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This article assumes background in introductory analysis, specifically sequences
in metric spaces, and point-set topology through the first half of this course.
The goal is to convince the reader that analyzing convergent sequences can fail
to capture important properties of topological spaces such as closure, continuity,
and compactness. The main question we will try to answer is: how do we fix
this? We will define nets to be the analogous notion of sequences in an arbitrary
topological space. We will then show that nets can be used interchangeably with
filters, another generalization of sequences in a topological space.

1 Where sequences fail

1.1 Convergent sequences in metric spaces

Recall that for a set X, a sequence {xn} ⊂ X converges to a point x ∈ X if for
every open set containing x, there exists N ∈ N such that xn ∈ U for all n ≥ N .
Or, more simply put, a sequence {xn} converges to x if every open set around
x contains a tail of the sequence. In this case, we write xn → x. A point x is a
limit point of a sequence {xn} if every open set U around x contains such an
infinite tail of {xn}.

Many properties of convergent sequences in the Euclidian space generalize nicely
to any arbitrary metric space (X, d). For instance:

Nice property 1. Every sequence in (X, d) converges to at most one point.

In metric spaces, we can also use convergent sequences to characterize closure,
continuous functions between metric spaces, compactness, and limit points.

Nice property 2. There is a sequence in A ⊂ X converging to a iff
a ∈ A.

Nice property 3. f : (X, d) → (Y, d) is continuous iff for every convergent
sequence xn → x in X, f(xn)→ f(x) in Y.

Nice property 4. (X, d) is compact iff every sequence has a convergent sub-
sequence.
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Nice property 5. x is a limit point of a sequence {xn} in (X, d) iff there is a
subsequence {xnk

} of xn converging to x.

Looking at convergent sequences and subsequences gives us a way to study the
important topological notions in metric spaces. Metric spaces are neat, but we
want to be able to achieve something similar for any topological space.

1.2 Convergent sequences in topological spaces

The definition of a convergent sequence remains the same for any space: a
sequence converges to a point if we can fit a tail of the sequence in any open set
around that point. Note that we can also say “all but finitely many points” of
the sequence are in every open set around the point.

Example 1. In a discrete space, only sequences with constant tails (terms take
on a constant value far enough along in the sequence) converge. Since singletons
are open sets, in order for the tail of the sequence to be in the open set around
a point, the tail must precisely be that point.

Example 2. In an indiscrete space, every sequence converges to every point!
This is because an open set around one point contains every other point. In
(R, Tindisc), then, pick any sequence, and it converges to 0. Or 1,000,000. Or
-333. Or π. You get the idea.

These examples give us the sense that sequences in non-metric spaces can be-
have weirdly. Oftentimes, we throw conditions at statements to prevent weird
behavior. Indeed, we will need additional constraints in order to replicate the
nice properties above for any topological space. From now on, we will use X to
indicate a topological space.

Nice-ish property 1. If X is a Hausdorff space, then every sequence in X
converges to at most one point.

Proof. Suppose xn → x. Take y ∈ X, y 6= x. Since X is Hausdorff, there exist
disjoint, open sets U, V such that x ∈ U, y ∈ V . But if a tail of {xn} is contained
in U , then only finitely many points of {xn} are in V . So xn 6→ y.

Since metric spaces are Hausdorff, this is a more general result than Nice prop-
erty 1. As in the case of metric spaces, we want to say that the converse is true,
but unfortunately, it is not. Here is a counterexample:

Example 3. Let X an uncountable set with the co-countable topology, such as
Rcc. A sequence {xn} in X converges to x iff {xn} has a constant tail with
value x, i.e. xn = x for large enough n. To see this, suppose xn → x. Let

A = {xn | xn 6= x}.

A is countable, so X \ A is uncountable, which means that A is closed. Since
x /∈ A, X \A is an open set containing x. Thus a tail of {xn} must be in X \A.
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But {xn}∪X \A = {x}, so the tail is constant. Conversely, suppose that xn = x
for n ≥ N , N ∈ N. Let U be an open set containing x. Then for all n ≥ N ,
xn ∈ U . Since U is arbitrary, xn → x by definition of convergence. So every
sequence in this space converges to at most one point. However, we know that
the co-countable space is not Hausdorff.

With this example, we can already see that we cannot rely solely on analyzing
convergent sequences to reveal the underlying data of a topology. Though Rcc

is very different from the discrete space, their convergent sequences act the
same. This feels troubling. In particular, notice in the above example that
to prove a sequence with a constant tail of x converges to x, we didn’t use
any properties of the co-countable topology. So this statement holds for any
topological space.

Anyway, the Hausdorff condition is important here, because it guarantees that
we can separate points by open sets. Remember that we determine convergence
by examining all of the open sets around a point. If two points are topologically
indistinguishable, i.e. there are no open sets seperating them, then it makes
sense that a sequence can converge to both points simultaneously.

