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The standard examples to build intuitions when learning point-set topology are metric spaces. But as we

will soon see, not all topological spaces are topologically equivalent to metric spaces, or more formally,

metrizable.

Definition 1 (Metrizable topological space)

A topological space (X, T ) is metrizable if T is induced by some metric.

From this definition, there is a simple way to show that a topological space is metrizable: give a metric that

induces its topology. Similarly, to show that a topological space is not metrizable, it suffices to derive a

contradiction from the assumption that some metric induces its topology.

However, working with metrics to show that a topological space is metrizable or not is cumbersome. When

working with topological spaces, we are not aware of metrics inducing topologies unless spaces are clearly

metrizable in the first place. Nor are we generally aware of contradictions arising from assuming there are

metrics inducing certain topologies.

When working with topological spaces, we are aware of some of their “intrinsic” topological properties such

as being compact or Hausdorff. Therefore, it would be great if we could tell whether a topological space is
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metrizable or not just by looking at some of its “intrinsic” properties. This paper presents results that allow

us to do this.

We start with “intrinsic” topological properties that allow us to rule out metrizability. Next, we talk

about “intrinsic” topological properties that suffice for metrizability. Finally, we will talk about “intrinsic”

topological properties that are equivalent to metrizability. Let’s start!

1 Ruling out metrizability

1.1 “Separation” properties

The first “intrinsic” topological properties that allow us to rule out metrizability are “separation” properties.

The first such “separation” property is having separated points, or, more formally, being Hausdorff. Any

metrizable space is Hausdorff. This allows us to rule out metrizability for non-Hausdorff spaces.

Definition 2 (Hausdorff topological space)

A topological space (X, T ) is Hausdorff if for any two distinct points x, y in X there exist disjoint open

sets U, V ∈ T such that x ∈ U and y ∈ V .

Lemma 1 (Metrizable ⇒ Hausdorff)

Any metrizable topological space (X, T ) is Hausdorff.

Proof.

Let (X, T ) be a metrizable topological space. Let x, y be distinct points in X and let d be a metric inducing

T . Let ε := d(x,y)
2 . Since x ̸= y, d(x, y) > 0 and we can talk about the open balls Bd

ε (x) and Bd
ε (y).

For any a ∈ X d(a, a) = 0, so x ∈ Bd
ε (x) and y ∈ Bd

ε (y). And since d(x, y) ≮ ε, y /∈ Bd
ε (x) and x /∈ Bd

ε (y).

And by the triangle inequality of the metric d, Bd
ε (x) and Bd

ε (y) are disjoint. Finally, since d induces the

topology T , Bd
ε (x) and Bd

ε (y) are basic open sets in T and so open.

So x, y are separated by open sets. Since x, y were arbitrary, this shows that (X, T ) is Hausdorff.

As an example, we can apply our result to rule out metrizability for the Siepiński space.

Example 1 (Sierpiński space is not metrizable)

The Sierpiński space is not Hausdorff and so not metrizable.

Proof.

The Sierpiński space has underlying set {0, 1} and topology {∅, {1}, {0, 1}}. By inspection, there is no open

set U in the topology such that 0 ∈ U and 1 /∈ U . So in particular there are no disjoint open sets U, V such

that 0 ∈ U and 1 ∈ V .

And we can also apply our result to rule out metrizability for R with the countable complement topology.

Example 2 (Rcc is not metrizable)

R with the countable complement topology is not Hausdorff and so not metrizable.
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Proof.

Let U, V be open sets. Then R \ U and R \ V are countable sets. So (R \ U) ∪ (R \ V ) = R \ (U ∩ V ) is

countable. Since R is uncountable, this implies that U ∩ V is uncountable and nonempty. Thus any two

open sets in Rcc intersect. In particular, Rcc is not Hausdorff.

Besides Hausdorffness, there is another “separation” property that allows us to rule out metrizability. It is

the “separation” property of having separated points and closed sets, or, more formally, being regular. Any

metrizable space is regular, what allows us to rule out metrizability for non-regular spaces.

Definition 3 (Regular topological space)

A topological space (X, T ) is regular if for any closed set C and any point x /∈ C, there exist disjoint open

sets U, V ∈ T such that C ⊆ U and x ∈ V .

Lemma 2 (Metrizable ⇒ Regular)

Any metrizable topological space (X, T ) is regular.

Proof.

Let C be a closed set and let x /∈ C. Since C is closed, C = C. By the limit-point characterization of closure,

there is an open set U with x ∈ U such that U ∩ C = ∅.

Since (X, T ) is metrizable, there is some metric d such that U is the union of open balls with the metric d.

One of these open balls contains x, so we have Br(x) ∩ C = ∅ for some radius r > 0. So d(x, c) ≥ r for any

c ∈ C. So the set {d(x, c) | c ∈ C} has a greatest lower bound ε ≥ r > 0.

Consider
⋃
c∈C

Bε(c) and Bε(x). Clearly, C ⊆
⋃
c∈C

Bε(c) and x ∈ Bε(x). Moreover, by the triangle inequality

of the metric d, these two sets are disjoint. Finally, these two sets are open because d induces T .

So C and x are separated by open sets. Since C, x and (X, T ) were arbitrary, this means that any metrizable

space is regular.

We cannot use non-Hausdorffness to rule out metrizability for Rccs since it is Hausdorff. But our last result

allows us to rule out metrizability for this space nevertheless.

Example 3 (Rccs is not metrizable)

R with open sets U \C where U is open in the standard topology and C is a countable subset of U is Hausdorff,

but not regular, and so not metrizable.

Proof.

First, let’s show that Rccs is Hausdorff. Let x, y be distinct points in R. Since Rstd is trivially metrizable,

it is Hausdorff. So for any two distinct points x, y ∈ R there are disjoint open sets U, V in Rstd such that

x ∈ U and y ∈ V . Note that any open set in Rstd is open in Rccs taking C = ∅. So U, V are also disjoint

open sets in Rccs such that x ∈ U and y ∈ V .

Now, let’s show that Rccs is not regular. Consider the set of irrational numbers R\Q. Since Q is a countable

set, this is an open set in Rccs. So Q is a closed set in Rccs. Let t be an irrational number. Since the rationals

are dense, there is some rational number in any open set containing t. So in particular, there is no pair of

disjoint open sets U, V such that Q ⊆ U and t ∈ V .
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1.2 “Complexity” properties

In addition to the “separation” properties discussed above, there are “complexity” properties that help us

rule out metrizability. Both “local complexity” and “global complexity” properties come into play. First,

let’s talk about the “local complexity” property of first-countability.

A first-countable space is one in which openness around a point can be described with countably many open

sets. Most importantly for our purposes, first-countability is necessary for metrizability. So, whenever a

space is not first-countable, we can rule metrizability out.

Definition 4 (Neighborhood basis, first-countable topological space)

Let (X, T ) be a topological space and let x ∈ X. A neighborhood basis of x is a collection Bx = {Ui}i∈I

of open sets in T such that x ∈ Ui for all i ∈ I and such that for any open set U with x ∈ U , there is some

Ui ∈ Bx with Ui ⊆ U . (X, T ) is first-countable if there is a countable neighborhood basis of each point in

X.

Lemma 3 (Metrizable ⇒ First-countable)

Any metrizable topological space is first-countable.

Proof.

Let (X, T ) be a metrizable topological space and let x ∈ X. Since the space is metrizable, there is a metric

d that induces T .

Let’s show that

Bx =

{
B 1

n
(x) | n ∈ N

}
is a countable neighborhood basis of x.

Note first that Bx is countable because the natural numbers are countable. Moreover, x is clearly a member

of each set in Bx. And since d induces T , the sets in Bx are open.

Since d induces T , any open set U with x ∈ U is a union of open balls with the metric d. One of these open

balls contains x, so we have Br(x) ⊆ U for some radius r. Pick some number m such that mr > 1. Then

B 1
m
(x) ⊆ Br(x) ⊆ U .

We can apply our new result to rule out metrizability for the uncountable product of the unit interval.

Note again that our new result allows us to rule out metrizability for new spaces. [0, 1][0,1] is Hausdorff and

regular, so our previous results do not apply to it.

Example 4 (Uncountable product of the unit interval is not metrizable)

[0, 1][0,1] is Hausdorff and regular, but not first-countable and so not metrizable.

Proof.

