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1 Introduction

This paper is about surgery theory. As the name suggests, surgery theory deals
with the idea of cutting something, that something being a manifold. Surgery
itself is a mechanical operation, and the role of surgery theory is to study the
effects of the surgery operation on topology and other mathematical structures
(including equivalence classes).

Despite the rather mechanical and unintuitive nature of the surgery opera-
tion, it has a wide variety of applications. Physicists use it to study topology
change under events that “cut” spacetime. Knot theorists use it to classify knots
by breaking down their the Seifert surfaces associated with them. Additionally,
surgery theory found application in the proof of the Poincare conjecture by
Grigori Perelman.

Now, having hyped up surgery theory’s applications, let’s tackle it. This
paper takes a geometric approach to explaining surgery theory, relying on di-
agrams and pictures to build intuition, rather than digging into the notation.
We start off by giving a definition and intuition for diffeomorphisms, the lan-
guage of smooth manifolds, in section 2. We then move onto a discussion and
formalization of smooth manifolds themselves in section 3. Having built up the
necessary background, we tackle handle decomposition in section 4. This finally
leads us to actually formalize surgery and its connection to handle attachment
in section 5. The paper finishes with a note on how surgery theory can be
used to understand and interpret the Ricci Flow with Surgery technique used
by Perelman in his proof of the Poincare conjecture.

2 Diffeomorphisms

Let me pose the following problem to you. You are given the following curve in
a non-Euclidean space. Each point has a heat assigned to it. You are given the
heat at point A (and only point A) and asked to determine the heat at point B.
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Well, this is preposterous! One may have been posed this problem on the
unit interval in R1 and been given the derivative or gradient of the heat at each

point. Our problem would then be reduced to h(B) = h(A) +
∫ B
A

dh
dxdx, where

h(x) is the heat at point x. However, we don’t have a concept of distance here,
so how are we supposed to calculate derivatives? Or take integrals?

Ultimately, the concepts of calculus were forged in Euclidean space. They
rely on having both a distance metric between and coordinates for points in the
space. When we remove these assumptions, we can’t use those concepts.

Suppose instead that it is possible for me to parameterize my curve using
the unit interval. Say our parameterization function is f : [0, 1]→ S where S is
our curve. Let’s also suppose that f is a homeomorphism, so that the topology
of [0, 1] is carried to S as well. Thus, we can write our heat function as h(f(y)),

where y ∈ [0, 1]. Now, we can recast our integral as h(B) = h(A) +
∫ B
A

dh
dxdx =

h(A) +
∫ f−1(B)

f−1(A)
dhf
dy dy. However, we run into an issue because, by chain rule

dhf
dy = dh

df
df
dy . Thus, f must be C1 for this to work.

We run into this problem over and over again as we try and take higher
derivatives. As such, if we want to be able to use the full power of calculus on
this curve, we need f to be in C∞. In other words, f needs to be smooth. With
this, we come to the definition of a diffeomorphism.

Definition 1. A function f : M → N is a diffeomorphism if it is a bijection,
is smooth, and has a smooth inverse f−1

One will note that because f is smooth, it is differentiable, and because f is
differentiable, it is continuous. This also applies for its inverse, so a diffeomor-
phism is also a homeomorphism. We can think of a diffeomorphism as not only
carrying over the topological properties of M to N , but also its differentiability
properties.

However, this way of describing diffeomorphisms is very intuitive. Imagine
thatM,N ⊂ R3. A smooth map in this context corresponds to a very “physical”
transformation of M into N , one that does not fold or crease M , does not rip
it or pinch it infinitely. Some examples of diffeomorphisms are shown below, as
well as some non-examples.
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Now, recall that two spaces M and N being homeomorphic is an equivalence
relation. Similarly, we can show that M and N being diffeomorphic (there exists
a diffeomorphism f : M → N) is an equivalence relation.

