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Indicator and Stratification Methods for Missing
Explanatory Variables in Multiple Linear Regression

Michael P. JONES

The statistical literature and folklore contain many methods for handling missing explanatory variable data in multiple linear
regression. One such approach is to incorporate into the regression model an indicator variable for whether an explanatory variable
is observed. Another approach is to stratify the model based on the range of values for an explanatory variable, with a separate
stratum for those individuals in which the explanatory variable is missing. For a least squares regression analysis using either
of these two missing-data approaches, the exact biases of the estimators for the regression coefficients and the residual variance
are derived and reported. The complete-case analysis, in which individuals with any missing data are omitted, is also investigated
theoretically and is found to be free of bias in many situations, though often wasteful of information. A numerical evaluation
of the bias of two missing-indicator methods and the complete-case analysis is reported. The missing-indicator methods show
unacceptably large biases in practical situations and are not advisable in general.

KEY WORDS: Epidemiology; Incomplete data; Missing data; Psychology.

1. INTRODUCTION

It is quite common in practice that a statistician planning
on performing a regression analysis finds that the explana-
tory variable information is incomplete on some subjects.
There can be several mechanisms at work that produce the
incompleteness. The statistician, of course, wishes to ap-
ply a strategy that comes as close as possible to the true
regression had data not been missing. For the purpose of
this article, it is sufficient to assume that the true regression
model is :

Y: = Bo + b1 X1 + B2 X2 + &4,

where the ¢; are independent error terms with mean zero
and common variance o2. We also assume throughout that
Y and X; are always measured but X, may be missing.
The most commonly used method for handling such data
is the complete-case analysis, so called because any sub-
ject with missing data is removed from the analysis. This
approach is valid when X, is not missing as a function of
either Y or ¢ and is useful when the vast majority of the
cases are complete. But when a fair proportion of the data
are missing, the complete-case method is very wasteful of
information. A multitude of alternative missing-data tech-
niques have been devised to reclaim as much of the avail-
able data as possible. Review articles by Afifi and Elashoff
(1967), Anderson, Basilevsky, and Hum (1983), and Little
(1992) have summarized many of the missing—explanatory
variable regression methods. There are, however, a couple
of classes of missing-data methods in common use in vari-
ous disciplines that have not yet been investigated for their
validity.

The two classes of missing-data methods to be studied
here fall under the headings of missing-indicator methods
and stratification methods. These methods have been pro-
posed for use in the areas of behavioral sciences, epidemiol-

i=1,...,n, (1)
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ogy, sample survey research, and business and economics.
In the missing-indicator method, an indicator of whether "
an explanatory variable is missing is worked into the re-
gression model (1). In particular, if Q3 is a binary indicator
of whether X is observed, then (1) is modified by replac-
ing X, by X»Q2 and by adding 1 — Q2 as another predic-
tor. This procedure has been suggested by Anderson et al.
(1983), Chow (1979), Cohen and Cohen (1975), and Miet-
tinen (1985). Cohen and Cohen (1975, p. 274) argued that
such methodology uses all the available information, includ-
ing the presence or absence of values on the explanatory
variable. Thus one avoids both “the risk of nonrepresenta-
tiveness in dropping subjects if data are missing nonran-
domly” and as well lower power from reduced sample size
“even if data are missing randomly.” In the context of lo-
gistic regression, Chow (1979) proposed a variation on this
method in which the interaction term X;Q. is also added
as a predictor to the model. A special case of the missing-
indicator method is of interest. In a one-way analysis-of-
variance problem, a common method of handling observa-
tions with unknown group identification is to create a sep-
arate group for them. This “missing” group is created by
adding a 1 — Q term to the regression model and replacing
the true dummy group indicators X; by the observed group
indicators X;Q.

A close relative to the missing-indicator methods is the
class of stratification methods. Suppose that X5 in model
(1) can assume only k distinct values. In this class of pro-
cedures, the analysis is stratified into k + 1 submodels, one
for each group of subjects with a distinct value of X, and
then a (k + 1)th stratum for those with unknown X>. This
is commonly done when X is a confounder and X is the
predictor of interest.

These classes of missing-data procedures for regression
have been proposed for use regardless of the missing-data
mechanism. These methods’ appeal is that they incorporate
the observed “missingness” into the model. A basic check
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on the validity of such modeling is whether the methods
produce biased estimation if no information about the re-
gression of Y on (X3, X5) is contained within the “miss-
ingness” aspect of the data. The goal of this article is to
investigate whether these procedures are biased when the
true regression model is given in (1) and X, can be missing
as a function of X; or X5 but not as a function of either Y
or €. These missing—explanatory variable methodologies are
quite general in that they can be implemented for any type
of regression: least squares, generalized linear models, Cox
proportional hazards regression, and others. Here we treat
least squares, because we can then derive exact biases of
the estimators for the regression coefficients and variances.
It is reasonable to conjecture that if parameter estimators
are biased for least squares, then they are probably biased
for the other regressions as well.