Hausdorffness and regularity are closed under the subspace operation on spaces. So [0, 1] as a subspace of

R is Hausdorff and regular. Furthermore, Hausdorffness and regularity are closed under arbitrary products.

So, [0, 1][0,1] is Hausdorff and regular.
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However, [0, 1][0,1] is not first-countable because 0 does not have a countable neighborhood basis. Suppose

towards contradiction that 0 does have a countable neighborhood basis {Ui}i∈I . By definition of product

topology, Ui =
∏

x∈[0,1]

Ui,x, where finitely many Ui,x are different from [0, 1].

Consider

{x ∈ [0, 1] | Ui,x ̸= [0, 1] for some i ∈ I}

It is the countable union of countable union of finite sets, {x ∈ [0, 1] | Ui,x ̸= [0, 1]} for each i ∈ I. So it is

countable. So it is a proper subset of [0, 1]. Pick x0 ∈ [0, 1] outside it.

Let H :=
∏

x∈[0,1] Hx, where Hx0
= [0, 1/2) and Hx = [0, 1] for x ̸= x0. By definition of the product

topology, this set is open. Moreover, since x0 /∈ {x ∈ [0, 1] | Ui,x ̸= [0, 1]}, Ui,x0
= [0, 1] for all i ∈ I. So

∄ Ui ⊆ H. So {Ui}i∈I is not a countable neighborhood basis of 1, what is a contradiction.

In addition to the “local complexity” property of first-countability, the “global complexity” property of

second-countability helps us rule out metrizability in a more subtle way. Second-countability is stronger

than first-countability and tells us that the topology of the space can be described with countably many

open sets.

Definition 5 (Second-countable topological space)

A topological space (X, T ) is second-countable if it has a countable basis.

Lemma 4 (Second-countable ⇒ First-countable)

Any second-countable topological space is first-countable.

Proof.

Let (X, T ) be a second-countable topological space. Then it has a countable basis B. For each x ∈ X, define

Bx := {B ∈ B | x ∈ B}. First note, that for any x Bx is a subset of B and thus also countable. Now, let’s

show that for any x ∈ X, Bx is a neighborhood basis. Let x ∈ X. Take any U open, U ∈ T such that x ∈ U .

Since B is a countable basis for (X, T ), U is the union of sets in B. Since x ∈ U , one of the sets in this union

contains x. Call this set Bx. Bx ⊆ U and by definition of Bx, Bx ∈ Bx.

As mentioned above, second-countability helps us rule out metrizability for spaces in a more subtle way

than before. For metrizable spaces, separability and second-countability must agree. More informally, for

metrizable spaces, being “spread out” is the same as being “globally complex”. So, whenever a space is

separable, but not second-countable (or vice-versa), we can rule out metrizability.

Definition 6 (Separable topological space)

Let (X, T ) be a topological space. S ⊆ X is dense if S = X. (X, T ) is separable if it has a countable dense

subset.

Lemma 5 (For metrizable spaces, separable ⇔ second-countable)

If (X, T ) is a metrizable topological space, then it is separable if and only if it is second-countable.
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Proof.

First, let’s show the right to left direction. Suppose that (X, T ) is a metrizable second-countable space.

Then, it has a countable basis B = {B1, B2, . . .}. We can assume without loss of generality that all sets in

B are not empty. Take xi from each Bi. I claim that {x1, x2, . . .} is dense. Since it is countable, this implies

that (X, T ) is separable. Let’s show that it is indeed dense. By the limit-point characterization of closure,

it suffices to show that for any open set U ∈ T , U ∩ {x1, x2, . . .} ≠ ∅. Take any open set U ∈ T . Since

B is a basis, U is the union of some sets in B. So there is some Bi ∈ B such that Bi ⊆ U . So xi ∈ U . So

{x1, x2, . . .} ∩ U ̸= ∅.

Now, let’s show the left to right direction. Suppose that (X, T ) is a metrizable separable space. Then it has

a dense subset {x1, x2, . . .}. And there is a metric d that induces T . Let

U =

{
Bd

1
n
(xm) | m,n ∈ N

}
Note that U is countable. So it suffices to show that any open set U ∈ T is the union of sets in U . Let

U ∈ T be an open set. Since d induces T , open d balls form a basis for T . So x ∈ Bd
r (p) ⊆ U for some real

number r > 0 and some point p. Using r, the distance between k and x and the triangle inequality property

of metrics, we can get Bd
r′(x) ⊆ U for some real r′ > 0. Pick n such that 2 < nr′. Then Bd

2
n

(x) ⊆ U . Since

{x1, x2, . . .} is dense, Bd
1
n

(x) ∩ {x1, x2, . . .} ̸= ∅. In other words, d(xi, x) <
1
n for some xi. So x ∈ Bd

1
n

(xi)

and by the triangle inequality property of metrics, Bd
1
n

(xi) ⊆ Bd
2
n

(x). Thus x ∈ Bd
1
n

(xi) ⊆ Bd
2
n

(x) ⊆ U . For

any x ∈ U , we can construct such Bd
1
n

(xi) ∈ U . Taking the union of all these sets, we get back U .

To exemplify how we can use second-countability to rule out metrizability, we can consider the Sorgenfrey

line. This topological space is not amenable to any of the strategies to rule out metrizability previously

employed: it is Hausdorff, regular and first-countable. It is, however, separable and not-second countable,

so it must be not metrizable.

Example 5 (Sorgenfrey line is not metrizable)

The Sorgenfrey line is Hausdorff, regular and first-countable, but separable and not second-countable and

thus not metrizable.

Proof.

The Sorgenfrey line is R equipped with the topology generated by {[a, b) | a, b ∈ R}. Note first that it is

Hausdorrf. Let x, y be distinct real numbers and assume without loss of generality that x < y. Then [x, x+y
2 )

and [x+y
2 , y + 1) are disjoint basic open sets separating x and y.

In addition, the Sorgenfrey line is regular. Take any closed set C and any point x /∈ C. Since {[a, b) | a, b ∈ R}
generates the topology, X \ C is the union of sets in this basis, one of which contains x, [p, q). Note that

[p, q) is the complement of the union of all intervals [a, b) with b < p or a > q. So [p, q) is closed and X \ [p, q)
is open. Since [p, q) ⊆ X \ C, C ⊆ X \ [p, q). And [p, q) and X \ [p, q) are clearly disjoint. So [p, q) and

X \ [p, q) are open sets separating x and C.

The Sorgenfrey line is also first-countable. Let x ∈ R. I claim that

Bx =

{[
x, x+

1

n

)
| n ∈ N

}
is a countable neighborhood basis of x. First, note that it is countable because N is countable. Now, let’s

show that for any open set U , there is some B ∈ Bx such that B ⊆ U . Let U be an open set. Then it is
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the union of basic open sets [a, b), one of which contains x, [w, y). So [x, y) ⊆ [w, y) ⊆ U . Pick a natural

number n such that 1 < n(y − x). Then 1
n < q − y and [x, x+ 1

n ) ⊆ [x, y) ⊆ U .

Next, we can show that the Sorgenfrey line is separable. We will show that Q is dense in the Sorgenfrey line.

Since Q is countable, this suffices. Let’s show that any nonempty open set intersects Q. Take any nonempty

open set U . Then it is the union of basic open sets [a, b). Call one of these sets [w, y). Since the rationals

are dense in R, there is a rational q between w and y. So U ∩Q ̸= ∅.

Finally, let’s show that the Sorgenfrey line is not second-countable. We will show that any basis for the

Sorgenfrey line must be uncountable. Let B be a basis the Sorgenfrey line. for For any x ∈ R, [x, x + 1)

is an open set, so it is a union of sets in B. One of these sets in B contains x. Call it Bx. So, we have

x ∈ Bx ⊆ [x, x+ 1). Let y, z be distinct real numbers. Without loss of generality, suppose y < z. We have

y ∈ By and Bz ⊆ [z, z + 1), so y ∈ By, but y /∈ Bz. So for any two distinct real numbers y and z, By and

Bz are distinct. Thus, since the real numbers are uncountable, B is also uncountable.

The reader may have guessed by now that the reason we use second-countability to rule out metrizability

more subtly is that the previous more straightforward method would not work. That is a good guess. There

are metrizable spaces that are not second-countable - and thus not separable. For example, any uncountable

set X with the discrete topology is metrizable, but not second-countable. So simply noting that a space is

not second-countable does not suffice to rule out metrizability.