Lemma 1. Two spaces M,N being diffeomorphic (M ∼diff N) is an equiva-
lence relation.

Proof. If M ∼diff N then there exists a diffeomorphism f : M → N . How-
ever, f−1 : N → M is also a diffeomorphism, so N ∼diff M . Thus, ∼diff is
symmetric.

One will also note that the identity map is bijective, smooth and has a
smooth inverse, so it is a diffeomorphism between any space M and itself. Thus,
M ∼diff N which implies that ∼diff is reflexive.

Finally, let’s say that A ∼diff B and B ∼diff C. Thus, we have diffeo-
morphisms f : A → B and g : B → C. We know that gf : A → C is a
homeomorphism, we just need to show that it and its inverse are smooth. gf
is the composition of smooth functions, and thus is smooth. (gf)−1 = f−1g−1

is also the composition of smooth functions (f and g have smooth inverses), so
it is also smooth. Thus, we conclude that gf is a diffeomorphism. This implies
that A ∼diff C, which demonstates that ∼diff is transitive.

Thus, ∼diff is an equivalence relation

Since diffeomorphism induces an equivalence relation, spaces that are diffeo-
morphic to each other are the same in both a topological and differentiability
sense.
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3 Smooth Manifolds

Now that we’ve introduced the idea of a diffeomorphism, we will use it to build
up to an understanding of smooth manifolds. Manifolds are an area of math
that we have some inherent intuition about, so let’s play off of that. Below are
some examples of smooth manifolds.

One will note that at any point on these smooth manifolds, I could take a
segment of the tangent line or a potion of the tangent plane at a given point and
wrap it around the manifold so that all its points intersect with the manifold.

One will also note that the tangent line and tangent plane ideas work for
the first and second rows separately, but do not work for the third row. This
is because each row contains examples of manifolds that are 1-, 2-, and 3-
dimensional. To make this more clear, let’s define a smooth manifold formally

Definition 2. A topological manifold M is a locally Euclidean, Hausdorff space.
Locally Euclidean means that if I “zoom in” to a point in M , the space “re-
sembles” Euclidean space topologically. This is formalized by saying that every
neighborhood N ⊂M is homeomorphic to a subset of a Euclidean space.

Definition 3. An n-manifold is a topological manifold such for each point there
exists a neighborhood N homeomorphic to a subset of Rn. Saying that each
neighborhood N is homeomorphic to a subset of Rn, as opposed to a subset of
an arbitrary Euclidean space, further specifies our manifold.
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Definition 4. A smooth n-manifold is a topological manifold such for each point
there exists a neighborhood N diffeomorphic to a subset of Rn. Our manifold
is now locally Euclidean in not only a topological sense, but also a differentiable
one.

Thus far, we’ve gotten some sense of how the above definition works. To
add some more nuance to our understanding, let’s look at some non-examples
of smooth manifolds.

For the “circle with string”, take x to be a point at the base of the string. We
can see that a neighborhood N of x would contain a 3-pronged shape, which
does not exist in R1. A similar case arises for our “sphere with strip”. In
another vein, taking a neighborhood of the point at the top of our cone and
turning it into a subset of R2 involves flattening the sharp edge of the cone
and so the map cannot be a diffeomorphism. The same idea allows us to show
that ∂Tessaract is not a smooth manifold. The tessaract is the 4-dimensional
analogue of the filled cube. It’s boundary is a hollow cube that increases and
decreases in side length along a 4-th axis. Since the tessaract is 4-dimensional,
its boundary is a 3-manifold (not necessary smooth). Try finding a smooth map
between a neighborhood of one of the corners of one of these hollow cubes within
∂Tessaract and a subspace of R3. You will find that this neighborhood has a
sharp edge that needs to be flattened for any map to be smooth. As such, there
is no such smooth map and ∂Tessaract is not a smooth manifold. However,
one will note that ∂Tessaract is homeomorphic to S3 (resembles a sphere that
changes radius as you move in the 4th dimension), which is a smooth 3-manifold.