In the extreme example of the indiscrete space, all points are topologically
indistinguishable. This presents the awkward case we saw above, where every
sequence converges to every point.

For our other nice properties to hold, we will need conditions beyond Hausdorff-
ness.

Definition 1.1. A ⊂ X is sequentially open if for a sequence {xn} ∈ X that
converges to x ∈ A, the tail of {xn} is contained in A. S ⊂ X is sequentially
closed if for a sequence {xn} ⊂ S that converges to x ∈ X, x ∈ S.

It is equivalent to say that A is sequentially open iff no sequence in X \ A
converges to a point in A.

Proposition 1.1. For a metric space X, A ⊂ X is open iff A is sequentially
open.

Proof. If A ⊂ X is open, {xn} a sequence in X \ A, and a ∈ A, then A is an
open set containing a but not any element of {xn}. So {xn} cannot converge to
a, and A is sequentially open.

Conversely, if A ⊂ X is not open, then any open set around some a ∈ A has
non-trivial intersection with X \A. Pick

xn ∈ (X \A) ∩B 1
n+1

(a)

for all n ∈ N . Then {xn} is in X \ A but converges to a ∈ A. Thus A is not
sequentially open.
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Hence the two notions are the same in a metric space. Notice that for the first
implication, we did not use the fact that X is a metric space, so the following
statement is true for any topological space.

Proposition 1.2. For any space X, if A ⊂ X is open, then A is sequentially
open.

This proposition also says that a closed subset of X is also sequentially closed.
As we just saw for metric spaces, the reverse is also true.

X is sequential if this is the case, i.e. if sequentially open sets are open and,
equivalently, if sequentially closed sets are closed.

Following the theme of much of this section, however, we must once again hesi-
tate before believing the reverse to be true for all spaces.

Example 4. Once again, let X be a set with the co-countable topology. Let {xn}
be a sequence in S ⊂ X converging to some x ∈ X. Let

M = {xn|xn 6= x}.

M is countable, so M is closed in X, which means that X \ M is open and
contains x. Since xn → x, X \M contains a tail of {xn}. Thus there must be
N ∈ N large enough such that xN = x. Then {xn} ⊂ S gives us that x ∈ S and
every subset S is sequentially closed. However, we know that every uncountable
subset in X is not closed. So X is not sequential.

We thus have the fact:

Proposition 1.3. Not all topological spaces are sequential.

When dealing with a space that is not sequential, it becomes harder to use the
notions of sequentially open and sequentially closed, and therefore sequences,
to exactly define the topology. In a metric space, we often think of convergent
sequences as “getting close to something.” Even if that “something” is not in
the set containing the sequence, our sequence still approach it.

Sequential spaces end up being the ones where we can “do business as usual”
with sequences to determine the important properties of the topology. We can
think of the open sets in a sequential space as “mimicking” the structure of a
metric space.

So we can transfer over what we know about metric spaces to sequential spaces,
but there is in fact a stronger property that allows us to use convergent sequences
to extract information from a topology.

Definition 1.2. A countable basis at a point x ∈ X is a countable collection
of open sets Bx around x such that for every open set U containing x, there is
some B ∈ Bx with B ⊂ U .

A space X is first countable if every point x ∈ X has a countable basis.

Proposition 1.4. Every metric space is first countable.
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Proof. The set of open balls around x with radius 1
n for n = 1, 2, 3, ... form a

countable basis at x.

We have analogues of our nice properties for first countable spaces.

Nice-ish property 2. If X is first countable, there is a sequence in A ⊂ X
converging to a iff a ∈ A.

Nice-ish property 3. If X is first countable, then f : X → Y is continuous
iff for every convergent sequence xn → x in X, f(xn)→ f(x) in Y.

Nice-ish property 5. If X is first countable, x is a limit point of a sequence
{xn} in X iff there is a subsequence {xnk

} of xn converging to x.

Proof. Complete proofs for the three statements above are available in Reference
3.

But why is this first countability condition important? The underlying idea is
that if there is a countable basis at a point x in X, then there is a countable
and nested basis of open sets around x,

B1 ⊃ B2 ⊃ ...

such that every open set U around x contains some Bi. You can prove this
by noticing that the finite intersection of basis elements is also a basis ele-
ment.

Indeed, in metric spaces, the set of open 1
n -balls around x form a nested count-

able basis at x:
B1(x) ⊃ B 1

2
(x) ⊃ B 1

3
(x)...

In a non-metric space, we can imagine this sequence of nested basis elements
taking on the same role as the open 1

n -balls. Since sequences are countable, the
fact that there are only countably many of these nested basis elements ensures
that terms of a sequence can approach a point x.