Example 6 (Any uncountable set X with the discrete topology is metrizable, but not second-countable)

Any uncountable set X with the discrete topology is metrizable, but not second-countable.

Proof.

The discrete metric on X is defined by

d(x, y) =

{
0 if x = y

1 if x ̸= y

By definition, for any x ∈ X, Bd
1 (x) = {x}. So all singletons in the topology induced by d are open sets.

Since finite intersections of open sets are open and unions of open sets are open, this implies that all subsets

of X are open. In other words, the discrete metric induces the discrete topology on X. Now, a basis for the

discrete topology must have every singleton since every singleton should be the union of basic open sets. So,

since X is uncountable, any such basis must be uncountable. So X is metrizable, but not second-countable.

2 Sufficient conditions for metrizability

2.1 Urysohn’s metrization theorem statement

Moving on from “intrinsic” topological properties that allow us to rule out metrizability, we have a natural

new question. Is there a set of “intrinsic” topological properties that suffices for metrizability? Taking a first

stab at this question, the reader may guess that some of the “intrinsic” topological properties we previously

discussed do the job. Perhaps surprisingly, Hausdorffness, regularity and second-countability indeed suffice

for metrizability. Intuitively, if a space has separated points, separated points and closed sets and is not

globally complex, then it is metrizable. This result is Urysohn’s metrization theorem.
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Theorem 6 (Urysohn’s metrization theorem)

Any regular Hausdorff second-countable topological space is metrizable.

By our discussion in the previous section, the following closely related result holds.

Proposition 7

(X, T ) is metrizable and separable if and only if (X, T ) is regular, Hausdorff and second-countable.

Proof.

By Urysohn’s metrization theorem and lemma 5, the right to left direction holds. By lemma 1, lemma 2 and

lemma 5, the left to right direction holds.

We can use Urysohn’s metrization theorem to show, for example, that topological manifolds, the basic objects

of study in geometric topology, are metrizable. Let’s work our way through some propositions using the

property of compactness to get this result. Since topological manifolds are Hausdorff and second-countable

by definition, we just need to show they are regular.

2.2 Topological manifolds are metrizable

Definition 7 (Topological manifolds)

A topological space (X, T ) is a topological manifold if

1. (X, T ) is Hausdorff.

2. (X, T ) is second-countable.

3. (X, T ) is locally Euclidean, i.e. for any x ∈ X, there is an open set Ux ∈ T such that x ∈ U and Ux

with the subspace topology is homeomorphic to Rn is equipped with the standard topology.

Definition 8 (Compact topological space)

A topological space (X, T ) is compact if any of its open covers has a finite subcover.

Definition 9 (Compact neighborhoods)

A topological space (X, T ) has compact neighborhoods if for any point x ∈ X, there is a compact set

K ⊆ X such that x ∈ K◦ ⊆ K.

Proposition 8 (Locally Euclidean topological spaces have compact neighborhoods)

Any locally Euclidean topological space has compact neighborhoods.

Proof.

Let (X, T ) be a locally Euclidean topological space. Take any x ∈ X. Then there is an open set Ux ∈ T
with x ∈ Ux and a homeomorphism ϕ : Ux → Rn

std. Let B be a closed ball of finite radius centered at ϕ(x).

Note that ϕ(x) ∈ B◦. So, x ∈ ϕ−1(B◦) ⊆ ϕ−1(B). And since ϕ is a homeomorphism, ϕ−1(B◦) = (ϕ−1(B))◦.

And since ϕ−1(B) is the continuous image of a compact set, it is compact. So x ∈ (ϕ−1(B))◦ ⊆ ϕ−1(B),

where ϕ−1(B) is compact.
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Proposition 9 (Hausdorff topological spaces that have compact neighborhoods are regular)

Any Hausdorff topological space that has compact neighborhoods is regular.

Proof. Let (X, T ) be a Hausdorff topological space that has compact neighborhoods. Take any x ∈ X and

any closed set C such that x /∈ C. Since (X, T ) has compact neighborhoods, there is a compact set K ⊆ X

such that x ∈ K◦ ⊆ K. Since (X, T ) is Hausdorff, for every y ∈ C ∩K, we can get disjoint open sets Uy, Vy

such that x ∈ Uy and y ∈ Vy. Note that C ∩K is compact because it is a closed set of the compact space

K. So, since the Vy sets intersected with C ∩K form an open cover of C ∩K, we have a finite subset of the

Vy sets whose union contains C ∩K. Let this finite subset be {Vy1 , . . . , Vyn}.

Let

V :=

n⋃
i=1

Vyi
and U :=

n⋂
i=1

Uyi

As mentioned above, C ∩K ⊆ V . And since x ∈ Uy for any y ∈ C ∩K, x ∈ U . Furthermore, since Uy and

Vy are disjoint for any y ∈ C ∩K, V and U are disjoint. Since (X, T ) is Hausdorff and K is compact, it is

also closed. Now, consider the sets U ∩K◦ and V ∪ (X ∩K). They are both unions of open sets, and thus

open. Moreover, since x ∈ U and x ∈ K◦ ⊆ K, x ∈ U ∩K◦. And note that C \K ⊆ X \K and from before

C ∩K ⊆ V , so C ⊆ V ∪ (X \K). Finally, note that K◦ ⊆ K, X \K ⊆ X \ (K◦) and thus K◦∩ (X \K) = ∅.

And from before, U and V are disjoint. So the sets U ∩K◦ and V ∪ (X ∩K) are disjoint and separate x and

C, as wanted.

Theorem 10 (Topological manifolds are metrizable)

Any topological manifold is metrizable.

Proof.

Since by definition topological manifolds are Hausdorff and second-countable, by Urysohn’s metrization

theorem it suffices to show that any topological manifold is regular. By propositions 8 and 9, topological

manifolds are regular.

2.3 Proving Urysohn’s metrization theorem

Now, let’s start to work towards a proof of Urysohn’s metrization theorem. Below is the first important

idea for our proof: metrizability is a topological property. It gives us some bearings as to what to do in

the proof. A topological space homeomorphic to a metrizable space is metrizable. So we can construct a

homeomorphism from an arbitrary Hausdorff, regular and second-countable space to some metrizable space

to prove the theorem.

Lemma 11 (Metrizability is a topological property)

If a topological space is homeomorphic to a metrizable topological space, it is also metrizable.

Proof.

Let (X, TX) be a topological space. Let (Y, TY ) be a metrizable topological space. And let f be a home-

omorphism from X to Y . Since (Y, TY ) is a metrizable, some metric dY induces TY . Let’s show that

dX(a, b) = dY (f(a), f(b)) is a metric that induces TX .
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We get the first property of metrics by the injectivity of f :

dX(a, b) = 0 ⇐⇒ dY (f(a), f(b)) = 0 ⇐⇒ f(a) = f(b) ⇐⇒ a = b

We get the second and third property of metrics just by definition:

dY (f(a), f(b)) = dY (f(b), f(a)) ⇒ dX(a, b) = dX(b, a)

dY (f(a), f(b)) + dY (f(b), f(c)) ≤ dY (f(a), f(c)) ⇒ dX(a, b) + dX(b, c) ≤ dX(a, c)

Now, let’s show that any open set in TX is a union of open dX balls. Let U be an open set in TX . f(U) is

open, so it is a union of open dY balls BdY
ri (yi). And so U = f−1(f(U)) is a union of sets

{a ∈ X | dY (f(a), f(xi)) < ri} = {a ∈ X | dX(a, xi) < ri} = BdX
ri (xi)

From our previous result, we saw that to prove Urysohn’s metrization theorem we can construct a homeo-

morphism to a metrizable space. The next proposition is another ingredient in this direction for our proof.

Countable products of metric spaces are metrizable and so our homeomorphism can be to a countable prod-

uct of metric spaces. This is at least apparently promising because it suggests a more clear path in our

proof.

Due to the universal property of product spaces, if we have a bunch of continuous maps to metric spaces, we

can piece these maps together and get a continuous map to a countable product of metric spaces, which we

now know is metrizable. Our hope is that maybe we can find continuous maps that “fit together nicely” and

piece them together to get not only a continuous map to a metrizable space, but rather a homeomorphism

to a metrizable space, which is all we need.

