
1 Motivation

After a long hard semester in Analysis I, one marked by numerous dates with

Walter Rudin in Butler Library, a student of mathematics should feel not only

defeated but also accomplished. The passing of the course marks an acquain-

tance with proofs, a mastery of epsilons and deltas, the start of the transition

to what many mathematicians would call “real mathematics.” But then in the

student’s topology class, what should be the light at the end of the analytical

tunnel, the metric is promptly discarded to allow for a more abstract definition

of a topology without much justification. A natural question arises: Why get

rid of the metric which proved so useful the previous semester? It turns out

that mathematics professors aren’t sadists. Rather, certain topological spaces

simply cannot be metrized: there exists no metric that will allow us to prop-

erly express that topology. Even better, thanks to two mathematicians named

Jun-iti Nagata and Yuri Mikhailovich Smirnov (who proved the same result in-

dependently within a year of one another) we know the exact conditions which

are both necessary and sufficient for a topological space to be metrizable. This

result is, perhaps unsurprisingly, known as the Nagata-Smirnov Theorem.

2 Prerequisites

Before we prove the Nagata-Smirnov Theorem (and in the process the perhaps

even more famous Urysohn metrization theorem) I must introduce a few formal

definitions. The first two definitions describe the countability axioms.

Definition 2.1 (First Countability Axiom). A space X is said to have a count-

able basis at x if there is a countable collection B of neighborhoods of x such

that each neighborhood of x contains at least one of the elements of B. A space

X satisfies the first countability axiom and is said to be first countable

when each of its points has a countable basis.

Definition 2.2 (Second Countability Axiom). A space X is said to satisfy the

second countability axiom and is said to be second countable if it has a

countable basis for its topology.

Broadly, second countability is a sort of tameness assumption. It’s a nice

property that guarantees the topological space we are working in is, to some

extent, well-behaved. Note that second countability is a stronger condition

then first countability. If a space has a countable basis B then the subset of B
consisting of those basis elements containing the point x is a countable basis

at x. In fact, second countability is such a strong condition that not even all

metric spaces satisfy it.
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Example 1. The real line R is second countable. The collection of all open

intervals of the form (a, b) with rational endpoints forms a countable basis.

Similarly, Rn is second countable. The collection of all products of open intervals

with rational endpoints forms a countable basis.

Example 2. The Sorgenfrey line Rl is not second countable. For any point

x ∈ R, [x,∞) is an open set. Thus, by the definition of a basis, for any x ∈ R
we can choose a basis element B ∈ B of the form [x, y) where y > x. These

basis elements are distinct so |B| ≥ R which implies the basis is uncountable.

Definition 2.3. A subset A of a space X is said to be dense in X if Ā = X.

Example 3. The set of rationals Q is dense in the reals R.

The intuition here is that a subset A is dense in a space X if we can get

arbitrarily close to all points in X via points in A. The next set of definitions

concerns three separation axioms. You are probably already familiar with the

first one.

Definition 2.4 (Normal). Assume that one-points sets are closed in X. Then

X is said to be normal if for each pair A,B of disjoint closed sets of X, there

exist disjoint open sets U and V containing A and B respectively.

Definition 2.5 (Regular). Assume that one-points sets are closed in X. Then

X is said to be regular if for each pair of a point x and a closed set B disjoint

from x, there exist disjoint open sets U and V containing x and B respectively.

Definition 2.6 (Hausdorff). A space X is said to be Hausdorff if for each pair

of distinct points x, y in X, there exist disjoint open sets U and V containing x

and y respectively.

Because we have assumed that one-point sets are closed, normal spaces are

regular, and regular spaces are Hausdorff; I have listed the definitions in order

of decreasing strength. This assumption is crucial for this relation to hold: a

two-point space with the indiscrete topology, for instance, satisfies the other

components of the definitions of regularity and normality but is not Hausdorff.

It should be clear why these are called separation axioms: we are separating

some combination of points and sets. See Figure 1.

Example 4. The Sorgenfrey line Rl is normal. One-point sets are closed since

the topology of Rl is finer than that of R. Now suppose A and B are disjoint

closed sets. Then for each point a ∈ A choose a basis element [a, xa) not

intersecting B. Similarly, for each point b ∈ B choose a basis element [b, xb) not

intersecting A. Then

U =
⋃
a∈A

[a, xa) and V ′ =
⋃
b∈B

[b, xb)
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are disjoint open sets containing A and B respectively.

Figure 1: Separation Axioms

I now introduce an alternative characterization of normal spaces that will

become useful when proving the Urysohn Lemma. It will allow us to construct

a sequence of open sets that start off looking like one type of set and gradually

change to look like another.