While we are able to discern between smooth and non-smooth manifolds
with our current definition, our definition escapes intuition because it’s defined
point-wise. In order to move towards a more intuitive definition, we introduce
charts and atlases.

Definition 5. Let M be a smooth n-manifold. A chart is a tuple (U, φ) where
U ⊂M is a set and φ : U → Rn is a diffeomorphism between U and φ(U) ⊂ Rn.
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We visualize the idea of a chart below for M = S2. We can see that the
chart corresponds to a flat sheet that is wrapped around S2.

Now, with each of our charts we are able to define the topological and dif-
ferentiability properties of U ⊂ X. However, we’d like to be able to fully define
those properties across our manifold. We can do this by building up a collection
of charts called an atlas, which together “cover” our manifold.

Definition 6. Let X be a smooth n-manifold. An atlas is a collection of com-
patible charts A = {(Uα, φα)|α ∈ A} where {Uα} is an open cover of X.

One will note that we’ve introduced a new term here: compatible. This
additional constraint reflects the fact that we may have situations where we
have two charts (U, φ) and (V, ψ) with U and V overlapping. Given that a chart
helps us to define the topological and differentiability properties of subsets of
M , it would be problematic if our two charts “disagreed” on these properties.
As such, we introduce the notion of compatibility.

Definition 7. Two charts (U, φ) and (V, ψ) are compatible if their transition
map φψ−1 : ψ(U ∩ V )→ φ(U ∩ V ) is a diffeomorphism.

The statement above corresponds to saying that ψ and φ agree on both the
topological and differentiability properties of U ∩ V . This is trivially true if
U ∩ V = ∅, but if there is some overlap it ensures that the two maps are in
agreement. Below we illustrate what this means visually below for M = S2.
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Now that we’ve built up the definitions of charts and atlases, we can give a
far more geometrically intuitive definition of a smooth manifold

Definition 8. A topological n-manifold is a Hausdorff space with atlas A.

4 Handle Decomposition

In our discussion of smooth manifolds, we showed that they carried all of the
topological and differentiability properties of Euclidean space over to a topo-
logical manifold M . As such, it makes sense that one should be able to define
a smooth, real-valued function f : M → R, where M is a smooth manifold.
A function being “smooth” in this context means that if we “zoom into” the
function around a given point, it should resemble a smooth function defined on
Rn. This notion can be formalized in terms of charts. Specifically, for any given
chart (U, φ) ∈ A, the domain-restricted function f ◦φ−1 : φ(U)→ R is smooth.
These functions are referred to as Morse functions.

Now, let’s try to visualize how a Morse function might look on our manifold
M , specifically M = T 2. A clearly Morse function (we can see that it is a
smooth gradient proceeding up the torus) is visualized in the figure below via
contours, where the color of the contours indicates the value of the function
(darker red = higher value). Both front and side views of the torus are provided
to give the full picture of how the function’s value varies over the surface.

However, we can also think of f as assigning a “height” to a given point
x ∈ M . Applying this interpretation to our torus, we get the following visual,
where our height axis is shown on the right. Keep in mind that our function
being “smooth” means that it pulls our torus out in a very natural way along
the height axis. The torus is not broken, pulled or pinched in an discontinuous
way at any point.
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One interesting property of this “height” interpretation of our manifold is
that it allows us to take “slices” of our manifold. Each of these slices correspond
to a given height. The slice corresponding to a ∈ R is f−1(a). The figure below
visualizes a few of these slices on the torus. They are color-coded to emphasize
their difference in height.

In addition to taking slices, we can also use the height interpretation to
“unveil” our manifold, starting from nothing and slowly accumulating slices as
we go up in height. The stage of our unveiling associated with a height a ∈ R
is Ma = f−1(−∞, a].
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We can find something interesting about this unveiling process by comparing
Ma and M b, where a, b ∈ R and a < b. When do they have the same topology?
When is it different?