- The complete-case method is reviewed in Section 2,
which will help to set the stage for the other methods. The
missing-indicator methods are investigated in Section 3,
with a special section looking at the missing-group method.
In Section 4 the stratification methods are considered. An
evaluation of the magnitude of bias is carried out in Sec-
tion 5 for the purpose of recommending procedures to use
in practice. Some concluding comments are contained in
Section 6.

2. REVIEW OF THE COMPLETE-CASE METHOD

Before studying the missing-indicator and stratification
methods for handling missing data, it will be helpful to
review a standard missing-data technique—the complete-
case analysis, so called because any individuals with miss-
ing data are excluded from the analysis. The true model is
given by (1). Let Q; be 1 if the sth individual has complete
data and be zero otherwise. Define Q = diag(Q1,...,Qx).
Then the complete-case model is '

YiQi = 0c0Qi + 0c1X1:Qi + 02 X2:Qi + €:Qs,
i=1,...,n (2)
or, equivalently, as QY = QX6. + Qe. The following the-

orem summarizes the properties of the complete-case least
squares analysis.

Theorem 2.1.
is

The least squares estimator for model (2)

0. =B+ (X'QX)"'X'Qe. (3)
If Q is independent of ¢, then, conditional on Q,

E(RSS) = E(QY -QXd,)(QY - QX4,)

= g2 (ZQz—3)

Proof. Llet X, = QX and Y. = QY. Then 8,
= (X[X)'XLY, = (XQX)''X'QY = (X'QX)!
X'Q(XB+¢€) = B+ (X'QX)1X’'Qe, giving the first re-
sult. Next, recall the standard result

RSS (Yo —X.0,) (Y. —X.H0.)
= (Y. —X.8) (Y. - X:0)
- (éc - ﬂ)/xéxc(éc - :6)
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The first term on the right is €'Qe, and the second term
is easily seen to be e'H e, where H, = X (X/.X,)"1X’.
Hence RSS = ¢'(Q — H.)e. By theorem 1.7 of Seber
(1977) and the assumption that Q is independent of &,

E(RSS) = E[¢'(Q - H.)e] = tr[(Q — H,)Var(e)]
+ [(Ee)'(Q — H)(Ee)] = o’[tr Q — tr H]

- #(e3)

since tr[X (X.X,.)"1X/] = tr[(X.X,) "1 X/ X, ] = 3.

According to Theorem 2.1, for the method of complete-
case analysis to yield unbiased estimates of the regression
coefficients and error variance, the missing-data mechanism
can depend on the values of the covariates (i.e., Q; can
be a function of X3, and X5;) but not on the error term.
Two common ways in which the missing-data mechanism
may depend on the error term are through the existence of
an omitted covariate and through mismeasured covariates.
Suppose in (1) that ¢; = vX3; + €}, where ¢ has the usual
properties of an error term and X3 is the omitted covariate.
For example, in a forward stepwise regression procedure,
the second stage of analysis may only include X; and X,.
If X3 is orthogonal to (1, X, X5) and there is no missing
data (Q = I,,), then by (3), estimation is unbiased. But if
data are missing as a function of either X, X5, or X3, then
the bias is

> X3:iQs
X1 X3:Qs |, 4)
> X2iX3:Qs

which could be quite different from the zero vector.

The other case involves mismeasured covariates. Suppose
that X, is a mismeasurement of the true covariate Si; so
that in (1), e; = 81(S1; — X1:) + €}, where e has the usual
properties of an error term. Then, regardless of the type of
missing-data pattern (including no missing data at all), the
estimation of 3 can be biased. The resultant bias is given
by (4) with 3; replacing v and Sy; — X;; replacing Xs;.

3. MISSING-INDICATOR METHODS

As defined in Section 1, these methods modify the orig-
inal model by adding a missingness indicator and possibly
interactions between this indicator and the covariates. In the
first two methods discussed, the true model is of the form
(1), and only X5 is liable to be missing. The third method
involves adding a missing indicator to simple linear regres-
sion. The two-sample problem with missing-group informa-
tion is considered as a special case.

(X'QX) 'y

3.1 Missing-Indicator Methods | and Il

The true model is assumed to be given by (1); however,
X, is not always observed. Let Qo; equal 1 when Xj; is
observed and zero when it is missing. The first missing-
indicator method, as described by Anderson et al. (1983, p.
456), Chow (1979), Cohen and Cohen (1975, secs. 7.4.3 and
9.3.5), and Mietinnen (1985, sec. 18.2.5), is

Y =7 +71X1i + 72 X2:Q2 +v3(1 — Q2:) + &5 (5)
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The original model (1) is modified by replacing X»; by
X2;Q2; and adding the missing indicator 1 — Qg;. This
model is commonly used to test whether the data are miss-
ing at random by checking if 3 is significantly different
from zero. Furthermore, regardless of the test result, the
estimates of 7,71, and 72 are used. A slight modification
of (5) that is mathematically easier to work with is

Y; = 00Q2; + 01 X1; + 02X2;Qai + 03(1 — Q2:) + 5. (6)

The least squares estimators of (o,71,72) are identical to
those of (6o, 61, 62). The least squares estimators are biased
for (8o, 81, B2), as stated in the following theorem.