Lemma 2.1 (Alternative characterization of normal spaces). X is normal if

and only if given a closed set A and an open set U containing A, there is an

open set V containing A such that V̄ ⊂ U .

Proof. Suppose first that X is normal and that both A and U are given. Let

B = X − U which is closed since U is open. Because X is normal, there exist

disjoint open sets V and W containing A and B respectively. V̄ is disjoint from

B because if y ∈ B, the set W is a neighborhood of y disjoint from V implying

y /∈ V . Therefore V̄ ⊂ X −B = U .

To prove the converse, assume that disjoint closed sets A and B are given.

Let U = X −B which is open. Then A ⊂ U and by hypothesis there is an open

set V containing A such that V̄ ⊂ U . Note also that B = X −U ⊂ X − V̄ . The

open sets V and X− V̄ are disjoint closed sets containing A and B respectively.

So X is normal.

Lemma 2.2 (Alternative characterization of regular spaces). X is regular if and

only if given a point x of X and a neighborhood U of x, there is a neighborhood

V of x such that V̄ ⊂ U

Proof. The proof is nearly identical to the one above: simply replace “the set

A” by “the point x” throughout.
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Theorem 2.3. Every metrizable space is normal

Proof. Let X be a metrizable space with metric d, and let A and B denote

disjoint closed sets. For each a ∈ A choose ϵa > 0 sufficiently small so that

B(a, ϵa) does not intersect B. Similarly, for each b ∈ B choose ϵb > 0 sufficiently

small so that B(b, ϵb) does not intersect A. See figure 2. Now define

U =
⋃
a∈A

B(a, ϵa/2) and V =
⋃
b∈B

B(b, ϵb/2)

Then U and V are open sets containing A and B respectively. Moreover, they

are disjoint. To see this, suppose, for contradiction, that z ∈ U ∩ V . Then

z ∈ B(a, ϵa/2) ∩B(b, ϵb/2)

for some a ∈ A and some b ∈ B. Then by applying the triangle inequality we

obtain that d(a, b) < d(a, z) + d(z, b) = ϵa/2 + ϵb/2. If ϵa ≤ ϵb then d(a, b) < ϵb
so the ball B(b, ϵb) contains the point a. Similarly, if ϵb ≤ ϵa then d(a, b) < ϵa
so the ball B(a, ϵa) contains the point b. Either case is a contradiction and so U

and V must be disjoint. A and B were arbitrary disjoint closed sets and U and

V are disjoint open sets containing A and B respectively X must be normal.

Figure 2: Every Metrizable Space is Normal

Example 5. Although the Sorgenfrey line Rl is normal, the Sorgenfrey plane

R2
l (the product of two copies of the Sorgenfrey line) is not. Then the Sorgenfrey

plane is not metrizable by the contrapositive of the lemma. For a proof of why

the Sorgenfrey plane is not normal see Arnaud and Rudnicki’s 2013 paper Some

Properties of the Sorgenfrey Line and the Sorgenfrey Plane.
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3 Urysohn Lemma

Don’t be fooled by the word “lemma.” This is the first real proof of this paper,

and it requires a substantial amount of work. It asserts the existence of certain

real-valued continuous functions on normal spaces and will be crucial when

proving the Urysohn metrization theorem. With that said, then, let’s get on

with the proof.

Lemma 3.1 (Urysohn Lemma). Let X be a normal space. Let A and B be

two disjoint closed subsets of X, and let [a, b] be a closed interval in the real

line. Then there exists a continuous map f : X → [a, b] such that f(x) = a for

all x ∈ A and f(x) = b for all x ∈ B.

Proof. Assume for now that the interval in question is the interval [0, 1]. The

general case follows then follows easily. The proof is quite long so I’ll break it

up into steps.

Step 1. Because X is normal we can find an open set U such that A ⊂ U

and Ū ⊂ X − B. The idea here is to construct an infinite number of sets such

that the sets start off looking like U and end up looking like X−B. More specif-

ically, let P denote the set of all rationals in the interval [0, 1]. For each p ∈ P

we will define an open set Ūp such that Ūp ⊂ Uq whenever p < q. Thus, the sets

Up will be ordered by inclusion the same way their subscripts will suggest.

Because P is countable we can use induction to define the sets Up. Arrange

the elements of P in an infinite sequence such that the numbers 0 and 1 are

the first two elements. Let Pn denote the first n rationals in the sequence. Let

U1 = X − B which is open. Since X is a normal space and A is a closed set

contained in U1 (A and B are disjoint), we may choose an open set U0 such that

A ⊂ U0 and Ū0 ⊂ U1. Thus we have defined Up for all p ∈ P2.

