1 Motivation

After a long hard semester in Analysis I, one marked by numerous dates with
Walter Rudin in Butler Library, a student of mathematics should feel not only
defeated but also accomplished. The passing of the course marks an acquain-
tance with proofs, a mastery of epsilons and deltas, the start of the transition
to what many mathematicians would call “real mathematics.” But then in the
student’s topology class, what should be the light at the end of the analytical
tunnel, the metric is promptly discarded to allow for a more abstract definition
of a topology without much justification. A natural question arises: Why get
rid of the metric which proved so useful the previous semester? It turns out
that mathematics professors aren’t sadists. Rather, certain topological spaces
simply cannot be metrized: there exists no metric that will allow us to prop-
erly express that topology. Even better, thanks to two mathematicians named
Jun-iti Nagata and Yuri Mikhailovich Smirnov (who proved the same result in-
dependently within a year of one another) we know the exact conditions which
are both necessary and sufficient for a topological space to be metrizable. This
result is, perhaps unsurprisingly, known as the Nagata-Smirnov Theorem.

2 Prerequisites

Before we prove the Nagata-Smirnov Theorem (and in the process the perhaps
even more famous Urysohn metrization theorem) I must introduce a few formal

definitions. The first two definitions describe the countability axioms.

Definition 2.1 (First Countability Axiom). A space X is said to have a count-
able basis at x if there is a countable collection B of neighborhoods of x such
that each neighborhood of x contains at least one of the elements of 5. A space
X satisfies the first countability axiom and is said to be first countable
when each of its points has a countable basis.

Definition 2.2 (Second Countability Axiom). A space X is said to satisfy the
second countability axiom and is said to be second countable if it has a
countable basis for its topology.

Broadly, second countability is a sort of tameness assumption. It’s a nice
property that guarantees the topological space we are working in is, to some
extent, well-behaved. Note that second countability is a stronger condition
then first countability. If a space has a countable basis B then the subset of B
consisting of those basis elements containing the point = is a countable basis
at x. In fact, second countability is such a strong condition that not even all
metric spaces satisfy it.



Example 1. The real line R is second countable. The collection of all open
intervals of the form (a,b) with rational endpoints forms a countable basis.
Similarly, R™ is second countable. The collection of all products of open intervals
with rational endpoints forms a countable basis.

Example 2. The Sorgenfrey line R; is not second countable. For any point
x € R, [x,00) is an open set. Thus, by the definition of a basis, for any = € R
we can choose a basis element B € B of the form [z,y) where y > 2. These
basis elements are distinct so |B| > R which implies the basis is uncountable.

Definition 2.3. A subset A of a space X is said to be dense in X if A = X.
Example 3. The set of rationals QQ is dense in the reals R.

The intuition here is that a subset A is dense in a space X if we can get
arbitrarily close to all points in X via points in A. The next set of definitions
concerns three separation axioms. You are probably already familiar with the
first one.

Definition 2.4 (Normal). Assume that one-points sets are closed in X. Then
X is said to be normal if for each pair A, B of disjoint closed sets of X, there
exist disjoint open sets U and V containing A and B respectively.

Definition 2.5 (Regular). Assume that one-points sets are closed in X. Then
X is said to be regular if for each pair of a point z and a closed set B disjoint
from «, there exist disjoint open sets U and V' containing x and B respectively.

Definition 2.6 (Hausdorff). A space X is said to be Hausdorff if for each pair
of distinct points x,y in X, there exist disjoint open sets U and V containing =
and y respectively.

Because we have assumed that one-point sets are closed, normal spaces are
regular, and regular spaces are Hausdorff; I have listed the definitions in order
of decreasing strength. This assumption is crucial for this relation to hold: a
two-point space with the indiscrete topology, for instance, satisfies the other
components of the definitions of regularity and normality but is not Hausdorff.
It should be clear why these are called separation axioms: we are separating
some combination of points and sets. See Figure 1.