Theorem 3.1.  If € is independent of (X1, X2, Q2), then,
conditional on (X1, X2, @2), the expected least squares es-
timators for model (6) are

E(o) = fBo + B2Pm ST Fo,

E(Hl) = 01 + Bo PS5 F1,
and
E(0y) = B2(1 — P STaFy),

where P,, = 1 — Q2, the proportion missing X2;S7% is
the sample covariance of X; and X, for those missing X»;
and (Fy, F1, F) are functions of the means, variances, and
covariances of X; and X, and are defined in the proof.

Note that the estimators are unbiased if either P,, = 0 or
S = 0. The proof is given in the Appendix.

By writing down model (6) for the subsets with and with-
out X, information, one can gain an intuitive understanding
why this model produces biased estimators. For those with
X, information (Q2; = 1), model (6) is

Y; =00 + 01 X1 + 02 X2 = ¢, (7)
whereas for those missing X (Q2; = 0), it is
Yi =03+ 01 X1 +e. (8)

The intercept terms are different, but the X; coefficients
are required to be the same, regardless of the adjustment
value of X,. This causes the bias. A simple way around
this constraint is to add another term to the model, which
allows the X; coefficients for the subsets to differ, so that
for those subjects missing Xo,

Y, =034+ 04X + e 9

This new model is described next.
The second-missing indicator method is to use the
model

Y = 00Q2; + 61 X1:Q2i + 02X2:Q2;
+ 05(1 — Q2;) + 04 X1:(1 — Q2:) +¢;. (10)

This generalizes the first missing-indicator method by split-
ting the X; term of model (6) into two predictor variables
with corresponding coefficients 0; and 64. The subset mod-
els are given by (7) and (9). Model (10) is only a slight vari-
ation on that proposed by Chow (1979). The modification
was made to facilitate the proof of the following theorem.

Journal of the American Statistical Associétion, March 1996

Theorem 3.2.  Assume that ¢ is independent of (X7, X2,
Q2). Then, conditional on (Xi,X2,Q2), the expected
least squares estimators for model (10) are FE(6p)
= Bo,E(0h) = B, E(02) = B2, E(03) = Bo + B2B%,1,
and E(04) = 51 + ﬁzﬁggzl x,» Where ,8)’?2“ and ﬁ§2| x, are
the least squares intercept and slope estimators from the re-
gression of X3 on X; for those missing X5. Furthermore,
conditional on (X1, X2, Q2), the expected mean squared er-
ror. for model (10) is

1 m
o+ —5 [RSS (X2|X1))53,

where RSS™(X3|X) is the residual sum of squares from
regressing X, on X; for the subset of individuals miss-
ing Xs. o

Note that (6,61, 02) are unbiased estimators of
(Bo, B1,82), whereas (03,04) are biased for (ﬁo,ﬁl) if X
and X, are uncorrelated among those missing X, then
By a1x, = 0, in which case 0, is unbiased for B;. Rewriting
(10) for those with X, information and those without gives
the subset models (7) and (9), which contain no common
regression coefficients. As such, model (7) is the complete-
case analysis, which, by Theorem 2.1, allows unbiased es-
timation, whereas model (9) is incorrectly specified if Y is
truly modeled by (1). Overestimation of ¢? is also not sur-
prising because of the assumption that var(e;) = o2 in (10)
regardless of whether Q; is zero or 1. In particular, as seen
by comparing (7) and (9), the contribution to the residual
sum of squares for those missing X, will be larger than for
those with X5, unless B = 0. The residual sum of squares
(and hence the bias for ¢2) is largest when X; and X, are
uncorrelated for those subjects missing Xs.

Because model (9) excludes the predictor X, it will be
helpful to review the effect of omitting a predictor variable
before proving Theorem 3.2. That proof is found in the
Appendix. The following lemma is from section 6.1.1 of
Seber (1977).

Lemma 3.1.  Suppose that the true model is given by
Y = X3+ Z~ +¢, where E(e) = 0, E(¢'e) = 0?L,, and B
and ~ are vectors. Furthermore, suppose that Z is omitted
from the model fit. Then

E(B)

Given H = X(X'X)"!X’ and MSE = Y'(I, - H)Y/
(n — p), where p = dim(X), then

= (X'X)IX/(XB + Zv) = B+ (X'X) " 'X'Zn.

NZ (1, ~H)Zy _

E(MSE) = - > 0o”.

The estimated variance of 3 is MSE(X'X)~!, which is
larger on average than ¢2(X'X)™?

3.2 Missing-Indicator Method Il and the
Missing-Group Method

Cohen and Cohen (1975, chap. 7) described a missing-
indicator method for simple linear regression similar to
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those described earlier. Assuming that the true model is
Yi= 0o+ B1Zi +¢,

they recommended the data analyst use the model

Y =90 +1lZiQi + c(1 — Qi) +72(1 — Q) +ei,  (11)

where c is an arbitrary constant and Q; takes the value 1
when Z; is measured and zero when Z; is missing.

Cohen and Cohen (1975) correctly noted that the esti-
mation of 7o and +; is independent of the choice of the
constant c.