Lemma 12 (Equivalent bounded metric)

For any metrizable topological space (X, T ) there is a metric d ≤ 1 that induces T .

Proof.

Let (X, T ) be a metrizable topological space and let f : X ×X → X be a metric that induces T . Let’s show

that d : X ×X → X given by d(x, y) = min(f(x, y), 1) is a metric that induces T . We start by showing that

d is a metric.

First,

d(x, y) = 0 ⇐⇒ min(f(x, y), 1) ⇐⇒ f(x, y) = 0 ⇐⇒ x = y

For symmetry,

f(x, y) = f(y, x) ⇒ min(f(x, y), 1) = min(f(y, x), 1) ⇐⇒ d(x, y) = d(y, x)

And as for the triangle inequality,

min(f(x, y), 1) + min(f(y, z), 1) = min(f(x, y) + f(y, z), f(x, y) + 1, f(y, z) + 1, 2)

By the triangle inequality for f ,

f(x, y) + f(y, z) ≥ f(x, z) ≥ min(f(x, z), 1)
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And

f(x, y) + 1, f(y, z) + 1, 2 ≥ 1 ≥ min(f(x, z), 1)

So

d(x, y) + d(x, z) = min(f(x, y), 1) + min(f(y, z), 1) ≥ min(f(x, z), 1) = d(x, z)

Now, let’s show that d induces T .

Note that for r ≤ 1,

d(x, y) = min(f(x, y), 1) ≤ r ⇐⇒ f(x, y) ≤ r

In other words, Bd
r (x) = Bf

r (x) for r ≤ 1.

Take any open ball Bf
r (x) with arbitrary r. Take any y in this open ball.

Bf
min(1,r−f(x,y))(y) ⊆ Bf

r (x) and Bf
min(1,r−f(x,y))(y) = Bd

min(1,r−f(x,y))(y)

So, open f -balls are locally d-open and thus d-open.

Now, take any open ball Bd
r (x) with arbitrary r. Take any y in this open ball. Note that for any r ≥ 0,

d(x, y) = min(f(x, y), 1) ≤ r ⇒ f(x, y) ≤ r

So, Bf
r−d(x,y)(y) ⊆ Bd

r−d(x,y)(y) ⊆ Bd
r (x). Thus, open d-balls are locally f -open and thus f -open. So we can

conclude that f and d induce the same topology, T .

Proposition 13 (Countable products of metric spaces are metrizable)

Any countable product of metric spaces is metrizable.

Proof.

Let (Xi, di) for i ∈ N be metric spaces. By the previous lemma, we can assume that di ≤ 1 for i ∈ N.
Let’s show that

d(x, y) =

∞∑
i=1

1

2i
di(xi, yi)

is a metric that induces the product topology on
∞∏
i=1

Xi.

First, let’s show that d is a metric.

d(x, y) = 0 ⇐⇒
∞∑
i=1

1

2i
di(xi, yi) = 0 ⇐⇒ di(xi, yi) = 0 for all i ⇐⇒ xi = yi for all i ⇐⇒ x = y

d(x, y) =

∞∑
i=1

1

2i
di(xi, yi) =

∞∑
i=1

1

2i
di(yi, xi) = d(y, x)

d(x, y)+d(y, z) =

∞∑
i=1

1

2i
di(xi, yi)+

∞∑
i=1

1

2i
di(yi, zi) =

∞∑
i=1

1

2i
[di(xi, yi)+di(yi, zi)] ≤

∞∑
i=1

1

2i
di(xi, zi) = d(x, z)

Now, let’s show that d induces the product topology on
∏

Xi. First, we will show that open sets in the

product topology are open in the d−topology. Let O :=
∏

Oi be an open set in the product topology on∏
Xi.
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By the definition of product topology, there is a finite set D ⊆ N such that for any k ∈ D, Ok ̸= Xk. Pick

x ∈ O. For each k ∈ D, since Ok is open in Xk, there is an open ball Bdk
rk
(xk) ⊆ Ok. Since D is finite, we

can get 0 < r < 1 such that r ≤ rk
2k

for all k ∈ D. We will see that Bd
r (x) ⊆ O.

Suppose y ∈ Bd
r (x), d(x, y) < r. Then for any k ∈ D,

dk(xk, yk)

2k
≤ d(x, y) by definition of d

and

d(x, y) < r ≤ rk
2k

by assumption and the definition of r

So, for any k ∈ D, dk(xk, yk) < rk. Since from above Bdk
rk
(xk) ⊆ OK , yk ∈ Ok. And for Oi with indices

outside D, since Oi is equal to Xi, yi ∈ Oi. So y ∈ O. And since y was arbitrary, Bd
r (x) ⊆ O. So, open sets

in the product topology are locally d−open and thus d−open.

Now, let’s show that d−open sets are open in the product topology. Let U be a d−open set. Pick x ∈ U .

Since U is d−open, Bd
r (x) ⊆ U . The goal here is to construct an open set O in the product topology with

x ∈ O ⊆ Bd
r (x) to show that U is locally open with respect to the product topology. The main idea to build

O is that the tail in the sum defining d does not matter. We start by picking the point at which it this tail

starts.

Let t ∈ N be a natural number such that 1
2t < r

2 . Construct O :=
∏

Oi by letting Ok = Bdk
r
2t
(x) for 1 ≤ k ≤ t

and letting Ok = Xk for k > t. Clearly, x ∈ O. Now, let’s show that O ⊆ Bd
r (x). Suppose y ∈ O. Then, by

definition of O for 1 ≤ k ≤ t, dk(xk, yk) <
r
2t . So,

t∑
i=1

1

2i
di(xi, yi) ≤

t∑
i=1

di(xi, yi) < t× r

2t
=

r

2

And since di ≤ 1 and by our choice of t,

∞∑
i=t+1

1

2i
di(xi, yi) ≤

∞∑
i=t+1

1

2i
=

1

2t
<

r

2

So, d(x, y) < r
2 + r

2 = r, i.e. y ∈ Bd
r (x). So, x ∈ O ⊆ Bd

r (x) ⊆ U . So, U is locally open in the product

topology and thus open in the product topology. Since U was arbitrary, d−open sets are open in the product

topology.

Last time we left our reflection on how to prove Urysohn’s metrization theorem with the hope that we can

find continuous maps to metric spaces that “fit together nicely” giving us not only a continuous map, but

rather a homeomorphism to a metrizable space. Such maps really do exist. Urysohn’s lemma gives us maps

that will “fit together nicely” in our proof. But first, since Urysohn’s lemma applies to normal spaces, we

need to show that any Hausdorff, regular, second-countable space is normal.

Definition 10 (Lindelöf topological space)

A topological space (X, T ) is Lindelöf if every open cover of (X, T ) has a countable subcover.
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Lemma 14 (Second-countable ⇒ Lindelöf )

Any second-countable topological space is Lindelöf.

Proof.

Let X be a second-countable space. Let U be an open cover of X. Since X is second-countable, it has a

countable basis {Bi}i∈I . Since {Bi}i∈I is a basis of X, every U ∈ U is equal to
⋃

j∈JU

Bj for some JU ⊆ I.

Let K := {Bj | j ∈ JU for some U}. By definition of K, for every B ∈ K, there is some UB ∈ U such that

B ⊆ UB . For every B ∈ K assign one such UB . Let U∗ := {U ∈ U | U = UB for some B ∈ K}. By definition

of U∗, for any B ∈ K, B ⊆ U for some U∗ in U∗. So,⋃
B∈K

B ⊆
⋃

U∗∈U∗

U∗

Also, by definition of U∗, U∗ ⊆ U , so ⋃
U∗∈U∗

U∗ ⊆
⋃
U∈U

U

And by the definition of K, ⋃
B∈K

B =
⋃
U∈U

U

So, ⋃
U∗∈U∗

U∗ =
⋃
U∈U

U = X

So, U∗ is a subcover of U . Moreover, since {Bi}i∈I is countable, so is K and in turn so is U∗. So U∗ is a

countable subcover of U . Since U was arbitrary, this shows that X is Lindelöf.

Definition 11 (Normal topological space)

A topological space (X, T ) is normal if for any two disjoint closed sets A,B there exist open disjoint sets

U, V ∈ T such that A ⊆ U and B ⊆ V .

Lemma 15 (Tychonoff’s Lemma)

Any regular Lindelöf space is normal.

Proof.