If every basis element Bi around x contains a term of the sequence, then because
the Bi’s are nested and any open set around x contains some Bi, every open
set around x will contain a tail of the sequence.

Without a countable basis around a point, we don’t know if a sequence will ever
get “close enough” to a point such that every open set around that point will
contain its tail.

Example 5. An uncountable set X with the co-countable topology is not first
countable. To see this, let’s assume that X is first countable. Let x ∈ X. Then
there exists a countable basis Bx around x. For any B ∈ Bx, B is open by
definition of a basis, so X \B is countable. Then⋃

B∈Bx

(X \B)
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is a countable union of countable sets, thus countable. But⋃
B∈Bx

(X \B) = X \
⋂

B∈Bx

B = X \ {x}

gives us that X \ {x} is countable. However, since X is uncountable, it remains
uncountable after deleting a point, so we reach a contradiction.

Because Rcc is not first countable, sequences can’t exactly see what its open
sets look like, leading them to believe that Rcc is discrete!

Having the property of first countability is sufficient to talk about sequences in
such spaces. But can we do better? While many spaces are first countable, we
want something that can encapsulate the notion of convergent sequences for all
topological spaces. To do so, we’ll have to think beyond sequences. And this is
where nets come in.

2 Nets

Per our discussion above, we can think of sequences as being too short to probe
uncountable sets. Sequences are indexed by the natural numbers, thus count-
able. We want something “longer.” We also concluded that sequences can fail
to retrieve all the data of a topological space. In this sense, the view from above
that sequences provide is too narrow. Sequences can only approach a point
from one direction, whereas we want to be able to approach a point from all
directions. This will give us a more transparent picture of what is really going
on in a topological space.

By using a directed set in place of N as our indexing set, nets will fix these
grievances we have with sequences.

Definition 2.1. Let D be a set and ≤ be a relation on D such that:

1. ≤ is reflexive: for any x ∈ D, x ≤ x

2. ≤ is transitive: for any x, y, z ∈ D, if x ≤ y and y ≤ z, then x ≤ z

3. ≤ is directed: for any x, y ∈ D, there exists c ∈ D such that x ≤ c and
y ≤ c, i.e. any two elements in D have an upper bound

Then D with the relation ≤ is a directed set.

Example 6. Some examples of directed sets:

1. N with the usual ordering ≤ (“less than or equal to”) is a directed set.

2. If (X, T ) is a topological space and x ∈ X, then the set {U ∈ T | x ∈ U}
with the subset relation ⊆ is a directed set. ⊆ clearly satisfies the first
two conditions above. To see that it satisfies the third, notice that if U, V
are open sets containing x, then U ∪ V is an open set containing x, and
U, V ⊆ U∪V . The same set equipped with the relation ⊇ is also a directed
set.
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3. If D,E are directed sets, then D × E is a directed set by defining the
relation (d1, e1) ≤ (d2, e2) iff d1 ≤ d2 in D and e1 ≤ e2 in E.

For instance, although N×N with the usual ordering on each component
is not a totally ordered set ((0, 1) and (1, 0) are incomparable), it is a
directed set. Any (n1, n2), (m1,m2) ∈ N × N is less than or equal to
(max{n1,m1},max{n2,m2}).

Definition 2.2. A net in a topological space X is a function w : D → X, where
D is a directed set.

Note that a sequence is thus a net w : N→ X, where N has the usual ordering
≤.

A net converges to a point x ∈ X if for every open set U containing x, there
exists d ∈ D such that for all e ≥ d, w(e) ∈ U . Similar to how we defined
convergent sequences, w converges iff every open set around x contains a tail of
w, where the tail is defined as

T (e) = {w(e) | e ≥ d ∈ D}.

We write w → x and call x a limit point of the net w.

When D = N, this becomes precisely the definition of a convergent sequence.
The net w simply maps a natural number to the element of the sequence it
indexes. For large enough n ∈ N, w(n) = xn is in every open set around its
limit point.

We saw that when we impose the criterion of Hausdorff-ness, sequences have
unique limit poins. However, as shown by the co-countable topology example,
the converse is not necessarily true. Now that we have nets, we can completely
characterize Hausdorff spaces using convergent nets.

Net property 1. X is a Hausdorff space iff every net in X converges to at
most one point.

Proof. Let X be a Hausdorff space and w be a net in X. Suppose that w → x.
Take y ∈ X, y 6= x. We want to show that w 6→ y. Since X is Hausdorff, we
can find disjoint open sets U, V such that x ∈ U , y ∈ V . By convergence of w,
a tail of w,

T (e) = {w(e) | e ≥ d ∈ D}

is contained in U and disjoint from V . If w → y, then there is a tail of w,

T (f) = {w(f) | f ≥ d}

in V and disjoint from U . Since D is a directed set, there exists c ∈ D such
that e ≤ c and f ≤ c. Then

T (c) = {w(c) | c ≥ e, c ≥ f}
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is a tail of w in both U and V , which cannot happen since U, V are disjoint.
Thus w cannot converge to y.