Theorem 3.3.  Assume that ¢ is independent of (Z,Q).
Then, conditional on (Z, Q), the expected least squares es-
timators for model (11) are E(50) = Bo, E(51) = B1 and
E(42) = B1(Z™ — c), where Z™ is the average of the Z’s
among those missing Z. Moreover, 4o and 4 are exactly
the least squares estimators from the complete-case analy-
sis. Conditional on (Z, Q), the expected mean squared error
(MSE) from fitting (11) is 02 + B?MSE", where MSE* is
the mean squared error from fitting the model

(1-Qi)(Z;—¢)
= o +m{Z:Qi +c(1—Q:)} +m2(1—Q:) +es.

The proof of Theorem 3.3 is given in the Appendix.

This missing-indicator methods can be further illustrated
by a special case, called the missing-group method. Often
in analysis of variance, group membership is unknown for
some individuals. One method from the statistical folklore
for dealing with this type of missing data is to form another
group and then to perform the analysis of variance on the
augmented set of groups. Cohen and Cohen (1975, chap. 7)
recommended this approach. To investigate possible bias in
this procedure, the two-sample problem is considered here
for simplicity. The true model is assumed to be

Y = po + aoZ; + &,

where Z; assumes the value zero for group 1 and 1 for group
2 and ¢; has mean zero and variance o%. Again let Q; be 1 if
Z,; is observed and zero if not. The third missing-indicator
method, described previously, uses the model

Y;=p+aZ,Q;+ 9(1 - Qz) + €5, (12)

where the arbitrary constant ¢ of the third-missing indicator
model is chosen here to be zero. An artificial group 3 is
thereby created to consist of those subjects with missing-
group identification. The three group means are p, 4 + a,
and p + 6.

Corollary 3.1.  Assume that ¢ is independent of (Z, Q).
Then, conditional on (Z, @), the expected least squares es-
timators for model (12) are E(i) = o, E(&) = ap, and
E(0) = oy times the proportion of group 2 subjects among
those with missing-group identification. But conditional on
(Z,Q), the expected MSE from this analysis is

mimsa 012
(my +m2)(n —3) 0

a2+
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where m; is the number missing from group j,j = 1,2.

The proof is given in the Appendix. This MSE bias would
affect the standard ¢ test for the difference between the two
nonmissing groups

b= (Vi — s‘fz)/\/MSE(ﬁlI + niz) ‘

The complete-case analysis, which does not include the
missing group, uses a smaller, unbiased estimator of o2,
but its ¢ test is based on fewer degrees of freedom. Natu-
rally, any comparison of ¢ tests based on these two meth-
ods depends on the values of mj,m2,n,0?, and ag. Two
examples illustrate this. Suppose that the two groups are
of equal size, each with half their observations missing, so
that m; = mg = n/4 and 02 = 1,0 = 2. The MSE bias
of the missing-group method is roughly 0.5, which would
produce a less powerful test than the complete-case analy-
sis for the usual o levels at moderate degrees of freedom.
On the other hand, suppose that one group has no missing
observations, perhaps m; = 0. Then the MSE bias is zero,
and the missing-group method produces the larger critical
region. In practice, though, m; and my are unknown, and
caution would suggest using the complete-case method.

4. STRATIFICATION METHODS

Another class of methods for handling missing data fall
under the category of stratification methods because they
involve stratifying the data set into smaller pieces for anal-
ysis. Once again, suppose that the true model for Y is lin-
ear in the predictor variables X; and X», given by (1), and
that X, is always observed but X, is sometimes missing.
Furthermore, suppose that X, can only take on values in
{c1,...,cx}, with at least two observations per category.
There are several possible scenarios for X; and X5. Con-
sider here the case in which X is the predictor of interest
and X, is an important confounder but 3, is considered a
nuisance parameter. For example, X; might be a treatment
indicator or dosage level, and X the age category or sex of
a subject. In general a stratification method would control
for the confounder X, by creating k strata corresponding to
the k subsets {{i|X2; = ¢;},j = 1,...,k} and then by mod-
eling Y in terms of X in each stratum assuming a constant
B1 across strata. In such a stratified setting, the true model
(1) for subjects in stratum j is Y; = (8o + fBa2c;) + f1 X1
+ ;. Data analysts sometimes modify this method for
missing-data problems by adding a stratum to include all
those with unobserved X, information. In particular, define
the stratum indicator I;; to be 1 when Xy; is observed to
be c¢; and zero otherwise for j =1,...,k, and let Iy, be
1 if Xy; is missing and zero otherwise. The resulting model
is

k+1
Y, = Z Yo L5 + V1 X1 + €.

=1

(13)

Theorem 4.1.
(13) are

The least squares estimators for model
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Aoi = o + (¢; = Xu()PmST5/S1)B2 + Y Ljiei
\ G=1,...,k),

Aok+1 = Bo + (Xak+1) — X1 (e+1)PmST3/S51) B2

+ ZIkH,i&‘i,

and
1= 1+ (PnST3/S0)B2 + D Xuici,

where X ;) is the average X, within the jth stratum, Py,
is the proportion of individuals in stratum &k + 1 (unknown
X2), ST3 is the sample covariance of X; and X5 for those
missing X2, 57; =n~! Y3 I;i(X1: — X1(j))?, and g; is the
error term from the true model (1).