Example 4. The Sorgenfrey line R; is normal. One-point sets are closed since
the topology of R; is finer than that of R. Now suppose A and B are disjoint
closed sets. Then for each point a € A choose a basis element [a,x,) not
intersecting B. Similarly, for each point b € B choose a basis element [b, z;) not
intersecting A. Then

U= U [a,2,) and V' = U [b, )

a€A beB



are disjoint open sets containing A and B respectively.
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Figure 1: Separation Axioms

I now introduce an alternative characterization of normal spaces that will
become useful when proving the Urysohn Lemma. It will allow us to construct
a sequence of open sets that start off looking like one type of set and gradually
change to look like another.

Lemma 2.1 (Alternative characterization of normal spaces). X is normal if
and only if given a closed set A and an open set U containing A, there is an
open set V containing A such that V C U.

Proof. Suppose first that X is normal and that both A and U are given. Let
B = X — U which is closed since U is open. Because X is normal, there exist
disjoint open sets V and W containing A and B respectively. V is disjoint from
B because if y € B, the set W is a neighborhood of y disjoint from V implying
y ¢ V. Therefore V.C X — B=U.

To prove the converse, assume that disjoint closed sets A and B are given.
Let U = X — B which is open. Then A C U and by hypothesis there is an open
set V containing A such that V' C U. Note also that B =X —U C X — V. The
open sets V and X — V are disjoint closed sets containing A and B respectively.
So X is normal. O

Lemma 2.2 (Alternative characterization of regular spaces). X is regular if and
only if given a point x of X and a neighborhood U of x, there is a neighborhood
V of z such that V C U

Proof. The proof is nearly identical to the one above: simply replace “the set
A” by “the point x” throughout. O



Theorem 2.3. Every metrizable space is normal

Proof. Let X be a metrizable space with metric d, and let A and B denote
disjoint closed sets. For each a € A choose ¢, > 0 sufficiently small so that
B(a, €,) does not intersect B. Similarly, for each b € B choose €, > 0 sufficiently
small so that B(b, €,) does not intersect A. See figure 2. Now define
U= |]J Bla,e/2) and V = | ] B(b,e/2)
acA beB

Then U and V are open sets containing A and B respectively. Moreover, they
are disjoint. To see this, suppose, for contradiction, that z € U N'V. Then

z € B(a,e,/2) N B(b, €,/2)

for some a € A and some b € B. Then by applying the triangle inequality we
obtain that d(a,b) < d(a,z) + d(z,b) = €,/2 + €/2. If €, < €, then d(a,b) < €,
so the ball B(b,€,) contains the point a. Similarly, if €, < €, then d(a,b) < ¢,
so the ball B(a, €,) contains the point b. Either case is a contradiction and so U
and V must be disjoint. A and B were arbitrary disjoint closed sets and U and
V are disjoint open sets containing A and B respectively X must be normal.
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Figure 2: Every Metrizable Space is Normal

Example 5. Although the Sorgenfrey line R; is normal, the Sorgenfrey plane
R? (the product of two copies of the Sorgenfrey line) is not. Then the Sorgenfrey
plane is not metrizable by the contrapositive of the lemma. For a proof of why
the Sorgenfrey plane is not normal see Arnaud and Rudnicki’s 2013 paper Some
Properties of the Sorgenfrey Line and the Sorgenfrey Plane.



3 Urysohn Lemma

Don’t be fooled by the word “lemma.” This is the first real proof of this paper,
and it requires a substantial amount of work. It asserts the existence of certain
real-valued continuous functions on normal spaces and will be crucial when
proving the Urysohn metrization theorem. With that said, then, let’s get on
with the proof.

Lemma 3.1 (Urysohn Lemma). Let X be a normal space. Let A and B be
two disjoint closed subsets of X, and let [a,b] be a closed interval in the real
line. Then there exists a continuous map f : X — [a,b] such that f(z) = a for
all z € A and f(z) =b for all x € B.

Proof. Assume for now that the interval in question is the interval [0, 1]. The
general case follows then follows easily. The proof is quite long so I'll break it
up into steps.

Step 1. Because X is normal we can find an open set U such that A C U
and U C X — B. The idea here is to construct an infinite number of sets such
that the sets start off looking like U and end up looking like X — B. More specif-
ically, let P denote the set of all rationals in the interval [0, 1]. For each p € P
we will define an open set Up such that (_Jp C U, whenever p < q. Thus, the sets
U, will be ordered by inclusion the same way their subscripts will suggest.