Now we proceed by induction. Assume that Up is a defined open set for all

p ∈ Pn and that these sets satisfy the condition p < q =⇒ Ūp ⊂ Uq. Let r

denote the next term in the sequence. We wish to define Ur such that the con-

dition still holds for Pn+1 = Pn ∪ {r}. Let p denote the largest number in Pn

smaller than r, and let q denote the smallest number in Pn larger than r. Up and

Uq are already defined and Ūp ⊂ Uq by the inductive hypothesis. Because X is

a normal space we can construct an open set Ur such that Ūp ⊂ Ur and Ūr ⊂ Uq.

I now show that the above condition is also satisfied for all pairs of elements in

Pn+1. First, suppose that both elements of Pn+1 are also elements of Pn. Then
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the condition is satisfied by the inductive hypothesis. Now suppose instead that

one of the elements is r. Then either s ≤ p in which case Ūs ⊂ Ūp ⊂ Ur or s ≥ q

in which case Ūr ⊂ Uq ⊂ Us. So the condition is satisfied for Pn+1 as well.

Figure 3: Inserting U2/3 when P = {0, 1, 1/2, 1/3, 2/3, ...}

Step 2. We extend the definition of Up from all rationals in [0, 1] to all

rationals in R. We do this by defining Ur = ∅ if r < 0 and Ur = X if r > 1.

The condition still holds for all p ∈ R since ∅ = Ūp ⊂ Uq whenever p < 0 and

Ūp ⊂ Uq = X whenever q > 1.

Step 3. Given a point x ∈ X define Qx to be the set of rational numbers whose

corresponding open sets Up contain x. More formally let Qx = {p|x ∈ Up}.
This set contains no number less than 0 since Ur = ∅ for r < 0 and this set

contains all numbers greater than 1 since Ur = X for r > 1. Then the function

f(x) = inf Qx = inf{p|x ∈ Up} is bounded below by 0 and above by 1

Step 4. Now we show that f is the desired function. If x ∈ A then x ∈ Up

for all p ≥ 0 so f(x) = inf Qx = 0. If x ∈ B then x /∈ Up for all p ≤ 1 so

f(x) = inf Qx = 1 since Qx consists of all rational numbers greater than 1.

The harder part is proving that f is continuous. To see this we begin by mak-
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ing two observations. First, x ∈ Ūr =⇒ f(x) ≤ r. If x ∈ Ūr then x ∈ Us for

all s > r so Qx contains all rational numbers greater than r and by definition

f(x) = inf Qx ≤ r. Second, note that x /∈ Ur =⇒ f(x) ≥ r by similar logic. If

x /∈ Ur then x /∈ Us for all s < r. Therefore, Qx contains no rational numbers

less than r and by definition f(x) = inf Qx ≥ r.

Now we prove continuity of f . Given a point x0 of X and an open inter-

val (c, d) in R containing f(x0) we wish to find a neighborhood U of x0 such

that f(U) ⊂ (c, d). To do so we choose rational numbers p and q such that

c < p < f(x0) < q < d and consider the open set U = Uq − Ūp = Uq ∩ (X − Ūp).

First we show that x0 ∈ U . Note that f(x0) > p implies x /∈ Ūp by the con-

trapostive of the first observation. Similarly, f(x0) < q implies x0 ∈ Uq by the

contrapositive of the second observation. Second, we show that f(U) ⊂ (c, d).

Let x ∈ U . Then x ∈ Uq ⊂ Ūq so f(x) ≤ q by our first observation. Sim-

ilarly, x /∈ Up so f(x) ≥ p by our second observation. See figure 4. Thus,

f(x) ∈ [p, q] ⊂ (c, d) and f(U) ⊂ (c, d). So f is continuous.

Figure 4: Continuity of f

Generalization We now consider the general case of a closed interval [a, b].

First construct a function f : X → [0, 1] such that f(x) = a for all x ∈ A

and f(x) = b for all x ∈ B using the four steps above. Now let h = g ◦ f

where g(x) = (b − a)x + a. g is affine and thus continuous. h is contin-

uous as well as the composition of two continuous functions. Now observe

h(x) = g(f(x)) = g(0) = a for all x ∈ A and h(x) = g(f(x)) = g(1) = b for all

x ∈ B.
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4 Urysohn Metrization Theorem

We now get to the well-known Urysohn Metrization Theorem. This theorem

provides conditions under which a topological space is metrizable, and its proof

uses results on metric topologies as well as results on the countability and sepa-

ration axioms proved earlier. The proof will soon be generalized when I present

the Nagata-Smirnov metrization theorem. Before delving into the theorem it-

self, I review the definitions of the uniform metric and an embedding. For the

uniform metric, we essentially define the distance between two points to be the

largest distance between any two corresponding coordinates of those two points.