The proof is somewhat tedious but straightforward and
is omitted here. Of particular interest is that even if ¢; is
independent of Xy; and the I;;’s, 4; is a biased estimator
of (1 unless P, = 0 or S73 = 0. The flavor of this result is
reminiscent of the first missing-indicator method of Section
3, because the 3; coefficient is assumed to be the same in
the “missing-data” stratum (in which X, may be heteroge-
neous and thus S7% nonzero) as in the other strata (in which
X, is homogeneous). Adding a different 3, parameter for
the “missing-data” stratum gets around this constraint. Two
alternative stratification methods that allow more flexibility
through additional stratum-specific parameters are

k+1
Y, = Z (Y05 + 715 X1:) s + e (14)
j=1

and

k
Y, = Z (Y05 + M1 X14) 14
j=1
+ (0,641 + V1,k+1X1) Tot1,i + e (15)

Theorem 4.2.  Assume that ¢; is independent of Xj;
and the I;;’s. The least squares estimators (o;,%1;) for
model (14) and (0;,41) for model (15) are unbiased for
(Bo + Pacj, 1) for j = 1,...,k. In stratum k + 1, con-
ditional on (X1, X2,Q), (50,k+1,71,k+1) are unbiased for

(Bo + B2 (Xa(kt1) — 3}?2|X1 X1(k41)), B+ ﬂzﬁ?ﬂxl ), Where

Table 1. Asymptotic Biases of 31, B2, and o2

MiM | MiM | MIM 1I

o2 p12 bias(B1) bias(Bz) bias(c?)
1 0 0 0 ~ 502
5 296, —.144, 3732

9 76032 —.680; 1032

2 0 0 0 2.0032
5 5782 —.146; 1.50432

9 1.5182 —.6802 38032

5 0 0 0 12.5032
5 1.430,; —.148, 9.3732

9 3.7882 —.6802 23733

Journal of the American Statistical Association, March 1996

B)’??l x, 1s the least squares slope. estimator from regression
of X, on X in stratum % + 1. Conditional on (X7, X2, Q),
the expected MSE’s for these models are

E[MSE(14)] = o? + B3[RSS™ (X3 |X1)]/(n — 2(k + 1))
and
E[MSE(15)] = o® + B3[RSS™(X3|X1)]/(n — k — 3),

where RSS™(X,|X;) is the residual sum of squares after
regressing X, on X; for those missing X5 (stratum k + 1).
The proof is given in the Appendix.

5. EVALUATION OF THE MAGNITUDE OF BIAS

Proper assessment of whether the missing-covariate meth-
ods should be used in practice requires an evaluation of
the magnitude of these methods’ biases for 3 and o2. The
focus here is on missing-indicator methods I and II, mod-
eled in (6) and (10). The ultimate question of interest is
whether either of these methods should be preferred over
the complete-case analysis, based on model (2).

Once again, the true model is assumed to be (1), where
X9 may be missing for some individuals. The bias in es-
timating 3 = (8o, 81, 52)’ by missing-indicator method I
(MIM 1) is given in Theorem 3.1. The biases in estimating
3 and o2 by missing-indicator method II (MIM II) are given
in Theorem 3.2. Although the bias in estimating o by MIM
Iis not derived herein, it is at least as large as that for MIM
II, because the MIM I model (6) is restricted relative to the
MIM II model (10). The evaluation study consists of two
parts. In Section 5.1 no particular distribution for (X7, X5)
is assumed, but the measurement indicator (), is assumed
to be independent of X, X, and . That is, X5 is missing
completely at random. In Section 5.2 (X, X,) are assumed
to be bivariate Bernoulli and )2 may be missing as a func-
tion of X; and/or X». This allows a more complete study
by pattern of missingness. Bias is evaluated by asymptotic
theory and computer simulation.

5.1 General Covariate Distribution

In this part of the evaluation study, the covariates X;
and X, are assumed to have variances o2 and o2 and corre-
lation p12. Furthermore, @, is assumed to be independent
of X1, Xs, and e. Let p,, = P(Q2 = 0) be the proportion
missing. Replacing terms in the bias expressions in Theo-
rem 3.1 by their almost sure limits, the asymptotic biases
in MIM I for estimating 5, and G2 become

DPm0O2p012

bias,, (81) — B2 o1[l = p25(1 = pm)] ’ 1o
and
bias, (82) = —f2 e w7

[1 - ,0%2(1 - pm)] ‘

As expected, these biases are zero when either S, = 0 or
Pm = 0 or p12 = 0. When p,, # 0, bias(3;) ranges from
—B2(02/01) when p12 = —1 to fBa(02/01) when pi1p = 1.
Obviously, the larger the ratio o3/01, the larger this bias
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Table 2. Averages and Standard Deviations Over Simulated Data Sets
Analysis Ave(B1) SD(B1) Ave(se(B1)) Ave(B2) SD(B2) Ave(se(Bz)) Ave(52)
p12=10
All data 1.002 .072 .071 2.003 .035 .035 .991
Complete-case 1.006 .100 .101 1.999 .050 .051 .988
MIM | 1.001 212 215 1.999 .051 154 9.115
MIM 1I 1.006 .100 .307 1.999 .050 154 9.115
p1z2=.5
All data .996 .078 .082 2.001 .041 .041 1.002
Complete-case .994 115 118 2.002 .060 .059 .995
MIM | 2.128 247 214 1.717 .095 152 7.858
MIM 1l .994 115 313 .060 .156 7.038

2.002

becomes. When p,,, # 0, the range of bias(3s) is from zero
when pj2 = 0 to —B> when p%, = 1.