Conversely, suppose X is not Hausdorff. We want to show that there is a net
w converging to more than one point. Take two points x, y ∈ X,x 6= y such
that any two open sets U, V containing x and y, respectively, have nontrivial
intersection. Let D = Dx ×Dy, where

Dx = {U ∈ T | x ∈ U} and Dy = {V ∈ T | y ∈ V }

and the relation is defined

(U1, V1) ≤ (U2, V2) iff U1 ⊇ U2 and V1 ⊇ V2.

For each (U, V ) ∈ D, take any xU,V ∈ U ∩ V . Define a net w : D → X as
w((U, V )) = xU,V . Then w converges to both x and y.

To see this, take an open set U0 containing x. Then U0 ∈ Dx, and (U0, X) ∈ D.
Note that X is itself an open set containing y. Take any (U, V ) ∈ D such that
(U0, X) ≤ (U, V ). Certainly X ⊇ V , so this specifically tells us that U0 ⊇ U .
Then

xU,V ∈ U ∩ V ⊆ U0 ∩ V ⊆ U0.

In other words, for an open set U0 containing x, there exists (U0, X) ∈ D such
that for all (U, V ) ≥ (U0, X), w((U, V )) = xU,V ∈ U0. Therefore w → x. Taking
an open set V0 containing y, we can similarly show that w → y.

We said earlier that when a space is not first countable, the view from above
that sequences provide is too narrow. In the proof above, we see that nets can
in fact traverse through all the open sets containing a point, thereby patching
up the gaps that ordinary sequences might encounter.

You may, at this point, feel slightly uneasy taking arbitrary elements, such as
xU,V ∈ U ∩ V above. We quickly note that we can quell these set-theoretic
worries, here and in later proofs, by invoking the axiom of choice.

Net property 2. There is a net w : D → A in A ⊂ X converging to a iff
a ∈ A.

Proof. Suppose w : D → A is a net in A converging to a. By definition of
convergence, for an open set U containing a, there exists d ∈ D such that
w(e) ∈ U for all e ≥ d. Recall that a ∈ A iff for all open sets containing a, U ∩A
is non-empty. But by definition of a net, w(e) ∈ A for all e ∈ D. So U ∩ A is
non-empty.

Conversely, suppose a ∈ A. Then for every open set U containing a, there exists
some aU ∈ U ∩A. Let

Da = {U ∈ T | a ∈ U}
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be a directed set with the relation ⊇, and define the net w : Da → A by
w(U) = aU . We want to show that the tail of w is contained in U , and thus
w → a. For U ∈ Da and V ∈ Da with U ≤ V , i.e. U ⊇ V , we have

w(V ) = aV ∈ V ∩A ⊆ U ∩A ⊆ U.

So for V ≥ U , w(V ) ∈ U , which is what we wanted to show.

We used, in these two proofs, the directed set consisting of open sets around x
with the superset relation ⊇. Intuitively, by going further along this directed
set, we can get “close” to a point by narrowing our field of vision to smaller
and smaller open sets. In both proofs, our net “leapfrogs” through these open
sets by continually jumping to a point in the intersections. We will continue to
use this particular directed set along with the “leapfrogging” method in later
proofs.

In addition to closure, convergent nets can completely characterize continuous
functions in a topological space.

Net property 3. For topological spaces X,Y , f : X → Y is continuous iff for
every net w : D → X, w → x in X, the net f(w)→ f(x).

Proof. Suppose f is continuous and w → x in X. Let UY be an open set in
Y containing f(x). Then by continuity of f , f−1(UY ) is an open set in X
containing x. w → x means that there exists d ∈ D such that w(e) ∈ f−1(UY )
for all e ≥ d. Then f(w(e)) ∈ UY for all e ≥ d which implies that f(w) converges
to f(x) in Y .

Conversely, suppose that f is not continuous. Then there is some open set
UY ⊂ Y such that f−1(UY ) ⊂ X is not open. We know that a set is open if and
only if it is locally open. Here, f−1(UY ) is not open implies that f−1(UY ) is
not locally open. By definition of locally open, then, there exists x ∈ f−1(UY )
such that every open set U around x has a point xV /∈ f−1(UY ). Once again,
consider the directed set

D = {U ∈ T | x ∈ U}

with the relation ⊇, and let w : D → X be a net defined by w(V ) = xV for
V ∈ D. Then w converges to x, since for V ≥ U , i.e. V ⊆ U , we have

w(V ) = xV ∈ V ⊆ U.