Upon examination, one finds that there are certain “critical points” p ∈ M
such that if a < f(p) < b then Ma is not homeomorphic to M b. Critical points
are analogous to peaks, troughs, and saddle points for our function f . More
specifically, they are points where ∇f = 0. The critical points of our torus
are visualized below. Additionally, their “index” is indicated in red. In some
sense, the index measures the number of directions in which f is decreasing at
a critical point. Convince yourself that the given indices make sense, paying
attention to the way the torus curves at each critical point.

Now, we can see that the topology changes at these critical points, but how
does it change? In order to explore this, we’ll need to define the notion of a
handle attachment.

Definition 9. The process of attaching a j-handle to a smooth n-manifold M
takes M to M ∪f Hj, where 0 ≤ j ≤ n and f : Sj−1 × Dn−k → ∂M is a
diffeomorphism. Hj = Dk ×Dn−k is a j-handle.

The idea of a handle attachment seems rather arbitrary, but it can be used
to account for a vast array of what are called “topology changes” (events that
“edit” the topology of a space). To see this, we will look back at our unveiling
procedure. We will be referring to the below figure, which charts how the
topology of Ma changes as a increases, as well as how that change can be
accounted for using handle attachments.

In order to guide our discussion, we introduce the core concept behind handle
decomposition.

Lemma 2. Let M be a compact boundaryless manifold. Let f : M → R be
a Morse function. Assuming that the critical points {pi} ⊂ M are such that
f(p1) < f(p2) < ... < f(pk), and provided t0 < f(p1) < t1 < f(p2) < t2 < ... <
f(pk) < tk, f−1[tj−1, tj ] is diffeomorphic to (f−1(tj−1)× [0, 1])∪g Hi(pj) where
i(x) gives the index of x. Here g is a diffeomorphism which determines where
the handle Hj is attached on ∂M
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We will not give a proof of the above lemma, but instead show how it plays
out within our torus unveiling.

We start off with the empty set. We pass our lowest critical point, which
has an index of 0. As such, we attach H0 = D0 × D2 to the empty set along
g(S−1 × D2) = ∅. This means that our partially unveiled torus is now just
H2 = g(D0×D2) = g(D2), an embedded disk. Next we pass our second critical
point, which has index 1. As such, we attach H1 = D1 × D1 to the empty
set along h(S0 × D1) ∈ ∂Ma. This corresponds to attaching a strip from one
section of the boundary circle of our embedded disk to the other. We can see
that the resulting figure is homeomorphic to the bottom half of the torus.

We now pass the third critical point, which also has an index of 1. As such,
we attach H1 = D1×D1 to our previous figure along m(S0×D1). The specific
handle attachment we do connects the two disconnected circles on the boundary.
We can see that the resulting figure is homeomorphic to the torus with just the
top missing.

Finally, we pass our final critical point, which has an index of 2. As such,
we attach H2 = D2 ×D0 to our previous figure along n(S1 ×D0). This handle
attachment is identical to capping the boundary circle from our previous stage.

One important caveat in this entire process is that if we have two critical
points a and b, then i(a) < i(b) ⇐⇒ f(a) < f(b) (where i(x) gives the index
of a point x). In other words, the indexes of critical points are height-ordered.
Lower index critical points sit below higher ones. The full explanation of why
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this must be the case is outside the scope of this paper, but is a key lemma in
Morse Theory.