Let (X, T ) be a regular Lindelöf topological space. Let A, B be two disjoint closed sets in (X, T ). Since

(X, T ) is regular, for any x ∈ A, there exist open sets Ux, Qx ∈ T such that x ∈ Ux and B ⊆ Qx. And

since Ux ∩ Qx = ∅, Ux is a subset of the complement of Qx, Ux ⊆ Qc
x. And since B ⊆ Qx, Q

c
x ⊆ Bc. So,

Ux ⊆ Ux ⊆ Qc
x = Qc

x ⊆ Bc.

Note that A ⊆
⋃

x∈A

Ux. So X = Ac ∪
⋃

x∈A

Ux and {Ac}∪{Ux}x∈A is an open cover of X. Since X is Lindelöf,

{Ac} ∪ {Ux}x∈A has a countable subcover. So, A ⊆
⋃

n∈N
Un where Un are open and Un ⊆ Bc.

By the same argument exchanging the roles of A and B, B ⊆
⋃

n∈N
Vi where Vn are open and Vn ⊆ Ac. At

this point, we have open covers of A and B, but we cannot guarantee that they are disjoint, as we would

like. So we define

On := Un \
n⋃

j=1

Vi = Un ∩
n⋂

j=1

Vi
c
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Wn := Vn \
n⋃

i=1

Ui = Vn ∩
n⋂

i=1

Ui
c

Note that On and Wn are open because they are finite intersections of open sets. We know that for each Vi,

Vi ⊆ Ac, so A ⊆ Vi
c
. So, A ⊆

n⋂
i=1

Vi
c
. So, A ⊆ Ui ∩

n⋂
i

Vi
c
= Oi for any i. So A ⊆

⋃
n∈N

On.

By a similar argument, B ⊆
⋃

n∈N
Wn.

Define O :=
⋃

n∈N
On and W :=

⋃
n∈N

Wn.

Note that O and W are open because they are unions of open sets.

Now, let’s show that O and W are disjoint.

O ∩W =
⋃
n∈N

On ∩
⋃
n∈N

Wn =
⋃

(m,n)∈N2

Om ∩Wn

If i ≥ j, Oi ∩Wj =

(
Ui ∩

i⋂
k=1

Vk
c
)
∩
(
Vj ∩

j⋂
k=1

Uk
c
)

⊆ Vj
c ∩ Vj ⊆ V c

j ∩ Vj = ∅.

If j ≥ i, Oi ∩Wj =

(
Ui ∩

i⋂
k=1

Vk
c
)
∩
(
Vj ∩

j⋂
k=1

Uk
c
)

⊆ Ui ∩ Ui
c ⊆ Ui ∩ U c

i = ∅.

So O ∩W = ∅.

Proposition 16 (Urysohn’s Lemma)

If A and B are disjoint closed subsets of a normal topological space (X, T ), then there exists a continuous

function f : X → [0, 1] such that f(A) = {0} and f(B) = {1}.

Proof.

Let (X, T ) be a normal topological space. Let A,B be disjoint closed subsets of (X, T ). Let D be the set of

dyadic rationals. We will build a collection of open sets {U(d) | d ∈ D} inductively such that:

1. for any d ∈ D, U(d) is open (except maybe for U(0)) and A ⊆ U(d) ⊆ X \B.

2. if d1 < d2, U(d1) ⊆ U(d2).

Define Dn :=
{

k
2n | k ∈ {0, . . . , 2n}

}
.

Base case: construct U(d) for d ∈ D0

U(0) := A, U(1) := X \ B. Note that U(1) is open because B is closed. And A = A since A is closed, so

property 2 is satisfied.

Inductive step: suppose we have U(d) for d ∈ Dn, construct for d ∈ Dn+1.

For each k ∈ {0, . . . , 2n}, proceed as follows to get U( 2k+1
2n+1 ). By property 2, we have

U(k/2n) = U(2k/2n+1) ⊆ U(2k + 2/2n+1) = U(k + 1/2n)

Since U( k
2n ) is closed and X \ U(k+1

2n ) is closed, by normality there exist disjoint open sets U, V such that

U( k
2n ) ⊆ U and X \U(k+1

2n ) ⊆ V . Since X \U(k+1
2n ) ⊆ V , X \V ⊆ U(k+1

2n ). And since U ∩V = ∅, U ⊆ X \V .

So U( k
2n ) = U( 2k

2n+1 ) ⊆ U ⊆ X \ V ⊆ U( 2k+2
2n+1 ) = U(k+1

2n ). Moreover, since U ⊆ X \ V and X \ V is closed,
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U ⊆ U ⊆ X \ V . So U( k
2n ) = U( 2k

2n+1 ) ⊆ U ⊆ U ⊆ U( 2k+2
2n+1 ) = U(k+1

2n ). And we can define U( 2k+1
2n+1 ) := U

since U satisfies properties 1 and 2.

Now we are ready to construct the continuous function f . Define f : X → [0, 1] by

f(x) =

{
1 if x /∈ U1

inf{d ∈ D | x ∈ U(d)} otherwise

Note that f(A) = {0} because U0 = A and f(B) = {1} because U1 = X \B. Now, we need to show that f

is continuous. First, note that

1. If r ∈ D and x ∈ U(r), then f(x) ≤ r.

That’s because r ∈ D and x ∈ U(r) means that r is a member of {d ∈ D | x ∈ U(d)} and so the

infimum of this set, f(x), is below r.

2. If r ∈ D and x /∈ U(r), then f(x) ≥ r.

That’s because U(d1) ⊆ U(d1) ⊆ U(d2) ⊆ U(d2) whenever d1 < d2. So x /∈ U(r) ⇒ x /∈ U(d) for d < r.

So if r ∈ D and x /∈ U(r), we know that there are no members smaller than r in {d ∈ D | x ∈ U(d)},
so r is a lower bound of the set. So inf{d ∈ D | x ∈ U(d)} ≥ r.

Let x ∈ X and ε > 0.

• If f(x) = 0, choose r ∈ D such that 0 < r < ε. Since f(x) = 0, x ∈ U(r). And by property 1 above,

f(U(r)) ⊆ [0, ε).

• If f(x) = 1, choose r ∈ D such that 1− ε < r < 1. Since f(x) = 1, x /∈ U(1). So, by property 2 of our

U(d) open sets, x /∈ U(r). And by property 2 just above, f(X \ U(r)) ⊆ (1− ε, 1].

• If 0 < f(x) < 1, choose r, r′, s ∈ D such that

f(x)− ε < r′ < r < f(x) < s < f(x) + ε

Since f(x) > r, x /∈ Ur, so by property 2 of U(d), x /∈ U(r′). And since f(x) < s, ∃k ∈ D, k < s such

that x ∈ U(k). So, by property 2 of our U(d) open sets, x ∈ U(k) ⊆ U(k) ⊆ U(s). So x ∈ U(s). So

x ∈ U(s)\U(r′). And by properties 1 and 2 just above, f(x)−ε < r′ ≤ f(U(s)\U(r′)) ≤ s < f(x)+ε.

So, f(U(s) \ U(r′)) ⊆ (f(x)− ε, f(x) + ε).

Now, we have almost all the tools necessary to prove Urysohn’s metrization theorem. The only thing left is

to clarify why the maps we get by using Urysohn’s lemma “fit together nicely.” Two factors work together

to make this the case. The most important of these factors is that the maps we get by using Urysohn’s

lemma “distinguish between points and closed sets.” And the secondary factor contributing to the maps

“fitting together nicely” is that the domain of these maps is Hausdorff. Let’s prove the theorem and see this

explictly!
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Proof of Urysohn’s metrization theorem.

Let (X, T ) be a regular Hausdorff second-countable topological space. Let B be a countable basis of T .

Define A, the set of pairs (U, V ) such that U, V ∈ B and U ⊆ V . Since B is countable, so is A.

By lemma 8, 9 and Urysohn’s lemma, for each pair (U, V ) ∈ A there exists a continuous map

f(U,V ) : X → [0, 1] such that f(U) = {0} and f(X \ V ) = {1}. Let F be the family of such functions

f . Define E : X → [0, 1]N to be the function whose components are the functions in F . By the universal

property of the product topology, E is continuous.

We will use the following claim to show that E is an embedding.

Claim: F distinguishes points and closed sets, i.e. for any closed set B ∈ (X, T ) and any x ∈ X \B, there

is some f in the family F such that f(x) /∈ f(B).