Now suppose the net f(w) converges to f(x) in Y . Since UY ⊂ Y is an open set
containing f(x), there is some VY ∈ D such that f(xV ) ∈ UY for all V ≥ VY .
But this implies xV ∈ f−1(UY ), contradiction. So f(w) cannot converge to
f(x).

Like how we equate continuity with sequential continuity in metric spaces, we
can continue to think of continuity in general topological spaces in terms of
“net-sequential” continuity.
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2.1 Subnets

We will need some analogue of a subsequence to state the last of the nice net
properties.

(Tentative) Net property 4. X is compact iff every net has a convergent
subnet.

(Tentative) Net property 5. x is a limit point of a net w : D → X iff there
is a subnet of w converging to x.

Before we can set these properties into stone, we need to determine what the
net-analogue of a subsequence is. Our goal is to define the notion of a subnet
such that these properties are true.

Definition 2.3. A subset D′ of a directed set D is cofinal if for every d ∈ D,
there exists an element e ∈ D′ such that d ≤ e.

A cofinal subset of a directed set is also directed.

Example 7. Some examples of cofinal sets:

1. A subset of N is cofinal iff it is infinite.

2. The diagonal 4N = {(n, n) | n ∈ N} is a cofinal subset of N × N. Any
(n,m) ∈ N× N is less than or equal to (max{n,m},max{n,m}) ∈ 4N.

3. Take Dx = {U ∈ T | x ∈ U} with the superset relation, i.e. U ≤ V
iff U ⊇ V , the directed set we know and love. A cofinal subset D′x of
Dx requires that for every U ∈ Dx, there exists B ∈ D′x ⊆ Dx such that
B ≥ U , i.e. B ⊆ U . Look familiar? The cofinal subset of open sets around
x precisely forms a local basis around x!

So cofinal subsets are a sort of “unbounded” subset in D where we can find
an element “above” any element in D. Since we define a subsequence as an
infinite subset of a sequence indexed by an “unbounded” subset of N, you might
think (and secretly hope) that the definition of a subnet goes something like
this:

A subnet of w : D → X, say v : E → X, is a net where E is a cofinal subset of
D.

However, this definition of a subnet does not quite give us the flexibility we
want to prove the net properties above. (See addendum for an example.)

Instead, we define a subnet as follows:

Definition 2.4. Let D,E be directed sets and w : D → X, v : E → X be nets.
v is a subnet of w if there is a function f : E → D such that:

1. f is monotone: if e1 ≤ e2, then f(e1) ≤ f(e2).

2. f is cofinal: f(E) is a cofinal subset of D, i.e. for all d ∈ D, there exists
e ∈ E such that d ≤ f(e).
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3. v factors through D: v(e) = w(f(e)) for all e ∈ E.

E X

D

v

f
w

Note that the function f we defined above does not need to be injective.

As an example, let’s take the nets w : D → N and v : E → N, where D = E = N
with the usual ordering ≤. Define f : E → D as

f(0) = 0

f(e) = e− 1 for e > 0

Let w be the identity map, i.e. w(d) = d, and let v(e) = f(e). We can check that
v is a subnet of w: f is indeed monotone and cofinal, and v(e) = f(e) = w(f(e)).
f maps both 0 and 1 in E to 0 in D, so f is not injective.

Even if the directed set indexing a net is a sequence, e.g. D = N, the directed
set E indexing a subnet does not need to be N or a subset of N. The domain
of the subnet can even have a larger cardinality than the domain of the net
itself!

So while subsequences are restrictions of a sequence, subnets—somewhat coun-
terintuitively—can actually elongate a net. Therefore not every subnet of a
sequence has to be a subsequence. In particular, a sequence, if regarded as a
net, can have more subnets than subsequences. We will store this fact in our
back pocket for now. After proving Net property 5, we will muster up some
intuition behind why this should be the case.

Okay, now we can settle our tentative net properties, restated below.

But first, a lemma that will help us:

Lemma 2.1. X is compact iff every set of closed subsets {Ci ⊂ X}i∈I , in
which the intersection of finitely many Ci is nonempty, has nonempty total
intersection, i.e. ⋂

i∈I
Ci 6= ∅.

Proof. Proof in Munkres (Theorem 26.9).

Net property 4. X is compact iff every net has a convergent subnet.

Proof. We will provide a detailed sketch here. The full proof can be found in
Reference 3.
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Let’s first assume X is compact. Let w : D → X be a net. We want to find a
subnet v : E → X that converges. To do this, we look at the tails of w,

T (e) = {w(e) | e ≥ d ∈ D}.

By directedness of D, the intersection of finitely many of these tails T (e) is
nonempty. Hence, the intersection of finitely many of their closures T (e) is
nonempty. Thus from the lemma, there exists

x ∈
⋂
e≥d

T (e).