5 Surgery

At this point, we introduce the topic of this paper, surgery theory. The formal
definition of the surgery operation is as follows

Definition 10. Given a smooth n-manifold M , 0 ≤ k ≤ n, and a diffeomor-
phism f : Sk × Dn−k → M . The manifold produced by surgery with these
parameters is

M ′ = M − f(Sk ×Dn−k − Sk × Sn−k−1) ∪f |Sk×Sn−k−1 Dk+1 × Sn−k−1 (1)

In order to build up our understanding of what this operation looks like,
we’ll start with a canonical example. Imagine we have a long hollow tube as our
manifold M (where we don’t care what happens on the ends). We can “embed”
a shorter cylinder within this long tube such that the outer edges of the cylinder
line up with a subsection of M . This cylinder is diffeomorphic to D2×D1. The
basic operation of surgery is replacing the S1 ×D1 part of the cylinder with its
D2 × S0 part. Note, however, that S1 × S0 is a subset of both S1 × D1 and
D2×S0, so replacing one with the other doesn’t open any holes in our manifold.
This is visualized in the figure below. The reverse of this surgery can also be
studied, where we replace the D2 × S0 part of our cylinder with its S1 × D1

part.

This same operation applied to a 2-d strip is shown below
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At this point this definition seems rather arbitrary, and one might ask
whether surgery comes up in practice. However, we’ve already seen an example.
Recall the way the boundary of our unveiling torus changes as the height a in-
creases. After coming into existence diffeomorphic to S1 it splits into the disjoint
union S1 t S1. This disjoint union is rejoined into a form diffeomorphic to S1

before the boundary disappears. Upon examination, going from S1 → S1 t S1

and S1tS1 → S1 can be accomplished through surgery operations, and yet they
are both accounted for by handle attachments on the surface M . The specific
process is shown below

In a more general setting, it is possible to prove that a k-handle attachment
on the n-manifold M is equivalent to a k-surgery on the boundary ∂M .

Lemma 3. Let M be an n-manifold. Let 0 ≤ k ≤ n and let f : Sk−1×Dn−k →
∂M be a diffeomorphism.Let handle(M,k) be the manifold produced from M via
k-handle attachment with the above parameters. Let surgery(∂M, k − 1) be the
manifold produced from ∂M via (k-1)-surgery using the same diffeomorphism.
∂handle(M,k) = surgery(∂M, k − 1).

Proof. We can see that handle(M,k) = M∪fHk. Recall that Hk = Dk×Dn−k.
We have ∂Hk = Sk−1×Dn−k+Dk×Sn−k−1 = B1+B2 = B′1+B′2+C. Here C =
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Sk−1×Sn−k−1 is the intersection of B1 = Sk−1×Dn−k and B2 = Dk×Sn−k−1.
By removing C from each of our boundary components, we get B′1 = B1−C =
Sk−1×Dn−k−Sk−1×Sn−k−1 and B′2 = B2−C = Dk×Sn−k−1−Sk−1×Sn−k−1,
which are disjoint. When we perform a k-handle attachment on a manifold M ,
we “cover up” the region f(Sk−1×Dn−k) = f(B1). As such, it is removed from
the boundary. However, the boundary of f(B1) (which is f(C)) remains on ∂M
because it is also part of f(B2). Additionally, B′2 is added to the boundary. As
such, ∂handle(M) = (∂M−f(B′1))∪f (C)B2. As this replaces f(Sk−1×Dn−k) =
f(B1) with Dk × Sn−k−1 = B2 along f(Sk−1 × Sn−k−1) = f(C), we have
∂handle(M,k) = ∂M − f(Sk−1 × D(n−1)−(k−1) − Sk−1 × S(n−1)−(k−1)−1) ∪f
(D(k−1)+1 × S(n−1)−(k−1)−1) = surgery(∂M, k − 1).

It’s also important to note that since ∂M is (n-1)-dimensional, every surgery
operation on the boundary can be accounted for by a handle attachment on the
manifold.