Because P is countable we can use induction to define the sets U,. Arrange
the elements of P in an infinite sequence such that the numbers 0 and 1 are
the first two elements. Let P, denote the first n rationals in the sequence. Let
U; = X — B which is open. Since X is a normal space and A is a closed set
contained in U; (A and B are disjoint), we may choose an open set Uy such that
A c Uy and Uy € Uy. Thus we have defined U, for all p € P,.

Now we proceed by induction. Assume that U, is a defined open set for all
p € P, and that these sets satisfy the condition p < ¢ = U, C U,. Let r
denote the next term in the sequence. We wish to define U,. such that the con-
dition still holds for P,y = P, U {r}. Let p denote the largest number in P,
smaller than r, and let ¢ denote the smallest number in P, larger than r. U, and
U, are already defined and Up C U, by the inductive hypothesis. Because X is
a normal space we can construct an open set U,. such that Up CcU,and U, C Uy.

I now show that the above condition is also satisfied for all pairs of elements in
P,,+1. First, suppose that both elements of P, 1 are also elements of P,,. Then



the condition is satisfied by the inductive hypothesis. Now suppose instead that
one of the elements is 7. Then either s < p in which case Uy C Up CcU,ors>q
in which case U, C U, C Us. So the condition is satisfied for P, as well.

X

Figure 3: Inserting Us/3 when P = {0,1,1/2,1/3,2/3, ...}

Step 2. We extend the definition of U, from all rationals in [0,1] to all
rationals in R. We do this by defining U, = g if r < 0 and U, = X if r > 1.
The condition still holds for all p € R since @ = U,, C U, whenever p < 0 and
U, C U, = X whenever ¢ > 1.

Step 3. Given a point € X define Q. to be the set of rational numbers whose
corresponding open sets U, contain x. More formally let Q, = {plz € U,}.
This set contains no number less than 0 since U, = & for » < 0 and this set
contains all numbers greater than 1 since U, = X for r > 1. Then the function
f(z) =inf Q, = inf{p|z € U,} is bounded below by 0 and above by 1

Step 4. Now we show that f is the desired function. If x € A then z € U,
forall p > 0so f(z) =infQ, =0. If v € B then o ¢ U, for all p <1 so

f(z) = inf Q, = 1 since Q, consists of all rational numbers greater than 1.

The harder part is proving that f is continuous. To see this we begin by mak-



ing two observations. First, z € U, = fl@) <r. Ifze U, then z € U, for
all s > r so Q; contains all rational numbers greater than r and by definition
f(z) = inf Q, < r. Second, note that = ¢ U, = f(x) > r by similar logic. If
x ¢ U, then = ¢ U; for all s < r. Therefore, Q, contains no rational numbers
less than r and by definition f(z) = inf Q, > r.

Now we prove continuity of f. Given a point zy of X and an open inter-
val (¢,d) in R containing f(z) we wish to find a neighborhood U of z( such
that f(U) C (¢,d). To do so we choose rational numbers p and ¢ such that
c<p< f(z0) < ¢ < dand consider the open set U = U, — U, = U, N (X —U,).

First we show that zo € U. Note that f(z¢) > p implies = ¢ U, by the con-
trapostive of the first observation. Similarly, f(zo) < ¢ implies zy € U, by the
contrapositive of the second observation. Second, we show that f(U) C (¢, d).
Let # € U. Then 2 € U, C U, so f(z) < g by our first observation. Sim-
ilarly, « ¢ U, so f(z) > p by our second observation. See figure 4. Thus,
f(z) €p,q] C (c,d) and f(U) C (¢,d). So f is continuous.
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Figure 4: Continuity of f

Generalization We now consider the general case of a closed interval [a, b].
First construct a function f : X — [0,1] such that f(z) = a for all x € A
and f(x) = b for all z € B using the four steps above. Now let h = go f
where g(z) = (b — a)x + a. g is affine and thus continuous. h is contin-
uous as well as the composition of two continuous functions. Now observe
h(z) = g(f(z)) = g(0) = a for all x € A and h(x) = g(f(z)) = g(1) = b for all
z € B. O