Proof of claim:

Let B be a closed set in (X, T ). Choose V ∈ B such that x ∈ V ⊆ X \ B. Since (X, T ) is regular and

X \ V is closed and x ∈ V , we get O,W open disjoint such that X \ V ⊆ O and x ∈ W . Since O ∩W = ∅,

W ⊆ X \O ⊆ V and X \O is closed, W ⊆ W ⊆ X \O ⊆ V .

Pick U ∈ B such that x ∈ U ⊆ W . Since U ⊆ W , U ⊆ W ⊆ V . Consider the function f in F chosen for

the pair (U, V ). f(x) = 0, since x ∈ U ⊆ U and f(U) = {0}. And since f(X \ V ) = {1} and B ⊆ X \ V ,

f(B) = {1}. So, since points are closed in any Hausdorff space and [0, 1] is Hausdorff, f(B) = f(B) = {1}.
So f(x) /∈ f(B).

This finishes the proof of the claim.

Back to the main line of argument in the proof, let’s show that E is injective. Since (X, T ) is Hausdorff,

points are closed in (X, T ). So, by our claim above, for any distinct x, y ∈ X, there is some f in the family

F such that f(x) /∈ f({y}). So f(x) ̸= f(y).

Since E is continuous and injective, restricting E to its image, we get a continuous, injective and surjective

map H between X and a subspace of [0, 1]N. Now, let’s show that H is open. Take any open set U in (X, T ).

We will show that H(U) is locally open and thus open. Take any point y ∈ H(U). There is x ∈ U such

that H(x) = y. Since F distinguishes points and closed sets, there is some f such that f(x) /∈ f(X \ U). By

definition of the product topology on [0, 1]N, Z := {z ∈ [0, 1]N | zf /∈ f(X \ U)} is open. So H(X)∩Z is open

in the subspace topology on H(X). And zf /∈ f(X \ U) ⇒ zf /∈ f(X \U) ⇒ z /∈ H(X \U) ⇒ z ∈ H(U). So

H(X) ∩ Z ⊆ H(U).

Since subspaces of metrizable spaces are metrizable, by lemma 5 X is metrizable.

3 Equivalent characterization of metrizability

3.1 Urysohn metrization theorem fails

Urysohn’s metrization theorem is an astouding result. But one may still ask if it leaves any room for

improvement. Urysohn’s metrization theorem gives us a set of “intrinsic” topological properties that suffice

for metrizability. Could we get a set of “intrinsic” topological properties that is equivalent to metrizability?
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Looking back at the last example in section 1, we know that not all metrizable spaces are second-countable.

So the “intrinsic” topological properties in Urysohn’s metrization theorem, which include second-countability,

are clearly not equivalent to metrizability. There are metrizable spaces that Urysohn’s metrization theorem

fails to notice such as any uncountable discrete space. However, we can hope to change second-countability to

another “complexity” property and get a set of “intrinsic” topological properites equivalent to metrizability.

Happily, this works. We can substitute the property of having a σ−locally finite basis for the property of

second-countability and get a characterization of metrizability in terms of “intrinsic” topological properties.

This is the Nagata-Smirnov metrization theorem.

3.2 Nagata-Smirnov metrization theorem

Definition 12 (Locally finite collection, σ−locally finite collection)

Let (X, T ) be a topological space. A collection S of subsets S ⊆ X is locally finite if for any x ∈ X, there

is an open set U ∈ T such that U ∩ S ̸= ∅ only for finitely S ∈ S. A collection S of subsets S ⊆ X is

σ−locally finite if it is the countable union of locally finite collections.

Theorem 17 (Nagata-Smirnov metrization theorem)

A topological space X is metrizable if and only if it is Hausdorff and regular and has a σ-locally finite basis.

Our proof for the right-to-left direction of this theorem is somewhat similar to our proof for Urysohn’s

metrization theorem. We start by showing that any Hausdorff, regular space that has a σ-locally finite basis

is normal. This is a variant of Tychonoff’s lemma. This variant of Tychonoff’s lemma will allow us to use

continuous maps given by Urysohn’s lemma to create other continuous maps. Finally, we will use these new

continuous maps to build an embedding to a space whose underlying set is a product of [0, 1] and whose

topology is a special metric topology. Restricting the codomain of this embedding, we get a homeomorphism

to a metrizable space, which is again sufficient for our purposes.

Lemma 18 (Closure of union of sets in locally finite collection)

If S is a locally finite collection of a topological space (X, T ), then
⋃

S∈S
S =

⋃
S∈S

S.

Proof.

Let Y :=
⋃

S∈S
S. First, note that

⋃
S∈S

S ⊆ Y . For each S ∈ S, S ⊆
⋃

S∈S
S = Y , so S ⊆ Y . Now, let’s show

that Y ⊆
⋃

S∈S
S. Let x /∈

⋃
S∈S

S. By the local finiteness of S, there is an open set U ∈ T such that x ∈ U

and there only finitely many sets S1, . . . , Sk such that Si ∩ U ̸= ∅.

Define

W := U ∩
(
X \

k⋃
i=1

Si

)
W is open because it is the intersection of two open sets. Moreover, it is disjoint from the finitely many

Si since Si ⊆ Si. And it is disjoint from the other sets S ∈ S because U is. And since x /∈
⋃

S∈S
S and

x ∈ U , x belongs to W . So W is an open neighborhood of x that does not meet Y . Thus, by the limit-point

characterization of closure, x /∈ Y .

17



Proposition 19 (Tychonoff’s Lemma Variant)

Any regular topological space that has a σ-locally finite basis is normal.

Proof.

Let (X, T ) be a regular topological space that has a σ−locally finite basis B.
Claim: For any open set W ∈ T , W =

⋃
n∈N

Un =
⋃

n∈N
Un with Un open for all n ∈ N.

Proof of claim:

Since B is σ−locally finite, B =
⋃

n∈N
Bn, where Bn is locally finite for each n ∈ N. For each n ∈ N, define

Cn := {B ∈ Bn | B ⊆ W}

Since Cn ⊆ Bn, Cn is also locally finite for each n ∈ N. For each n ∈ N, define Un :=
⋃

B∈Cn

B. Any member

of Cn for some n ∈ N is a member of B, and so a basic open set. So for each n ∈ N, Un is a union of basic

open sets, and thus open. Since Cn is locally finite, by the lemma above, Un =
⋃

B∈Cn

B. Moreover, by the

definition of Cn, B ⊆ W for any B ∈ Cn, so Un =
⋃

B∈Cn

B ⊆ W .

Now, it suffices to show that W ⊆
⋃

n∈N
Un, which is what we will do. Let x ∈ W . Then, by the regularity of

(X, T ) there are disjoint open sets U, V such that x ∈ U and X \W ⊆ V . So

x ∈ U ⊆ X \ V ⊆ W

Since B is a basis, U is the union of sets in B. One of these sets contains x. So we have x ∈ B ⊆ U ⊆ X \ V
for some B ∈ B. Since B ⊆ X \ V , B ⊆ X \ V . So, since X \ V is closed, we have

B ⊆ X \ V = X \ V ⊆ W

Since B ∈ B, B ∈ Bn for some n ∈ N. So, since B ⊆ W , by the definition of Cn,

x ∈ B ⊆
⋃

B∈Cn

B = Un ⊆
⋃
n∈N

Un

This finishes the proof of the claim.

Back to the main line of argument in the proof, let’s show that (X, T ) is normal. Let A,B be two closed

sets in the topological space. Since X \B is open, by the claim above there exist open sets Un such that

X \B =
⋃
n∈N

Un =
⋃
n∈N

Un

Trivially, for each n ∈ N, Un ⊆ X \B. Moreover, since A ∩B = ∅, A ⊆ X \B =
⋃

n∈N
Un.

By the same reasoning, we get open sets Vn such that for each n ∈ N, Vn ⊆ X \A and B ⊆
⋃

n∈N
Un. Now, we

are exactly in the same position as in the middle of the proof of Tychonoff’s lemma: we have open covers of

A and B with the property that the closures of the sets in the open cover of one set do not meet the other

set. Exactly the same procedure as in the proof of Tychonoff’s lemma gives us disjoint open covers of A and

B, as we want.
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Now, let’s prove the right-to-left direction of the Nagata-Smirnov theorem.