The definition of an embedding should be review.

Definition 4.1 (Uniform Metric on RJ). Given an index set J , and given points

x = (xj)j∈J and y = (yj)j∈J in RJ we define a metric ρ̄ on RJ by the equation

ρ̄(x,y) = sup{d̄(xα, yα)|α ∈ J}

where d̄ is the standard bounded metric on R and defined by the equation

d̄(x, z) = min{|x− y|, 1}

We call ρ̄ the uniform metric on RJ , and the topology it induces is called the

uniform topology.

Definition 4.2 (Embedding). Suppose f : X → Y is an injective continuous

map. If f ′ : X → f(X) obtained by restricting the range of f is a homeomo-

porhism, we say that the map f is an embedding of X in Y .

Theorem 4.1 (Urysohn Metrization Theorem). Every regular space X with a

countable basis is metrizable.

Proof. We shall show that X is metrizable by embedding X in a in a metrizable

space Y ; that is, by showing X is homeomorphic with a subspace of Y .

Step 1. We begin by proving that there exists a countable collection of contin-

uous functions fn : X → [0, 1] having the property that given any point x0 of X

and any neighborhood U of x0, there exists an index n such that fn is positive

at x0 and vanishes outside U .

Let B = {Bn} be a countable basis. For each pair n,m of indices where B̄n ⊂
Bm, apply the Urysohn lemma to choose a continuous function gn,m : X → [0, 1]

such that gn,m(B̄n) = {1} and gn,m(X − B̄m) = {0}. We now show that the

collection {gn,m} satisfies the above property. Given x0 and a neighborhood
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U of x0 we can choose a basis element Bm such that x ∈ Bm ⊂ U . Using the

alternative characterization of regular spaces from section 2, we can choose Bn

so that x0 ∈ Bn and B̄n ⊂ Bm. Then n,m is a pair of indices for which the

function gn,m is defined. Moreover this function is positive at x0 and vanishes

outside U . Additionally, because the collection {gn,m} is indexed with a subset

of Z+ × Z+ it is countable. Reindexing this set with the positive integers gives

us the defined collection of functions fn.

Step 2. Given the functions fn from step 1, we construct a map F : X → Rω

where Rω has the product topology and the map F is define by the following

equation

F (x) = (f1(x), f2(x), ...)

We assert that F is an embedding.

F is clearly continuous in the product topology since each fn is continuous.

Additionally, F is injective because given x ̸= y there exists an index n such

that fn(x) > 0 and fn(y) = 0 which implies F (x) ̸= F (y). To see this, recall

that X is regular and thus Hausdorff so there exists a neighborhood U of x

distinct from y. Then by step 1 there exists a function fn such that fn(x) > 0

and fn(y) = 0 because y /∈ U .

Now we must show that F is a homeomorphism of X onto its image F (X) ⊂ Rω.

We already know F is a continuous bijection onto its image (surjectivity comes

for free by definition) so we now only need to show that the map F is open. To

do this, we will show that for any open set U in X and z0 ∈ F (U), we can find

an open set W in F (X) such that

z0 ∈ W ⊂ F (U)

Let x0 denote the point of U such that F (x0) = z0. Choose an index N such

that fN (x) > 0 and fN (X − U) = {0}. Then the set

V = π−1
N ((0,+∞)) ⊂ Rω

is open since (0,+∞) is open in R and the projection mappings are continuous.

Now let W = V ∩F (X) which is open in F (X) by the definition of the subspace

topology. We assert that z0 ⊂ W ⊂ F (U). First, z0 ∈ W because

πN (z0) = πN (F (x0)) = fN (x0) > 0

Second, W ⊂ F (U). If z ∈ W then z = F (x) for some x ∈ X, and πN (z) ∈
(0,+∞). Since πN (z) = π(fN (F (x)) = fN (x) and fN (X − U) = {0}, it must
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be the case that x ∈ U . Then z = F (x) ⊂ F (U) as desired. See figure 5. So the

map F is open, and F is an embedding of X in Rω.

Figure 5: Embedding

We can actually generalize step 2 of the theorem with only a little work.

This stronger result will become necessary when we prove the Nagata-Smirnov

theorem: it can be applied to RJ even when J is not countable.