4 Urysohn Metrization Theorem

We now get to the well-known Urysohn Metrization Theorem. This theorem
provides conditions under which a topological space is metrizable, and its proof
uses results on metric topologies as well as results on the countability and sepa-
ration axioms proved earlier. The proof will soon be generalized when I present
the Nagata-Smirnov metrization theorem. Before delving into the theorem it-
self, I review the definitions of the uniform metric and an embedding. For the
uniform metric, we essentially define the distance between two points to be the
largest distance between any two corresponding coordinates of those two points.
The definition of an embedding should be review.

Definition 4.1 (Uniform Metric on R”7). Given an index set .J, and given points
x = (2;)jes and y = (y;),es in R7 we define a metric p on R’ by the equation

ﬁ(x’Y) = SUP{J(%,yaNO& € J}

where d is the standard bounded metric on R and defined by the equation

d(z,z) = min{|z — y|,1}

We call p the uniform metric on R/, and the topology it induces is called the
uniform topology.

Definition 4.2 (Embedding). Suppose f : X — Y is an injective continuous
map. If f': X — f(X) obtained by restricting the range of f is a homeomo-
porhism, we say that the map f is an embedding of X in Y.

Theorem 4.1 (Urysohn Metrization Theorem). Every regular space X with a
countable basis is metrizable.

Proof. We shall show that X is metrizable by embedding X in a in a metrizable
space Y'; that is, by showing X is homeomorphic with a subspace of Y.

Step 1. We begin by proving that there exists a countable collection of contin-
uous functions f,, : X — [0, 1] having the property that given any point xg of X
and any neighborhood U of zg, there exists an index n such that f, is positive
at o and vanishes outside U.

Let B = {B,} be a countable basis. For each pair n,m of indices where B,, C
By, apply the Urysohn lemma to choose a continuous function gy, ., : X — [0, 1]
such that g, ,»(Bn) = {1} and g, m(X — By) = {0}. We now show that the
collection {g,, m} satisfies the above property. Given zy and a neighborhood



U of xy we can choose a basis element B, such that x € B, C U. Using the
alternative characterization of regular spaces from section 2, we can choose B,
so that g € B, and B,, C B,,. Then n,m is a pair of indices for which the
function gy, is defined. Moreover this function is positive at xy and vanishes
outside U. Additionally, because the collection {g, m} is indexed with a subset
of Z x Z it is countable. Reindexing this set with the positive integers gives
us the defined collection of functions f,.

Step 2. Given the functions f,, from step 1, we construct a map F : X — R¥
where R¥ has the product topology and the map F' is define by the following
equation

F(x) = (fl(x)va(x)’ )
We assert that F' is an embedding.

F' is clearly continuous in the product topology since each f, is continuous.
Additionally, F is injective because given x # y there exists an index n such
that fp(z) > 0 and f,(y) = 0 which implies F'(z) # F(y). To see this, recall
that X is regular and thus Hausdorff so there exists a neighborhood U of =
distinct from y. Then by step 1 there exists a function f, such that f,(x) > 0
and f,,(y) =0 because y ¢ U.

Now we must show that F is a homeomorphism of X onto its image F'(X) C R¥.
We already know F is a continuous bijection onto its image (surjectivity comes
for free by definition) so we now only need to show that the map F' is open. To
do this, we will show that for any open set U in X and zo € F(U), we can find
an open set W in F(X) such that

20 € W C F(U)

Let z¢ denote the point of U such that F(z¢) = z¢. Choose an index N such
that fy(x) >0 and fy(X —U) = {0}. Then the set

V =75 ((0,+00)) C R¥

is open since (0, 4+00) is open in R and the projection mappings are continuous.
Now let W = VN F(X) which is open in F(X) by the definition of the subspace
topology. We assert that zo C W C F(U). First, zg € W because

7N (20) = 7N (F(20)) = fn(z0) >0

Second, W C F(U). If z € W then z = F(z) for some z € X, and 7nn(2) €
(0, +00). Since mny(z) = 7(fn(F(z)) = fn(x) and fn(X — U) = {0}, it must



be the case that © € U. Then z = F(z) C F(U) as desired. See figure 5. So the
map F' is open, and F is an embedding of X in R%.
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Figure 5: Embedding
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We can actually generalize step 2 of the theorem with only a little work.
This stronger result will become necessary when we prove the Nagata-Smirnov
theorem: it can be applied to R’ even when J is not countable.