Proof of right-to-left direction of the Nagata-Smirnov theorem.

Let (X, T ) be a Hausdorff and regular topological space that has a σ−locally finite basis. Let’s first talk

about the metric topology that the codomain of our homeomorphism will have. Let B be a σ−locally finite

basis of the topological space. The codomain of our homeomorphism is the set [0, 1]B with the metric d

defined by

d(x, y) = sup
B∈B

{|xB − yB |}

Let’s show that this is a metric. First note that it is nonnegative because for any real number r, |r| ≥ 0,

so in particular |xB − yB | ≥ 0 and and so supB∈B{|xB − yB |} ≥ 0. Next, note that if d(x, y) = 0, then for

every B ∈ B, 0 ≥ |xB − yB | ≥ 0, so |xB − yB | = 0 and since xB , yB ≥ 0, xB = yB . So if d(x, y) = 0, x = y.

Conversely, if x = y, for all B ∈ B, xB = yB , so |xB−yB | = 0. So 0 is an upper bound of {|xB−yB |}B∈B. So

d(x, y) ≤ 0. And from above, d(x, y) ≥ 0. So d(x, y) = 0. The map d is also symmetric because |r| = | − r|
for any real number r:

d(x, y) = sup
B∈B

{|xB − yB |} = sup
B∈B

{|yB − xB |} = d(y, x)

Finally, d satisfies the triangle inequality. For sets A,B of real numbers sup(A) + sup(B) = sup(A + B),

where A+B := {a+ b | a ∈ A, b ∈ B}. For our particular case, supB∈B{|xB − yB |}+ supB∈B(|yB − zB |) =
supB∈B(|xB − yB |+ |yB − zB |). And since the standard absolute value on R satisfies the triangle inequality,

|xB −zB | ≤ |xB −yB |+ |yB −zB | for all B ∈ B. So upper bounds of {|xB −yB |+ |yB −zB |}B∈B are a proper

subset of the upper bounds of {|xB − zB |}B∈B. So, supB∈B(|xB − zB |) ≤ supB∈B{|xB − yB | + |yB − zB |}.
Putting all of this together,

d(x, z) = sup
B∈B

(|xB−zB |) ≤ sup
B∈B

{|xB−yB |+ |yB−zB |} = sup
B∈B

{|xB−yB |}+ sup
B∈B

(|yB−zB |) = d(x, y)+d(y, z)

Now, let’s create new special continuous maps using Urysohn’s lemma that we will later use to make the

embedding we want.

Claim: For any open set W ∈ T , there exists a continuous map f : X → [0, 1] such that 0 /∈ f(W ) and

f(X \W ) = {0}.

Proof of claim:

By the claim in proposition 19, W =
⋃

n∈N
Un =

⋃
n∈N

Un, where each Un is an open set. W ∩ X \ W = ∅,

so Un ∩ X \ W = ∅ for each n ∈ N. By the variant of Tychonoff’s lemma above, (X, T ) is normal, so

we can apply Urysohn’s lemma to get for each Un a map fn : X → [0, 1] satisfying fn(Un) = {1} and

fn(X \W ) = {0}. Define f : X → [0, 1] by

f(x) =

∞∑
n=1

fn(x)

2n

This function is well-defined because for any x ∈ X, 0 ≤ fn(x) ≤ 1, so 0 ≤ fn(x)
2n ≤ 1

2n . And thus

0 ≤
∞∑

n=1

fn(x)

2n
≤

∞∑
n=1

1

2n
= 1
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In fact, these properties also suffice for the family of functions fn/2
n to pass the Weierstrass M-test. So the

family of functions fn/2
n is uniformly convergent. And so, since each fn/2

n is continuous (the product of a

continuous map with a constant map), f is continuous.

By construction, for any fn, fn(X \W ) = {0}, so f(X \W ) = {0}. If x ∈ W , since W =
⋃

n∈N
Un, x ∈ Un

for some n ∈ N. By definition, fn(Un) = {1}, so fn(x) = 1. So, since for every m ∈ N, fm is nonnegative,

f(x) ≥ fn(x)/2
n > 0. So 0 /∈ f(W ), as wanted.

This finishes the proof of the claim.

Back to the main line of argument in the proof, we are now ready to the define our embedding, which we

will turn later into a homeomorphism. Recall that B is a σ−locally finite basis for our topological space

(X, T ). So B is the countable union of locally finite collections Bn. We can assume without loss of generality

that the Bn are disjoint. We could have removed any B in multiple Bn from all of them except one at the

beginning of our proof and we would still have locally finite collections whose union was a basis.

Since the collections Bn are disjoint, any element B ∈ B belongs to Bn for a unique n ∈ N. Since any such B

is a basic open set, it is open and by the claim above (composing the map from the claim with a continuous

scaling map) there exists a continuous map fB : X → [0, 1/n] satisfying 0 /∈ f(B) and f(X \ B) = {0}.
Define our embedding E : X → [0, 1]B by

E(x) := (fB(x))B∈B

First, note that E is injective. Suppose x, y are distinct points in X. Since (X, T ) is Hausdorff, there exist

disjoint open sets U, V with x ∈ U and y ∈ V . Since B is a basis for (X, T ), U is the union of sets in the

basis. In particular, one of the sets in the unions contains x. We have x ∈ B ⊆ U for some B ∈ B. Since

y ∈ V and V is disjoint from U , a superset of B, and by the definition of fB , fB(y) = 0 and fB(x) ̸= 0. So

g(x) ̸= g(y).

Now, let’s show that E is continuous. Take any open set V ∈ [0, 1]B with the metric topology we described.

We want to show that g−1(V ) is open. It suffices to show that g−1(V ) is locally open, i.e. for any x ∈ g−1(V ),

there is an open set U such that x ∈ U ⊆ g−1(V ). Let x ∈ g−1(V ). Since V is open, it is the union of open

d-balls. One of these balls contains g(x). So, using the triangle inequality property of d, there is an open

ball Bd
ε (g(x)) such that g(x) ∈ Bd

ε (g(x)) ⊆ V . So x ∈ g−1(Bd
ε (g(x))) ⊆ g−1(V ). So it suffices to show that

there is an open set U such that x ∈ U ⊆ g−1(Bd
ε (g(x))) to show that g−1(V ) is locally open at x. This is

what we will do next.

Take some Bn. Since it is locally finite, there is an open neighborhood Wn of x that meets only finitely

many of the sets in Bn. Let B ∈ Bn. If Wn does not meet B, note that fB(Wn) = {0}, so for any y ∈ Wn,

|fB(x) − fB(y)| = |0 − 0| = 0. If Wn does meet B, consider the set OB := (fB(x) − ε/2, fB(x) + ε/2) ∩
[0, 1/n]. Since it is open and fB is continuous, f−1(On) is open. And for y ∈ f−1(On), fB(y) ∈ On, so

|fB(x) − fB(y)| < ε/2. Define Un to be the intersection of Wn with all the sets OB for B that intersect

Wn. Un is open because it is the finite intersection of open sets. And by the two properties just discussed,

if y ∈ Un, |fB(x)− fB(y)| < ε/2 for all B ∈ Bn.

Pick N ∈ N such that 1 < ε/2×N . Define U := U1 ∩ . . . UN . U is open because it is the finite intersection

of open sets. Let y ∈ U . If n ≤ N , for all B ∈ Bn, |fB(x)− fB(y)| < ε/2. If n > N , for all for all B ∈ Bn,

|fB(x)− fB(y)| < 1/n because the codomain of fB is [0, 1/n]. And we know that 1/n < 1/N < ε/2.
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So if y ∈ U , |fB(x)− fB(y)| < ε/2 for all B ∈ B. So d(g(x), g(y)) = supB∈B{|fB(x)− fB(y)|} ≤ ε/2 < ε. So

g(y) ∈ Bd
ε (g(x)). And U ⊆ g−1(Bd

ε (g(x))), as wanted.

Since E is continuous and injective, the map H we get by restricting E’s codomain to its image is continuous,

injective and surjective. Now, all that is left is to show that H is open. Let U be an open set in (X, T ).

We want to show that H(U) is open. It suffices to show that H(U) is locally open. Let z ∈ H(U). Since

H is injective, there is a unique x ∈ X such that H(x) = z. And x ∈ U . Since U is open it is the union

of sets in the basis B, one of which contains x. Call this set A. By definition of fA, fA(x) ̸= 0. Define

V := {x ∈ [0, 1]B | xA ̸= 0}. Let’s show that V is open by showing that it is locally open. Take y ∈ V .