That means every open set Ux around x contains points in every T (e) for e ≥ d.
By definition of T (e), then, for every d ∈ D, there exists e ≥ d such that
w(e) ∈ Ux.

All of this sets up what we came here to do: construct a subnet v : E → X
converging to x. I will call this next part of the proof the “subnet cherry-picking
method,” as we will use it again later. First, we must specify a directed set E.
Let Ux be the set of all open sets containing x. Let

E = {(d, U) ∈ D × Ux | w(d) ∈ U}

with the relation

(d1, U1) ≤ (d2, U2) iff d1 ≤ d2 in D and U1 ⊇ U2.

(One can check that this is a directed set.) Next, we define a function f : E → D
as:

f((d, U)) = d.

We use this to define a subnet v = w ◦ f . (One can check that this is indeed a
subnet). The idea here is that f “projects” onto the desirable elements of D,
namely those such that w(d) is in an open set containing x. More formally,

v((d, U)) = w(f((d, U))) = w(d) ∈ U

where U is an open set containing x. This fact, combined with how we defined
x above, we can fairly quickly conclude that v → x.

Conversely, let’s assume that X is not compact. We want to construct a net
without a convergent subnet. By the lemma, there is then a set of closed subsets
of X, {Ci} with non-empty intersection of finitely many elements, but empty
total intersection. The strategy for this proof is to take D to be the finite
subcollections of {Ci} with the superset relation. Let w : D → X be the net
sending such a subcollection to a point in their intersection. Using the fact that
the total intersection of {Ci} is empty, we can find a point that is not in Ci

for some i. Since Ci is closed, there is an open set U containing x such that
U ∩ Ci = ∅. Roughly speaking, for a subnet v : E → X of w, we can use
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the cofinality of f(E) to “bound” Ci. If we assume that v converges, then w
ends up mapping to an element simultaneously in U and not in U . So v cannot
converge.

We have skipped some steps toward the end, but the idea here is that, since we
are concerned with convergence, we use properties of directness and cofinality
to “translate” between the indexing set of a net and its subnet.

Recall that this property, phrased in terms of sequences and subsequences, was
true for metric spaces. In other words, a metric space is compact iff it is sequen-
tially compact. Thinking “net-sequentially,” then, we can characterize compact-
ness in an arbitrary topological space.

Net property 5. x is a limit point of a net w : D → X iff there is a subnet of
w converging to x.

Proof. We will again provide a sketch here. The full proof can be found in
Reference 2.

To prove the forward direction, notice that x as defined in the forward direction
of the previous proof is in fact a limit point. So we can use the “subnet cherry-
picking method” by taking the same subnet v : E → X of a net w : D → X and
the same “projection” function. This shows that v converges to x.

Conversely, if w : D → X is a net, and v : E → X is a subnet of w, with v → x,
we want to show that x is a limit point of w. Let f : E → D be the function
defining v as a subnet of w. Let U be an open set containing x. Since f is
cofinal, for any d ∈ D, there is an α ∈ E such that f(α) ≥ d. Since v → x, there
is a β ∈ E such that v(γ) ∈ U for all γ ≥ β. By directness of E, there is some
δ ∈ E such that δ ≥ α and δ ≥ γ. By monotonicity of f , then, f(δ) ≥ f(α) ≥ d.
So if we let e = f(δ) ∈ D, then w(e) = w(f(δ)) = v(δ) ∈ U . Therefore v → x.
The idea here is that if an open set around a point contains a tail of v, then we
can use properties of directedness and subnets to find a tail of w that is also in
that open set.

As promised, let’s try to put together some intuition behind why we define
subnets the way we do. In a metric space, if a sequence approaches a point x,
we can construct a subsequence also approaching x by choosing terms of the
sequence that get closer and closer to x. We can do this, because there is a
countable basis of open 1

n -balls around x. As long as we choose a term in each
of these 1

n -balls, our subsequence will converge.

But now, we don’t necessarily have a countable basis at x. Remember how—in
the proofs of net property 1 and 2—we constructed a convergent net by taking
the open sets around x and “leapfrogging” through them to approach x? This
is how we made sure that the net will eventually lie in every open set around
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x. The challenge we face is that a convergent subnet has to essentially do the
same thing.

So we have to ask: given a net with a limit point, how do we construct a subnet
so that the subnet converges? Without a countable, nested basis at x, it seems
like we don’t have enough to work with if we’re restricted to choosing terms
from the net.

This is why, to produce convergent subnets in the proofs above, we had to
take special care to “cherry-pick” not only a term of the net, but also an open
set containing it, hence the “subnet cherry-picking method.” We repeated the
process by taking smaller and smaller open sets containing terms of the net so
that the subnet eventually lay in every open set around x. Therefore to do
our “cherry-picking,” we must allow a subnet to have a larger domain than a
net.