Theorem 4.2 (Embedding Theorem). Let X be a space in which one-point sets
are closed. Suppose that {f,}acs is an indexed family of continuous function
fa + X — R satisfying the requirement that for each point zy of X and each
neighborhood U of xq , there is an index « such that f, is positive and xg and
vanishes outside U. Then the function F : X — R’ defined by

F(:U) = (foc)aeJ

is an embedding of X in R7. If f, maps X into [0, 1] for each «, then F' embeds
X into [0,1]7

Proof. The proof is essentially a copy of step 2 of the above proof but we replace
“n” by “a” and “R“” by “R’” throughout. We need one-point sets in X to

10



be closed so that given x # y there is always an index « such that f,(x) #
fa(y)- O

Example 6. A topological space X is called locally Euclidean if there is a
positive integer n such that every point in X has a neighborhood homeomorphic
to R™. A locally Euclidean space that is also Hausdorff is called a topological
manifold. Then every topological manifold is automatically regular and every
second-countable manifold is metrizable.

5 Preliminaries

We’ve just proved the Urysohn Metrization Theorem. It’s an important result,
providing conditions under which a space is metrizable, but mathematicians
are greedy. Even better than a sufficient condition would be a condition that
is both necessary and sufficient for metrizability. To do so will require some
new definitions that we haven’t yet formulated. In this section, I’ll introduce
the definition of a locally finite topological space and prove some basic results.
Following this, we’ll be ready to prove the Nagata-Smirnov Metrization Theorem
and fully characterize when a space is metrizable.

Definition 5.1 (Locally Finite). Let X be a topological space. A collection
A of subsets of X is said to be locally finite in X if every point of X has a
neighborhood that intersects only finitely many elements of A

Definition 5.2 (Countably Locally Finite). A collection B of subset of X is
said to be countably locally finite if 5 can be written as the countable union
of collections B,,, each of which is locally finite.

Definition 5.3 (Refinement). Let A be a collection of subsets of the space X.
A collection B is said to be a refinement of A if for each element B € B, there
is an element A € A containing B. If the elements of B are open sets, we call B
an open refinement of A; similarly, if they are closed sets we call B a closed
refinement.

Similar to second countability, local finiteness is a condition under which
topological spaces are reasonably well-behaved. The same can be said about
space that are countably locally finite though of course this classification is more
broad. A refinement allows us to look at a smaller collection of sets “covered” by
the original collection. It is often more convenient to work with this refinement
than the original collection.

Example 7. The collection of intervals

A={(n,n+2)|n €Z}

11



is locally finite in the topological space R since for any = € R, the neighborhood
(r—1,z+1) intersects at most 4 elements of A. On the other hand the collection

B={(0,1/n)ln € 74}
is not since any neighborhood of 0 € R intersects infinitely many elements of B.

Example 8. Any collection of sets B is a refinement of {X} because for all
B € B we have B C X.

The following definition and theorem will be quickly stated but I won’t dwell
much on them since this is a paper focusing on topology not set theory. They
will be used in the proof of the following lemma.

Definition 5.4. A set A with an order relation < is said to be well-ordered
if every nonempty subset of A has a smallest element.

Theorem 5.1 (Well-ordering theorem). If A is a set, there exists an order
relation on A that is a well-ordering.

Proof. See Zermelo’s 1904 paper, Beweis, dajf$ jede Menge wohlgeordnet werden
kann O

This theorem was startling but the only controversial step in the proof was
a construction involving the axiom of choice. Consequently, several mathemati-
cians rejected the axiom of choice. Most mathematicians today accept the axiom
of choice, but here’s an example to illustrate why several mathematicians were
hesitant to believe it.

