of the parent with cancer (SexP) 

would be a relevant predictor (things fall apart at home faster if mom is sick than if dad is 

sick). Other likely predictors would the anxiety and depression scores of the cancer 

patient (AnxtP and DeptP) and the spouse (AnxtS and DeptS). These five predictors were 

to be used in a multiple linear regression analysis of behavior problems. Unfortunately, 

due to the timing of the first round of data collection, many of the observations were 

missing. Out of 89 cases, only 26 had complete data. The good thing is that it is 

reasonable to assume that missingness was due almost entirely to the timing of data 

collection (different families receive a diagnosis of cancer at different times) and not to 

the potential value of the missing values. So we can assume that the data are at least 

MAR without too much concern. The data for this example are available as an ASCII file 

and as an SPSS file at 

www.uvm.edu/~dhowell/StatPages/More_Stuff/Missing_Data/CancerDataASCII.dat 

and at 

www.uvm.edu/~dhowell/StatPages/More_Stuff/Missing_Data/CancerDataRaw.sav , 

respectively. 

 

Using only casewise deletion in SPSS (version 13.0), we obtain the following results. In 

the variable names, ‘P’ stands for ‘patient’ and ‘S’ for ‘spouse.’ 

 

http://www.uvm.edu/~dhowell/StatPages/More_Stuff/Missing_Data/CancerDataASCII.dat
http://www.uvm.edu/~dhowell/StatPages/More_Stuff/Missing_Data/CancerDataRaw.sav
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Figure 11.1: Casewise Deletion Using SPSS 

 Coefficients(a) 

Coefficientsa

-2.939 12.003 -.245 .809
-3.769 2.803 -.183 -1.344 .194

.888 .202 .764 4.393 .000
-.064 .169 -.062 -.380 .708
-.355 .155 -.460 -2.282 .034
.608 .166 .719 3.662 .002

(Constant)
SexP
DeptP
AnxtP
DeptS
AnxtS

Model
1

B Std. Error

Unstandardized
Coeffic ients

Beta

Standardized
Coeffic ients

t Sig.

Dependent  Variable: Totbpta. 
 

 

 

N = 26, R2 = .658 

Source: Derived from data at 

www.uvm.edu/~dhowell/StatPages/More_Stuff/Missing_Data/CancerDataRaw.sav 

 

Notice that the sex of the parent with cancer does not have an effect, which is 

somewhat surprising, but the patient’s level of depression and the depression and anxiety 

levels of the spouse are all significant predictors. However, as noted above, complete data 

are available only for 26 of the 89 cases. 

 

We can improve the situation using the EM algorithm as implemented by Schafer. 

An analysis of missingness on these variables is shown in Table 11.6. 

 

Table 11.6: Analysis of missing data from Figure 11.1 



 

 35  

 

 

 NUMBER OF OBSERVATIONS =   89 

NUMBER OF VARIABLES =     9 

  

       NUMBER MISSING  % MISSING 

Sexp         7         7.87 

deptp        10      11.24 

anxtp        10        11.24 

gsitp        10        11.24 

depts        29        32.58 

anxts        29        32.58 

gsits        29        32.58 

sexchild      48        53.93 

totbpt       48        53.93 

 

 

Notice that for this analysis all the variables in the dataset are included. That will 

be true with imputation as well. In other words we will use variables in the imputation 

process that we may not use in the subsequent analysis, because those variables might be 

useful is predicting a participant’s score, even if they are not useful in subsequently 

predicting behavior problems. This is especially important if you have variables that may 

be predictive of missingness. 
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The SPSS analysis of the EM-imputed dataset is shown in Table 11.7. The data were 

imputed using Schafer’s NORM program and then read into SPSS. 

 

Table 11.7: SPSS analysis of the EM-inputed dataset 

Coefficientsa

-11.591 6.215 -1.865 .066 -23.953 .771
-3.238 1.749 -.106 -1.851 .068 -6.717 .241

.886 .094 .722 9.433 .000 .699 1.073
-.004 .099 -.003 -.039 .969 -.202 .194
-.418 .097 -.357 -4.310 .000 -.610 -.225
.762 .099 .631 7.716 .000 .565 .958

(Constant)
SexP
DeptP
AnxtP
DeptS
AnxtS

Model
1

B Std. Error

Unstandardized
Coeffic ients

Beta

Standardized
Coeffic ients

t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

Dependent  Variable: TotBPta. 
 

 

 

 

 

 

N = 89 R2 = .871 

 

Notice that the regression coefficients are not drastically different from those in 

the previous analysis with casewise deletion, but the standard errors are considerably 

smaller. This is due mainly to the large increase in sample size with the imputed data. 

Interestingly the sex of the patient is much closer to significance at α = .05. Notice also 

that the squared multiple correlation has increased dramatically, from .658 to .871. I am 
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much more comfortable with this model than I was with the earlier one which was based 

on only 26 cases. 

 

Multiple Imputation   

 

One additional method for imputing values for missing observations is known as multiple 

imputation (MI). The original work on this approach was due to Rubin (1987), and it and 

EM are now becoming the dominant approaches to the treatment of missing data. A 

discussion of this material can be found in Allison (2001), Schafer and Olsen (1998), and 

Little (2005). There are a number of ways of performing MI, though they all involve the 

use of random components to overcome the problem of underestimation of standard 

errors. The parameter estimates using this approach are nearly unbiased. 