Phew! That was a lot of work, but the payoff is worth it. We’ve just proved
that all of our nice properties of metric spaces transfer over to any topological
space if we phrase them in the language of of nets and subnets.

Our last hope now is to show that nets “know everything about” the topology
itself. As we saw with the example of the discrete and co-countable topologies,
sequences acted “blind” towards the nature of these two topologies. Lucky for
us, the all-seeing eye of convergent nets completely determines a topology.

Theorem 2.2. Given a topological space X, A ⊂ X is open iff no net in X \A
has a limit point in A.

Proof. Suppose A ⊂ X is open, and let w : D → X \A be a net in X \A. Take
a ∈ A. Since A is open, then there is an open set U around a that is contained
in A. Then U does not contain any elements of w, so w cannot converge to a,
i.e. a is not a limit point of w.

Conversely, suppose A is not open. Thus there exists some a ∈ A such that
every open set U around a has a point xU /∈ A, i.e. xU ∈ (X \A)∩U . We want
to show that there is a net in X \A converging to a. Let

D = {U ∈ T | a ∈ U}

with the relation ⊇, and let w : D → X \ A be a net defined by w(U) = xU .
Hence for V ≥ U , i.e. V ⊆ U ,

w(V ) = xV ∈ (X \A) ∩ V ⊆ (X \A) ∩ U.

So w is a net in X \A converging to a ∈ A.

Since a topology is defined by its open sets, and we’ve just shown that open sets
can be defined by convergent nets, we can deduce the following:

14



Theorem 2.3. Two topologies T1, T2 on a set X are equivalent iff every net
that converges in T1 also converges in T2, and every net that converges in T2
also converges in T1.

Therefore we can define topological spaces using only the convergence of nets.

3 Filters

If nets don’t float your boat (or even if they do), we will briefly introduce
filters as an alternative generalization of sequences in arbitrary topological
spaces.

Definition 3.1. A filter on a topological space X is a nonempty collection
F ⊆ P(X) such that:

1. ∅ /∈ F

2. F is closed under supersets: if A ∈ F and A ⊆ B, then B ∈ F .

3. F is closed under finite intersection: if A,B ∈ F , then A ∩B ∈ F .

A filter F on X converges to a point x ∈ X if for every open set U containing
x, U ∈ F . In this case, we write F → x.

Example 8. Some examples of filters:

1. Trivially, F = {X} is a filter on X, provided that X is nonempty.

2. Nx = {A ⊆ X | ∃ an open set U with x ∈ U ⊆ A} is a filter on X. This
is called the neighborhood filter of x (the set of subsets where x is an
interior point).

3. Px = {A ⊆ X | x ∈ A} is the principal filter on X (the set of subsets
containing x).

4. A filter F on X is an ultrafilter if for any A ⊆ X, either A ∈ F or
X \A ∈ F .

In our non-mathematical lives, we would use filters (strainers, colanders, etc.)
to keep the large chunks—say, oh I don’t know, pasta—and get rid of the small
chunks, pasta water in this case. Filters on a space X, fittingly, “filter out” the
chunks of X it deems to be small while keeping the large chunks.

To filters, a subset of X is “large” if it contains something. In the principal filter,
the something is simply the point x. In the neighborhood filter, the something
is an open set around the point x.

We see this encoding of “largeness” from the definition. The empty set does
not contain anything thus cannot be large. A set containing a large set must
be large, since it will also contain the thing we are looking for. Finally, the
intersection of large sets must also contain the thing, so the intersection is large
as well.
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Ultrafilters can do even better, since for every subset of X, they can tag either
the subset or its complement as large.

This is all we need to know about filters to say that...

4 Equivalence of nets and filters

...nets and filters are the same thing! Well, not exactly. While nets and filters
are different mathematical objects per se, the notions of convergence that they
present are in fact equivalent. This means, broadly, that nets and filters are
interchangeable and that replacing one with the other will preserve the nice
convergence properties that we proved for arbitrary topological spaces.

To formally show this, we will devise a way to construct a filter from a net and
a net from a filter. Then we will show that convergence of one of these implies
convergence of the other.

Definition 4.1. Let w : D → X be a net in X for a directed set D. Then
Fw = {F ⊆ X | F contains a tail of w} is the derived filter of w.

Proof. (that Fw is a filter) First, ∅ /∈ Fw. Second, if F ∈ Fw contains a tail of
w and F ⊆ G, then G contains a tail of w, so G ∈ Fw. Lastly, let F,G ∈ Fw.
We want to show that F ∩G ∈ Fw. Say

TF = {w(e) | e ≥ dF ∈ D}

is a tail of w in F and

TG = {w(e) | e ≥ dG ∈ D}

is a tail of w in G. Take d = max{dF , dG}. Then the tail T = {w(e) | e ≥ d} is
in F ∩G. Hence F ∩G ∈ F .