Example 9. There exists an order relation on R that is a well-ordering by the
well-ordering theorem. This means that every non-empty subset of R would
have a least element under the well-ordering.

Despite this discomforting example we can use the well-ordering theorem
to derive some very useful results. Here are two lemmas that will allow us to
construct useful sets in the proof of the Nagata-Smirnov metrization theorem.

Lemma 5.2. Let A be a locally finite collection of subsets of X. Then
Ja=U4
AcA AcA

Proof. LetY =Jc 4 A. In general, [JA C Y by basic properties of closure. We
now aim to show the reverse inclusion using the assumption of local finiteness.
Let z € Y. Let U be a neighborhood of = that intersects only finitely many
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element of A, call them Aj, ..., Ay. Then z belongs to one of the sets A1, ..., Ay,
and thus (J A. If x belonged to none of these sets then U — A; — ... — A3 would
be a neighborhood of x that intersects no elements of A and thus would not
intersect Y, contradicting the assumption that = € Y. O

Lemma 5.3. Let X be a metrizable space. If A is an open covering of X, then
there is an open covering S of X refining A that is countably locally finite

Proof. Choose a well-ordering < for the collection A: such an ordering is guar-
anteed to exist by the well-ordering theorem. Similarly choose a metric for X
which is guaranteed to exists since X is assumed to be metrizable. We will
denote the elements of A by the letters U, V, W, ...

First, we construct a locally finite refinement of A; We don’t yet worry that
the subsets are open or that they form a covering. Let n denote a positive
integer, fixed for the moment. Given an element U € A we define S,,(U) to be
the subset of U that is at least a distance 1/n within U. More precisely, let

Sp(U) ={z|B(z,1/n) C U}

Now we use the well-ordering < of A to further restrict the sets so that they
don’t overlap. For each U € A let

T,(U)=S.(U)- |J V
Uu<v

this sets are disjoint as the figure below suggests. Moreover they are separated
by a distance of at least 1/n. To see this, assume without loss of generality that
V < W with € T,,(V) and y € T,,(W). Then by definition of T,,(V') we also
have x € S,,(V) and the 1/n neighborhood of x lies entirely in V. On the other
hand y € T,,(W) implies by definition that y ¢ V which implies y ¢ B(z,1/n)
since the 1/n neighborhood of y lies entirely in V. This implies d(z,y) > 1/n.

Next, we’ll expand the constructed sets T,,(U) a bit so that we can be cer-
tain they’re open sets. We’ll expand them to an open set F,,(U) where E, (U)
is the 1/3n neighborhood of T,,(U). More precisely

E,U)= |J B(x,1/3n)

z€T, (U)

Moreover, for any U and V distinct we have that d(x,y) > 1/3n for any
x € E,(U) and y € E, (V) by the triangle inequality so sets are disjoint. More
explicitly, there must also exist 2’ € T,,(U) and y' € T,,(V) by definition. Then
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Figure 6: Locally Finite Open Cover

by the triangle inequality we have 1/n < d(z,y") < d(2',z)+d(z,y)+d(y,y’) <
1/3n + d(z,y) + 1/3n which implies d(z,y) > 1/3n. See figure 6.

Now define
En ={En(U)|U € A}

We claim that &, a locally finite collection of open sets that refine A. &, refines
A because £,(U) C U for each U € A. &, is locally finite because for any = € X,
the 1/6n neighborhood of z intersects at most one element of &, because any
two elements of &, are separated by a distance of at least 1/3n.

Of course, &, does not cover X. However, we assert the collection

E=J &

nely

does cover X. To show this let z be a point of X. The collection A covers X by
assumption. Then choose U to be the first element of A (in the well-ordering
<) that contains x. Because U is open we can choose n so that B(z,1/n) C U.
Then, by definition, « € S, (U). Moreover, because U is the first element of A
that contains z, the point x belongs to T,,(U) and thus also E,, (U) which is an
element of £, C £. So £ is an open covering of X refining A that is countably
locally finite. O
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6 Nagata-Smirnov Theorem

We're nearly done. I introduce the definition of a G set before we prove two
lemmas on our way to the final theorem. These sets are nice because we can
construct them using countable intersections of open sets. This will prove ex-
tremely useful for constructing continuous functions.