The regression-coefficient estimators for MIM II are the
same as those of the complete-case analysis and thus are un-
biased. The MIM II estimator of o2 is not unbiased. In fact,
from Theorem 3.2, the MSE from MIM II can be shown
to converge almost surely to o2 + B2p,,03(1 — p?,). This
bias is very large when o2 is large and pi2 is zero. Table 1
summarizes the MIM I asymptotic bias in (0;, 82) and the
MIM II asymptotic bias in 02 when p,, = .5 and 0? = 1.
As already mentioned, the MIM I estimate of o2 is greater
than or equal to that of MIM II. Settings that produce the
largest (smallest) bias in the regression coefficient estima-
tion produce the smallest (largest) bias in residual variance
estimation.

It is also of interest to consider the standard errors of
the MIM regression coefficient estimators and how they
compare to those of the complete-case analysis. Using the
GAUSS matrix language (Aptech Systems, Inc. 1991), sim-
ulation was used to answer this question. Two bivariate nor-
mal covariates were generated with zero means; 07 = 1
and 02 = 4;p;2 = 0 in the first simulation and .5 in the
second. In the assumed true model (1), Bp = 1,6, = 1,52
= 2,02 = 1. Also, p,, = .5. The results in Table 2 are
based on 500 simulated data sets, each with n = 200. The
standard deviations of the simulated estimators are not com-
parable to the averages of the simulated standard errors for
the missing-indicator methods. The MSE’s of 5; and (3, for
MIM I and MIM 1I far exceed those of the complete-case
analysis.

5.2 Various Patterns of Missingness

In the previous section X, are missing completely at
random. Now the various possible patterns of X, miss-
ing and their effect on bias are investigated for bivariate
Bernoulli covariates. Let p;x = P(X; = j, X, = k) for

J, k = 1,2 be the joint frequency function of (X7, X3). Also
let gjx = P(Q2 = 1|X1 = j, X2 = k) be the conditional fre-
quency function of Q5. As before, Q) is independent of .
There are four possible patterns of missing X, data:

P1. X, missing completely at random: P(Q; = 1|X;,
X2)=P(Q2=1)

P2. X, missing as a function of X;: P(Q2 = 1|X3, X5)
= P(Q2 =1|X1) .

P3. X, missing as a function of X5: P(Q2 = 1|X1, X3)
= P(Q2 =1]|X>)

P4. X, missing as a function of X; and X5.

First, the bias of the MIM 1 regression coefficient esti-
mators is considered. Using Theorem 3.1, the asymptotic
biases are zero if the limiting covariance between X; and
X, for subjects with X, missing is zero; that is, if o7% = 0.
It can be shown that ¢7% = 0 if and only if

poop11 (1 — qoo)(1 — qu11)

=1.
p1opo1 (1 —q10)(1 — qo1)

Let A represent the first term and B the second. Then A
= 1if and only if X; and X, are independent. In missing-
data patterns P1-P3, B = 1, but in P4, B # 1. Hence
even if the covariates are independent, MIM I will give
biased estimates if X, is missing as a function of both X;
and X,. Two pattern P4 examples illustrate this bias. First,
suppose that X, is missing whenever X; # Xs; that is,
g0 = qu1 = 1,q01 = qio = 0. Then bias,(81) S —0;
and bias, (32) 2 B,. Second, suppose that X, is missing
whenever X; = Xj; that is, goo = ¢11 = 0,901 = q10 = 1.
Then bias,, (5;) 2 B, and bias,(82) =3 Bs.

Finally, the properties of the missing-indicator methods’
estimators can be compared to those of the complete-case
analysis through computer simulation. The analysis of all
data is given as the baseline standard of comparison. As
before, 500 simulated data sets of size n = 200 each were

Table 3. Simulation Results When X5 is Missing Completely at Random

Analysis Ave(B;) SD(B1) Ave(se(B1)) Ave(Bz) SD(B2) Ave(se(B2)) Ave(5?)
All data 997 139 142 - 2.001 .145 142 .994
Complete-case 1.004 .198 .202 1.994 .201 .202 .998
MIM | .996 174 174 1.995 .201 .248 1.503
MIM 1l 1.004 .198 .249 1.994 .201 249 1.503
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Table 4. Simulation Results When X is Missing as a Function of X; and X,

Analysis Ave(B;) SD(B1) Ave(se(B1)) Ave(B2) SD(B2) Ave(se(B2)) Ave(62)
All data .990 .135 .142 2.006 .131 .142 996
Complete-case .989 .167 174 2.008 .169 174 .996
MIM | 443 .159 .162 2.195 178 .186 1177
MIM 1l .989 167 175 2.008 .169 175 996

generated for model (1) with Bo = 81 = 1,082 = 2,02 =1,
and p;, = .25. Note that X; and X are independent. Table
3 summarizes the results when X5 is missing completely
at random and P(Q2 = 1) = .5. Table 4 summarizes the
results when X, is missing as a function of X; and Xs; in

particular, X is present whenever X; = X, but is missing

with probability .5 whenever X; # Xa.