So there’s a way to produce a filter from a net. Going the other direction will
take more care, since we have to specify a directed set for the domain of our
net.

Definition 4.2. Let F be a filter on X. Equip F with the relation F ≤ G iff
F ⊇ G. Then F is a directed set.

A net w : F → X defined by w(F ) ∈ F for all F ∈ F is a derived net of F .

Now we also have a way to produce a net from a filter. Here is why we bother
to do this two-way conversion.

Theorem 4.1. A net w : D → X converges to x ∈ X iff its derived filter Fw

does.
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Proof. Suppose w → x. Then by definition of net convergence, every open set
around x contains a tail of w. Therefore for every open set U containing x,
U ∈ Fw, which means that Fw → x.

Conversely, suppose Fw → x. Then for every open set U containing x, U ∈ Fw.
Hence U contains a tail of w and w → x.

Theorem 4.2. A filter F converges to x ∈ X iff every derived net of F does.

Proof. Suppose F → x. Let w : F → X be a derived net of F and U be an
open set containing x. By definition of filter convergence, U ∈ F . We want
to show that there is a tail of w in U . For V ∈ F and V ≥ U , i.e. V ⊆ U ,
w(V ) ∈ V ⊆ U by how we defined a derived net. Thus w → x.

Conversely, suppose F 6→ x. We want to show that there is a derived net of F
that does not converge to x. Then there exists an open set U containing x such
that U /∈ F . Equivalently, for all F ∈ F , F 6= U . Define w : F → X such that
w(F ) = F \ U ∈ F . Then w is a derived net of F , but since no tail of w, or
rather no point of w, is in U , w does not converge to x.

Together, these two results affirm that everything convergent nets can charac-
terize, convergent filters can do the same. In particular, these properties of
topological spaces—Hausdorff-ness, closure, continuity, and compactness—can
be gleaned from analyzing either nets or filters. Finally, we have that convergent
nets or convergent filters can completely determine a topological space.

Why do we need two different concepts that can do the same thing? It turns
out that while we can use nets and filters interchangeably, there are statements
that are easier or more elegant to prove with filters than nets, and vice versa.
For instance, though we will not touch on Tychonoff’s theorem in this article,
its proof via filters will be short and sweet.

Addendum

We will explore here why defining subnets as a cofinal restriction of the net’s
domain is not quite adequate. Remember that our goal was to prove this net
property: x is a limit point of a net w : D → X iff there is a subnet of w
converging to x.

If we did indeed take the definition of subnets to be the one above, then this
statement would not be true. Let’s look at a counterexample.

Take our space to be N2 equipped with the topology:

A subset U is open if it does not contain (0, 0), or if it contains (0, 0) and all
but finitely many points of all but finitely many columns (imagine we lay N2

on a grid). In other words, if U contains (0, 0), then only a finite number of its
columns contain infinite gaps.
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Recall that a sequence is a net. In this definition, every subnet of a sequence
would be a subsequence. So let’s take the sequence winding through every
diagonal of our grid, starting from the bottom:

(1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), (4, 1), (3, 2), ...

(0, 0) is a limit point of this sequence, since every open set around (0, 0) contains
infinitely many points of N2 and thus this sequence.

However, there is no subsequence converging to (0, 0). This is because for any
subsequence we take, we can produce an open set around (0, 0) that throws out
infinitely many points of the subsequence, by throwing out either finitely many
columns or finitely many points of infinitely many columns. Hence the open set
cannot contain a tail of the subsequence.

Since this sequence spans all of N2, constructing subsequences from other se-
quences would only herald more restrictions. So this example invalidates our
statement and suggests the need to allow subnets to be “enlarged” versions of
nets. Here, we can think of each open set around (0, 0) to be “super big,” and
the set of all open sets arounnd (0, 0) to be “super duper big.” While construct-
ing a subsequence converging to (0, 0), then, we don’t want to be constrained
by the ability to include only countably many terms. There are way too many
open sets for a normal subsequence to lie in. We can construct a convergent
subnet, however, by cherry-picking a term in each open set around (0, 0).

For interested readers, this space is called the Arens-Fort space.

References

1. R.G. Bartle. Nets and filters in topology.

2. http://www.math.toronto.edu/ivan/mat327/docs/other/nets.pdf

3. http://math.uga.edu/ pete/convergence.pdf

4. https://stijnvermeeren.be/download/mathematics/nets.pdf

5. http://www.math.wichita.edu/ pparker/classes/handout/netfilt.pdf

6. https://www.math.ksu.edu/ nagy/real-an/1-02-convergence.pdf

7. https://www.math.wustl.edu/ freiwald/ch9.pdf

18