Definition 6.1 (Gs set). A subset A of a space X is called a Gy set in X if it
equals the intersection of a countable collection of open subsets of X.

Example 10. In a metric space X, each closed set is a G5 set. Given A C X,
let U(A,€) denote the e-neighborhood of A. If A is closed then we have

A= () UA1/n)
neZy

so A is a Gy set.

Lemma 6.1. Let X be a regular space with a basis B that is countably locally
finite. Then X is normal, and every closed set in X is a Gy set in X.

Proof. Step 1. Given W open in X we show that there is a countable collection
{U,} of open sets of X such that

W= JU. =0,

Since the basis B is countably locally finite we can write B = | J B,, where each
collection B,, is locally finite. Let C,, denote the set of basis elements B € B3,
such that B C W. Then C, is locally finite since each C,, is a subset of B,,. Now

define
Uu.= |J B
BeC,

which is open as a union of open sets and by lemma 5.2 we also have
U= |J B
BeCyp

so U, C W because each B C W and further this implies that

Uvn cJtn cw

We assert that the equality holds. Given = € W there exist disjoint open sets
U and V containing x and X — W respectively since X is regular. Then there
exists a basis element B C U with # € B and B C W because B C U and
UN(X — W) = @ since U and V are disjoint open sets and X — W C V. This
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B € B, for some n. Then B € C, by definition and so z € U,. Then W C YU,
and the equality follows.

Step 2. We show that every closed set C' in X is a G set in X. Given
C,let W = X — C. By step 1, there are sets U, in X such that W = (JU,, and
thus we have

C=X-W=X-JU, =X -0,

Then C equals a countable intersection of open sets and is thus a G set.

Step 3. We show that X is normal. Let C and D be disjoint closed sets
By step 1 we construct a countable collection {U,} of open sets such that
UU, = JU, = X — D. Then {U,} covers C and each set U, is disjoint from
D. Similarly, there is a countable covering {V,,} of D by open sets such that
each V,, is disjoint from C. Then the sets U = |JU,, and V = [JV,, are open
sets containing C' and D respectively but they are not necessarily disjoint.

We perform a little trick to construct to open sets that are disjoint. Given
n, define

ViandV,::Vn—CJUi

1 i=1

Ul =0, —

-

(2

Each set U}, is open as the difference of an open set U, and a closed set |J!-_, V.
The same logic shows that V! is open. The collection {U},} covers A because
each z € A belongs to some U,, but = does not belong to any V; since each V;
is disjoint from C. Again, the same logic shows that the collection {V,!} covers D.

Now let
U= U,and V' = | WV
neZy nez,

Then U’ is open as a union of open sets and contains C' since the collection{U] }
covers C. Similar logic shows V' is open and covers D. We assert further that
the two sets are disjoint. Suppose, for contradiction, that z € U’ N V’. Then
z € Uy NV for some j and k. If j < k then = € U; by the definition of U] but
by the definition of V)| we have « ¢ U;. Similarly, if £ < j then « € Vj, by the
definition of V| but by the definition of U; we have x ¢ V. In either case we
have a contradiction, so U’ and V' are distinct. Then we have disjoint open sets
U’ and V'’ containing C' and D respectively, so X is normal. See figure 7. [

Lemma 6.2. Let X be normal and let A be a closed G set in X. Then there is
a continuous function f: X — [0, 1] such that f(z) =0 for x € A and f(x) >0
forx ¢ A
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Figure 7: Disjoint Open Sets

Proof. Since A is a G set let A = (U, where each U, is open. Then X — U,
is closed and the closed sets A and X — U, are disjoint because A C U, by
definition. Then by the Urysohn lemma, there exists a continuous function
fn: X —[0,1] such that f(z) =0 for x € A and f(z) =1 for x € X — U,,. Let
f(x) = > fau(x)/2™. This series converges uniformly (compare it to the series
>>1/2™) and so f is continuous by the uniform limit theorem (see theorem 26.1
in Munkres for a proof). f(z) =0 for x € A and f(x) > 0 for z ¢ A so this is
the desired function. O

Theorem 6.3 (Nagata-Smirnov Metrization Theorem). A space X is metriz-
able if and only if X is regular and has a basis that is countably locally finite

Proof. Step 1. Assume first that X is regular and has a countably locally finite
basis B. We will show that X is metrizable by embedding X in the metric space
(R7, p) for some .J. We already know X is normal and every closed set in X is
a Gy set by lemma 6.1.