6 Ricci Flow with Surgery

Now that we’ve built up some background in Surgery and Morse theory, let’s
attempt to interpret Perelman’s proof of the Poincare conjecture using Ricci
flow with surgery. Let’s start off by stating the Poincare conjecture

Conjecture 1. All simply-connected, closed 3-manifolds are homeomorphic to
S3

There are a few things to unpack here. First, for a manifold to be simply-
connected, it must both be path connected and have all loops contract to a
point. In practice, this means there are no “holes” in our manifold (think the
torus). Further, a closed manifold has no boundary and is compact. For some
context on what S3 is, think back to our discussion about ∂Tessaract

The conjecture itself seems rather tame, but the methods it took to prove it
are not. I will not be able to do them justice here, but I will try to give at least
an overview. To start off, the following is the formal definition of Ricci flow

Definition 11. Let M be a smooth manifold and let (a, b) ⊂ R be an open
interval (denotes time in this context). Under Ricci flow, at time t ∈ (a, b), we
have

∂

∂t
gt = −2Ricgt (2)

where gt is the Riemannian metric and Ric is the Ricci curvature.

Full descriptions of Riemannian metrics and Ricci curvature are outside the
scope of this paper. However, the Riemannian metric can be seen to denote
the distance between points along the manifold, while the Ricci flow captures
information about how the manifold curves. One can think of Ricci curvature as
analogous to heat flow, except the output is not a change in value, but a change

13



in shape. However, what will be most useful for our purposes is to describe
what Ricci flow does to a shape (in ideal situations).

Note the negative sign in front of the Ricci curvature. This means that, in
some sense, if the Ricci curvature is large, then the distance between points will
shrink, while if it is negative, the distance between points will grow. All along,
the curvature of the points is changing

It has been found that Ricci flow collapses certain 3-manifolds to a point.
Perelman found that the shape these manifolds have right before it became
a point was S3. As such, we can run back the process and show that those
manifolds are homeomorphic to S3. However, Perelman ran into some issues
generalizing this approach, as not all 3-manifold collapse to a point. One of
those issues is the occurrence of “pinching points”. One of the varieties of
pinching points is shown below. At these points, the Ricci flow collapses down
to an infinitely thin bottleneck, leaving the rest of the manifold at the same size,
which makes it pretty hard to argue that these manifolds are homeomorphic to
S3.

In order to combat this problem, Perelman had the idea to “snip” these
points off using surgery, then let the process continue on both sides of the
pinching point separately. If another pinching point occurred later on, it would
also be snipped. After some time, all the “blobs” this produces become points.
We then pull them back to being S3. Proceeding pairwise, we do reverse surg-
eries of these S3. As one might recall from an introductory topology course,
each of these reverse surgeries is equivalent to taking a connected sum of the two
manifolds being put together, and S3#S3 = S3, so the procedure recursively
builds back up to S3. The whole process is visualized in the figure below.

In the current description of Ricci flow with surgery, the Ricci flow and
surgery seem like two separate actions, trading off with one another. However,
with our previous conversation, it is possible to recast the entire process in terms
of handle attachments. Think of a 4-dimensional manifold composed of slices,
where each slice is the Ricci flow at a given time. Since both the original manifold
and S3 are simply connected, we can retract them to a point at both ends of
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our 4-manifold so that it is compact and boundaryless. As such, we can break
our 4-manifold up into a handle decomposition using a Morse function. In this
analogy, our pinching points become critical points (analogous to saddle points).
Just as with our torus, handle attachments accomplish surgeries (splitting two
3-manifolds) and reverse surgeries (connected summing 3-spheres).

We have gone from what seemed like a rather arbitrary process to a complex
and, frankly, beautiful 4-dimensional object that fully describes a physical pro-
cess. This realization points us to one of the core strengths of surgery theory: its
ability to elegantly describe physical processes which consist of topology change
events. The portion of our 4-manifold that goes from the original 3-manifold’s
slice to the S3 slice is called a cobordism between the original 3-manifold and
S3, a smooth manifold with a disjoint union of the original 3-manifold and S3

as its boundary. For interested readers, cobordism theory is the study of these
cobordisms, which are used to describe topology change events in many areas
of math and science, including knot theory and quantum gravity.
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