 

The interesting thing about MI is that the word ‘multiple’ refers not to the 

iterative nature of the process involved in imputation but to the fact that we impute 

multiple complete datasets and run whatever analysis is appropriate on each dataset in 

turn. We then combine the results of those multiple analyses using fairly simple rules put 

forth by Rubin (1987). In a way it is like running multiple replications of an experiment 

and then combining the results across the multiple analyses. But in the case of MI, the 

replications are repeated simulations of datasets based upon parameter estimates from the 

original study. 
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For many years the implementation of MI was held back by the lack of good 

algorithms by which to carry it out and by the lack of software. In the last 10 years or so, 

both these problems have been largely overcome. The introduction of new simulation 

methods known as Markov Chain Monte Carlo (MCMC) has simplified the task 

considerably, and software is now available to carry out the calculations. Schafer has 

implemented a method of Markov Chain Monte Carlo called data augmentation, and this 

approach is available in his NORM program referred to earlier. MI is not yet available in 

SPSS, but it is available in SAS as PROC MI and PROC MIANALYZE. 

   

The process of multiple imputation, at least as carried out through data 

augmentation, involves two random processes. First, the imputed value contains a 

random component from a standard normal distribution. (I mentioned this in conjunction 

with the SPSS implementation of regression imputation.) Second, the parameter estimates 

used in imputing data are a random draw from a posterior probability distribution of the 

parameters. 

 

The process of multiple imputation via data augmentation with a multivariate 

normal model is relatively straightforward, although I would hate to be the one who had 

to write the software. The first step involves the imputation of a complete set of data from 

parameter estimates derived from the incomplete dataset. We could obtain these 

parameters directly from the incomplete data using casewise or pairwise deletion; or, as 

suggested by Schafer and Olsen (1998), we could first apply the EM algorithm and take 

our parameter estimates from the result of that procedure.  



 

 39  

 

 

Under the multivariate normal model, the imputation of an observation is based 

on regressing a variable with missing data on the other variables in the dataset. Assume, 

for simplicity, that X was regressed on only one other variable (Z). Denote the standard 

error of the regression as sXZ. (In other words, sXZ is the square root of MSresidual.). In 

standard regression imputation the imputed value of X ( X̂ ) would be obtained as  

 

0 1
ˆ

i iX b b Z= +  

 

But for data augmentation we will add random error to our prediction by setting 

 

0 1 .
ˆ

i i i X ZX b b Z u s= + +  

 

where ui is a random draw from a standard normal distribution. This introduces the 

necessary level of uncertainty into the imputed value. Following the imputation 

procedure just described, the imputed value will contain a random error component. Each 

time we impute data we will obtain a slightly different result.  

 

But there is another random step to be considered. The process above treats the 

regression coefficients and the standard error of regression as if they were parameters, 

when in fact they are sample estimates. But parameter estimates have their own 

distribution. (If you were to collect multiple datasets from the same population, the 

different analyses would produce different values of b1, for example, and these estimates 
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have a distribution.) So our second step will be to make a random draw of these estimates 

from their Bayesian posterior distributions—the distribution of the estimates given the 

data, or pseudo-data, at hand. 

 

Having derived imputed values for the missing observations, MI now iterates the 

solution, imputing values, deriving revised parameter estimates, imputing new values, 

and so on until the process stabilizes. At that point we have our parameter estimates and 

can write out the final imputed data file.  

 

But we do not stop yet. Having generated an imputed data file, the procedure 

continues and generates several more data files. We do not need to generate many 

datasets, because Rubin has shown that in many cases three to five datasets are sufficient. 

Because of the randomness inherent in the algorithm, these datasets will differ somewhat 

from one another. In turn, when some standard data analysis procedure (here we are using 

multiple regression) is applied to each set of data, the results will differ slightly from one 

analysis to another. At this point we will derive our final set of estimates (in our case our 

final regression equation) by averaging over these estimates following a set of rules 

provided by Rubin. 

 

For a discussion and example of carrying out the necessary calculations, see the 

excellent paper by Schafer and Olsen (1998). Another example based on data used in this 

article is available from the author. 
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Summary  

 

This chapter has discussed many ways of dealing with missing data. In all cases, missing 

data is a problem, but as we learn more about how to handle it, the problems become 

somewhat less important. 

 

I pointed out that with standard experimental studies the solutions are relatively 

straightforward and do not lead to significant bias. In those studies, missing data can lead 

to difficulty in interpretation, as shown in the example of driving performance under the 

influence of alcohol. But those problems are not going to be solved by any mathematical 

approach to missing data, because they are at heart problems of logic rather than 

problems of mathematics. 

 

With observational studies there are many methods that have been identified for 

dealing with missing observations. Some of the earlier solutions, such as hot deck 

imputation, mean substitution and pairwise deletion are slowly tending to fall by the 

wayside because they lead to bias in parameter estimation. The most important 

techniques, now that the necessary software is available, are the 

expectation/maximization (EM) algorithm and multiple imputation (MI). Both these rely 

on iterative solutions in which the parameter estimates lead to imputed values, which in 

turn change the parameter estimates, and so on. MI is an interesting approach because it 

uses randomized techniques to do its imputation, and then relies on multiple imputed 
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datasets for the analysis. It is likely that MI will be the solution of choice for the next few 

years until something even better comes along. 
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