Let B = |JB, where each B, is locally finite. For each positive integer n
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and each basis element B € B,,, choose a continuous function
fap: X = 1[0,1/n]

such that f,;(x) > 0 for x € B and f,;, = 0 for ¢ B. Such a function is
guaranteed to exist by lemma 6.2 since X — B is closed as the complement of a
basis element, and thus a G set. Observe that the collection {f,, B} separates
points from closed sets in X: Given a point zy and a neighborhood U of x,
there is a basis element B such that zg € B C U. Then B € B,, for some pos-
itive integer n so we have f,, g(xo) > 0and f, p(z) =0forz € X—-U C X - B.

Let J denote the subset of Z, x B consisting of all pairs (n, B) where B is
an element of B,,. Define F: X — [0,1]” by the equation

F('T) = (fn,b(x))(n,B)GJ

and observe F' is an embedding relative to the product topology on [0,1]7 by
the embedding theorem.

Now we show that F' is an embedding relative to the uniform topology on
[0,1]7 as well. Clearly, F is still injective. Now recall that the uniform topology
on [0,1]7 is finer than the product topology (see theorem 20.4 in Munkres for
a proof). Then F is open relative to the uniform topology. For any U open in
X, F(U) is open in the product topology since F' is an embedding, and thus
F(U) is open in the uniform topology since the uniform topology is finer than
the product topology. We now need to prove that F' is continuous.

Note that on the subspace [0,1]7 of R, the uniform metric equals the met-
ric p(x,y) = sup{|za — ya| : @ € J}. To prove continuity, we take a point
zg € X and a number € > 0, and find a neighborhood W of xy such that

€W = p(F(z),F(xg)) <e

Fix n for the moment. Choose a neighborhood U, of x( that intersects only
finitely many elements of the collection B,,. This is possible because B,, is locally
finite. Then we have f, g(U,) = {0} for all but finitely many functions since
only finitely many basis elements intersect U,,. For each of these finitely many
remaining functions, because they are continuous, there exists a neighborhood
around xo where f, p varies from f(xo) by no more than €¢/2. Let V,, denote
the intersection of these neighborhoods.

Choose such a neighborhood V,, of xy for each n € Z, and choose N suffi-
ciently large so that 1/N < ¢/2. Define W = V3 N...N Vy. We assert that W
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is the desired neighborhood of zy. Let x € W. Then

’I’LSN — ‘me(l‘)_fn,B(xOﬂSE/Q

because the function f, p is either equal to zero on all of W or varies by at most
€/2. Additionally,

n>N = |fuB(@) = fus(xo)] < 1/n < €/2
because f, p maps x into [0,1/n]. Therefore we have
p(F(x), F(xo)) < €/2 <)

as desired so F' is continuous. F' is injective, open, and continuous, so it can be
embedded in the metric space (R7, p). Then X is metrizable.

Step 2. Now we prove the converse. Assume X is metrizable. Then X is
normal by theorem 2.3 and thus regular. Now we need to show that X has a
countably locally finite basis.

Choose a metric for X. Given m let A,, denote the covering of X by all
open balls of radius 1/m. By lemma 5.2 there is an open covering B, of X
refining A,,, that is countably locally finite. Observe that each element of B,
has diameter of at most 2/m. Let

which is a countable union of countable sets thus countable. So then B is count-
ably locally finite as well.

Last we show that B is a basis for X. Given x € X and ¢ > 0 we show there is a
basis element B such that € B C B(z,€). First choose m sufficiently large so
that 1/m < €/2. Then because B,, covers X we can choose an element B € B,,
that contains x. Since B contains z and has diameter at most 2/m < ¢, it is
contained in B(z,e€) as desired. Since z € X and € > 0 were arbitrary, B is a
basis. O
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