In the setting of Table 3, MIM I is unbiased for §; and
has a lower estimated standard error of Bl on average than
does the complete-case analysis. This advantage disappears
when X7 and X, are correlated or when X, is missing as
a function of both X; and X5, as shown in Table 4 where
the bias in estimating (3; is unacceptable. Knowledge of
why X5 is missing and of the correlation among covariates
when X is missing is essential when using MIM 1 for B.
MIM I overestimates the standard error of 3,. Use of MIM
I is generally ill-advised. But some special cases in which
a covariate is missing by design due to cost considerations
should be investigated. MIM II shows no advantage over
the complete-case analysis.

6. DISCUSSION

This article has investigated the possible bias in the esti-
mators of the regression coefficients and residual variance
derived from the missing-indicator and stratification meth-
ods of handling missing data. In particular, the true regres-
sion relationship between Y and (X7, X>) is assumed to
be given in (1), in which X, can be missing as a function
of X; and/or X, but not as a function of . Hence, given
X; and X, missingness of X, is conditionally indepen-
dent of Y. The missing-data methods studied in this article
include (a) complete-case analysis, modeled in (2), with bi-
ases in Theorem 2.1; (b) missing-indicator method (MIM)
I (6) with biases in Theorem 3.1; (¢) MIM II (10) with bi-
ases in Theorem 3.1; (d) stratification method I (13), with
biases in Theorem 4.1; and (e) stratification methods II and
III, modeled in (14) and (15), with biases given in Theo-
rem 4.2. In summary, the complete-case analysis is valid so
long as the covariates are independent of ¢; they need not
be missing completely at random. MIM I and stratification
method I produce biased regression parameter estimators.
MIM’s II and III and stratification methods II and III give
the same regression estimators as the complete-case anal-
ysis and thus are unbiased. But they each overestimate the
residual variance. The magnitude of these biases was stud-
ied further in Section 5 via asymptotic theory and computer
simulation. In Section 5.1, where X5 is missing completely
at random, the biases in estimating 31, 82, and 02 by MIM
I were seen to be arbitrarily large, depending on the per-
centage of missing data, the value of ;, the ratio of X

variances, and the correlation between X; and X,. Various
patterns of missing data were investigated in Section 5.2
for the case of binary covariates. As discussed there, MIM
I is not advised as a general method. MIM II produces the
same regression parameter estimates as the complete-case
analysis, but often with considerably larger standard errors.

In Section 3.2 the true model was assumed to contain
only a single explanatory variable. MIM III, modeled in
(11), was found to have biases given in Theorem 3.3, and
for the special case of the so-called missing-group method
(12), biases were given in Corollary 3.1. The missing-group
method overestimates the residual variance. Hence the ad-
dition of a missing group can weaken the power of the ¢ test
that compares two of the nonmissing groups. On the other
hand, the complete-case analysis uses an unbiased estima-
tor of the residual variance, but its ¢ test is based on fewer
degrees of freedom. As discussed at the end of Section 3,
the complete-case analysis is generally preferable.

Of those researchers suggesting the missing-data meth-
ods studied in this article, Cohen and Cohen (1975) recog-
nized that the residual variance may be overestimated, as
they stated that the power of the regression analysis may
be weakened if one truly knows that the data are missing at
random. By “missing at random” they mean that X, is not
missing as a function of (Y, X1, X5, ). This corresponds to
the “missing completely at random” definition given by Lit-
tle and Rubin (1987). In general, Cohen and Cohen (1975)
recommended against such an assumption; however, they
did not recognize that MIM I will produce biased regression
coefficient estimators, even when the assumption is correct.

APPENDIX: PROOFS OF THEOREMS
With the exception of Theorem 2.1, the proofs of the theorems
are given in this Appendix.
Proof of Theorem 3.1
This proof is very lengthy and tedious, so only a sketch of it is
given. Define Y’ = (Y1,...,Yn),& = (e1,...,&n),
1 X1 Xa
x=|:
1 Xln X2n
and
Q21 X11 X21Qa1 1—-Qa
Xi=| 1 :
Q2n Xl'n X2nQ2n 1-— Q2n

Next, some definitions are necessary. Define Q2 = Y Q2:/n. For
g ke {1,2}, let
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X5 = Q2iX;i/nQa,
X =" (1- Q)X i/n(1 - Qa),
5= D Qai(Xgi — X5)(Xns — X§) /nQa,

i = Z (1= Q2:)(Xjs — X7")(Xri — X&) /n(1 — Q2),

and

c C
T19 = Slg/ Sf18§2
These terms represent the sample means, variances, and covari-
ances for those with and without X information. Because

6= X/ X)) ' XY = (X[X1) X (XB +¢),
and because, by assumption,
EB[(X[X1) 'XelX, Q] = (XiXr) ' X7 E(e) = 0,

the proof consists of showing that (X;X;) !X} Xg is given as
in Theorem 3.1 with

Fo = (S5 X5 — S5:X1)/D,

F1=S§2/Da

and
F2 = ng/D,

where D = (1 — Q2)S7155, + Q257155 [1 — (r$2)?]. The expec-
tation of @5 is Bo + B2 times a very messy expression, which is
omitted here.