Consider Bd
yA

(y). Let w ∈ Bd
yA

(y). Then d(y, w) = supB∈B{|yB − wB |} < yA. So |yB − wB | < yA for all

B ∈ B. And in particular |yA − wA| < yA, so wA ̸= 0. So w ∈ V . So for any y ∈ V , y ∈ Bd
yA

(y) ⊆ V and V

is open.

Define W := V ∩ H(X). W is open in H(X). Since fA(x) ̸= 0, H(x) = z ∈ V . And trivially H(x) =

z ∈ H(X). So H(x) ∈ W . Finally, let’s show that W ⊆ H(U). Take t ∈ W . So t ∈ H(X) and for some

y ∈ X, H(y) = t. And t ∈ V , so (H(y))A = fA(y) ̸= 0. So by the definition of fA, y ∈ A ⊆ U . And

H(y) = t ∈ H(U). So W is an open neighborhood of z contained in H(U). So H(U) is locally open and

thus open, as wanted.

Since subspaces of metrizable spaces are metrizable, H is a homeomorphism from X to a metrizable space.

This completes the proof of the right-to-left direction of the Nagata-Smirnov metrization theorem.

Now, we can move on to the left-to-right direction of the Nagata-Smirnov theorem. By lemma 1 and lemma

2, we know that any metrizable space is Hausdorff and regular. So we just need to show that any metrizable

space has a sigma-locally finite basis. We will derive this as a corollary from another strong result.

Definition 13 (Refinement of a cover)

Let C be a cover of (X, T ). A refinement D of C is a cover of (X, T ) such that any D ∈ D is contained in

some C ∈ C.

Proposition 20

Any open cover of a metrizable space has an open σ-locally finite refinement.

Proof.

Let (X, T ) be a metrizable topological space. Let d be a metric that induces T . Let C be an open cover of

(X, T ). By the well-ordering theorem, there is a well-order ≺ on the elements of C. Define the following for

any n ∈ N and any open set U ∈ C:

Sn(U) := {x | Bd
1/n(x) ⊆ U}

Tn(U) := Sn(U) \
⋃

V ∈C,
V≺U

V

Claim 1: Suppose V,W ∈ C and V ̸= W . For any n ∈ N, take x ∈ Tn(V ) and y ∈ Tn(W ), then

d(x, y) ≥ 1/n.

Proof of claim 1:

Without loss of generality, assume that V ≺ W . Since x ∈ Tn(V ), so x ∈ Sn(V ), so Bd
1/n(x) ⊆ V . And

y ∈ Tn(W ) and V ≺ W , so y /∈ V . Suppose towards contradiction that d(x, y) < 1/n. Then y ∈ Bd
1/n(x) ⊆ V ,

so y ∈ V , what is a contradiction. So it must be the case that d(x, y) ≥ 1/n.
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This finishes the proof of claim 1.

For any n ∈ N and any open set U ∈ C, define En(U) as the union of open balls Bd
1/(3n)(x) for any x ∈ Tn(U).

Note that En(U) is open because it is the union of open sets.

Claim 2: Suppose that V,W ∈ C and V ̸= W . For any n ∈ N, take x ∈ En(V ) and y ∈ En(W ). Then,

d(x, y) > 1/(3n).

Proof of claim 2:

By definition of En(V ) and En(W ), there exist w ∈ Tn(V ) and z ∈ Tn(W ) such that d(x,w) < 1/(3n) and

d(y, z) < 1/(3n). Using the triangle inequality twice,

d(w, z) ≤ d(w, x) + d(x, z) ≤ d(w, x) + d(x, y) + d(y, z)

By claim 1, d(w, z) ≥ 1/n. So

d(x, y) ≥ d(w, z)− d(w, x)− d(y, z) ≥ 1/n− 1/(3n)− 1/(3n) = 1/(3n)

This finishes the proof of claim 2.

Claim 3: For every U ∈ C and any n ∈ N, En(U) ⊆ U .

Proof of claim 3:

Let y ∈ En(U). Then y ∈ Bd
1/(3n)(x) for some x ∈ Tn(U). So x ∈ Sn(U). So Bd

1/n(x) ⊆ U . And since

y ∈ Bd
1/(3n)(x), d(x, y) < 1/(3n) < 1/n. So y ∈ Bd

1/n(x) ⊆ U .

This finishes the proof of claim 3.

Now we are ready to define the σ−locally finite refinement of C. For any n ∈ N, define

En := {En(U) | U ∈ C}

I claim that E :=
⋃

n∈N
En is an open σ−locally finite refinement of C. First, recall that any En(U) is open, as

mentioned above. So this is an open collection. Next, notice that every set in En is a subset of an element of

C by claim 3. So every set in E is a subset of an element in C. Now, we just need to show that E is σ−locally

finite and covers X. Let’s first show that it is σ−locally finite.

It suffices to show that En is locally finite and this is what we will do. Take x ∈ X. I claim that Bd
1/(6n)(x)

is a neighborhood of x that intersect only finitely many sets in En. in particular, it intersects at most one

set in En. Suppose there exists U ∈ C such that Bd
1/(6n)(x) ⊆ En(U) ̸= ∅. Take any V ∈ C different from U

and take z ∈ En(V ). By claim 2, d(y, z) > 1/(3n). And by the triangle inequality and the symmetry of d,

d(x, y) + d(x, z) ≥ d(y, z). So

d(x, z) ≥ d(y, z)− d(x, y) >
1

3n
− 1

6n
=

1

6n

So z /∈ Bd
1/(6n)(x).

Now, let’s show that E covers X. Take x ∈ X. Since C covers X, some U ∈ C contains x. So, because

≺ is a well-order, there is a least element V of C that contains x. V is open, and thus the union of open

balls. One of these open balls contains x and so, using the triangle inequality we get x ∈ Bd
ε (x) ⊆ V for

some ε > 0. Pick N such that 1 < ε × N . Then x ∈ Bd
1/N (x) ⊆ V . So x ∈ SN (V ). And because V is

the least element containing x, TN (V ) = SN (V ). So, by the definition of EN (V ), Bd
1/(3N)(x) ⊆ EN (V ). So

x ∈ EN (V ) ⊆ EN ⊆ E .

22



Corollary 21

Any metrizable space has a σ-locally finite basis.

Proof.

Let (X, T ) be a metrizable space. Let d be a metric that induces T . For each n ∈ N, define
Cn := {Bd

1/n(x) | x ∈ X}. Since for any x ∈ X, x ∈ Bd
1/n(x), Cn is an open cover of X. By the proposition

above, for each n ∈ N, there is an open σ−locally finite refinement Dn of Cn.

Claim: Suppose D ∈ Dn and a, b ∈ D. Then d(a, b) < 2/n.

Proof of claim:

Because Dn is a refinement of Cn, D ⊆ Bd
1/n(x) for some x ∈ X. So a, b ∈ Bd

1/n(x). In other words,

d(a, x) < 1/n and d(x, b) < 1/n. And by the triangle inequality, d(a, b) ≤ d(a, x)+d(x, b) < 1/n+1/n = 2/n.

This finishes the proof of the claim.

Back to the main line of argument in this proof, define D :=
⋃

n∈N
Dn. D is the countable union of countable

unions of locally finite sets, so it is the countable union of locally finite sets, i.e. σ−locally finite. Now,

all that is left to do is show that D is a basis. We will show that any open set is the union of sets in D.

Take any open set U ⊆ X. Take any x ∈ U . Since U is open, it is the union of open balls, one of which

contains x. So using, the triangle inequality, we get x ∈ Bd
ε (x) ⊆ U for some ε > 0. Pick N ∈ N such that

2 < ε × N . DN covers X, so there is some D ∈ DN ⊆ D such that x ∈ D. By the claim above, for any

y ∈ D, d(x, y) < 2/N < ε. So y ∈ Bd
ε (x). So x ∈ D ⊆ Bd

ε (x) ⊆ U . Since x was arbitrary, for any element x

of U we have x ∈ Dx ⊆ U for some Dx ∈ D. So U =
⋃

x∈X

Dx for Dx ∈ D.

This finishes the proof of the Nagata-Smirnov metrization theorem.
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