Proof of Theorem 3.2

As already stated, MIM II, modeled by (10), can be rewritten
as submodels (7) and (9) for the subsets of individuals with and
without "X> information. For the purpose of finding the bias in
the predictor coefficients, it is sufficient to consider the submodels
separately, because the coefficients are different between the two
submodels. Model (7) is in fact a complete-case analysis for that
subset, and thus by Theorem 2.1, E(6o) = o, E(d1) = f1, and
E(63) = B2. Model (9) underfits the true model by omitting Xo.
By Lemma 3.1,

é3 _ ,30 */~r ¥\ — 1~ %/
(8)-(3) oo,

where X* is the n x 2 design matrix (1, X1). The latter term is
B2 times the least squares intercept and slope estimators from the
regression of X2 on X;.

Model (10) assumes the var(e;) = o2, regardless of whether an
individual possesses or is missing X2 information. The RSS for
model (10) can be split-into two parts, one for each submodel.
Because submodel (7) is a complete-case analysis for that subset,
then by Theorem 2.1, the RSS for (7) in the subset with X2 data
is unbiased for (3" Q2:) — 3]o”. Because submodel (9) omits the
predictor X2, then by Lemma 3.1, the RSS for (9) in the subset
missing Xz is [(n — Y Q2:) — 2]0® + B5X5(In — H*) X2, where
H* = X*(X*X*)"'X*. Note that X5(I, — H*)X, is the RSS
from regressing X> on X in the subset missing X2. Hence the
RSS for the entire data set is unbiased for

(n —5)o” + BSRSS™ (X2|X1).
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Proof of Theorem 3.3

The data analyst-assumed models for the subsets of the data
with and without measured Z; values are

Yi=v+mZi+e (Q:i=1)
and
Yi=v+vc+r+e (Q:=0).
The least squares estimators 4o and 41 are derived completely
from the complete-case subset of the data, while
2 =Y™ — 4o — e,

where Y™ is the average Y value in the missing-data sub-
set. Conditional on Z and Q,EY™ = fo + £ Z™, and be-
cause (§o,%1) are unbiased complete-case estimators, E¥2 = [o
+ B1Z™ — fo — Pic = Bi1(Z™ — c). These results can also be
derived from the usual straightforward but tedious solution of the
normal equations.

Let X be the n x 3 matrix whose ith row is (1, Z;Q; + c(1
- Qi),1—@Q;) and let H = X(X'X)~'X'. Then

E(RSS) = E[Y'(I-H)Y]
= E['(I—-H)]+ E[(fol + /Z)
x (I—H)(Bol + S1Z)].

By theorem 1.7 of Seber (1977), E[e'(I — H)e] = o*(n — 3).
Because I — H is a projection matrix, the last term of E(RSS) is
the RSS from regressing 8ol + $1Z onto the columns of X. To
see the rest of the result, let 8* = (8o, 31,0)" and let Z* be an
n vector with ith element (1 — Q;)(Z; — ¢). Then one can easily
show that 801 + 81Z = XB* + $1Z*. Because X is orthogonal to
I-H,

(Bol + /1 Z) (1 — H)(Bol + 412) = BTZ* (1 - H)Z*,

which is 82 times the RSS from regressing Z* on the columns
of X.

Proof of Corollary 3.1

The least squares estimators follow directly from Theorem 3.3.
Here ¢ = 0. With regards to the E(MSE), defined in Theorem
33,7 = i = 0 and /i = Z™ = may/(m1 + m2). The rest
follows after noting that the MSE* of Theorem 3.3 is > Q:(Z;
— Z™)?%/(n - 3). ‘

Proof of Theorem 4.2

The true model for subjects in stratum j is
Y: = (Bo + Bacj) + f1X1i + &4, i=1,...,k

Model (14) is considered first. This model allows separate
(v04,715) for each stratum and hence the least squares esti-
mators of them are unbiased for j = 1,...,k. Estimation of
(Yo,k+1,71,k+1) is the omitted covariate problem, and the re-
sult follows directly from Lemma 3.1. The expected RSS for
the complete-case strata is (n — Y Ix41,; — 2k)o”, whereas that
of the missing-data stratum, according to Lemma 3.1, is

(Z Trq1,6 — 2)02 + ﬁ%RSS"‘(leXl).

Adding these sums of squares and dividing by n — 2(k + 1) yields
the expected MSE for (14).

Model (15) is considered next. Estimation of {01, - -.,~Yok, Y1}
is equivalent to estimation in a complete-case analysis that,
by Theorem 2.1, produces unbiased estimators. Estimation of
(Y0,k+1,71,k+1) is the same as under model (14). The verifica-
tion of the expected MSE parallels that of model (14), except that
the number of parameters is &k + 3.
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