Theorem 4.2 (Embedding Theorem). Let X be a space in which one-point sets

are closed. Suppose that {fα}α∈J is an indexed family of continuous function

fα : X → R satisfying the requirement that for each point x0 of X and each

neighborhood U of x0 , there is an index α such that fα is positive and x0 and

vanishes outside U . Then the function F : X → RJ defined by

F (x) = (fα)α∈J

is an embedding of X in RJ . If fα maps X into [0, 1] for each α, then F embeds

X into [0, 1]J

Proof. The proof is essentially a copy of step 2 of the above proof but we replace

“n” by “α” and “Rω” by “RJ” throughout. We need one-point sets in X to
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be closed so that given x ̸= y there is always an index α such that fα(x) ̸=
fα(y).

Example 6. A topological space X is called locally Euclidean if there is a

positive integer n such that every point in X has a neighborhood homeomorphic

to Rn. A locally Euclidean space that is also Hausdorff is called a topological

manifold. Then every topological manifold is automatically regular and every

second-countable manifold is metrizable.

5 Preliminaries

We’ve just proved the Urysohn Metrization Theorem. It’s an important result,

providing conditions under which a space is metrizable, but mathematicians

are greedy. Even better than a sufficient condition would be a condition that

is both necessary and sufficient for metrizability. To do so will require some

new definitions that we haven’t yet formulated. In this section, I’ll introduce

the definition of a locally finite topological space and prove some basic results.

Following this, we’ll be ready to prove the Nagata-Smirnov Metrization Theorem

and fully characterize when a space is metrizable.

Definition 5.1 (Locally Finite). Let X be a topological space. A collection

A of subsets of X is said to be locally finite in X if every point of X has a

neighborhood that intersects only finitely many elements of A

Definition 5.2 (Countably Locally Finite). A collection B of subset of X is

said to be countably locally finite if B can be written as the countable union

of collections Bn, each of which is locally finite.

Definition 5.3 (Refinement). Let A be a collection of subsets of the space X.

A collection B is said to be a refinement of A if for each element B ∈ B, there
is an element A ∈ A containing B. If the elements of B are open sets, we call B
an open refinement of A; similarly, if they are closed sets we call B a closed

refinement.

Similar to second countability, local finiteness is a condition under which

topological spaces are reasonably well-behaved. The same can be said about

space that are countably locally finite though of course this classification is more

broad. A refinement allows us to look at a smaller collection of sets “covered” by

the original collection. It is often more convenient to work with this refinement

than the original collection.

Example 7. The collection of intervals

A = {(n, n+ 2)|n ∈ Z}

11



is locally finite in the topological space R since for any x ∈ R, the neighborhood
(x−1, x+1) intersects at most 4 elements of A. On the other hand the collection

B = {(0, 1/n)|n ∈ Z+}

is not since any neighborhood of 0 ∈ R intersects infinitely many elements of B.

Example 8. Any collection of sets B is a refinement of {X} because for all

B ∈ B we have B ⊂ X.

The following definition and theorem will be quickly stated but I won’t dwell

much on them since this is a paper focusing on topology not set theory. They

will be used in the proof of the following lemma.

Definition 5.4. A set A with an order relation < is said to be well-ordered

if every nonempty subset of A has a smallest element.

Theorem 5.1 (Well-ordering theorem). If A is a set, there exists an order

relation on A that is a well-ordering.

Proof. See Zermelo’s 1904 paper, Beweis, daß jede Menge wohlgeordnet werden

kann

This theorem was startling but the only controversial step in the proof was

a construction involving the axiom of choice. Consequently, several mathemati-

cians rejected the axiom of choice. Most mathematicians today accept the axiom

of choice, but here’s an example to illustrate why several mathematicians were

hesitant to believe it.

Example 9. There exists an order relation on R that is a well-ordering by the

well-ordering theorem. This means that every non-empty subset of R would

have a least element under the well-ordering.

Despite this discomforting example we can use the well-ordering theorem

to derive some very useful results. Here are two lemmas that will allow us to

construct useful sets in the proof of the Nagata-Smirnov metrization theorem.

Lemma 5.2. Let A be a locally finite collection of subsets of X. Then⋃
A∈A

A =
⋃
A∈A

Ā

Proof. Let Y =
⋃

A∈A A. In general,
⋃
Ā ⊂ Ȳ by basic properties of closure. We

now aim to show the reverse inclusion using the assumption of local finiteness.

Let x ∈ Ȳ . Let U be a neighborhood of x that intersects only finitely many
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element of A, call them A1, ..., Ak. Then x belongs to one of the sets Ā1, ..., Āk,

and thus
⋃
Ā. If x belonged to none of these sets then U −A1 − ...−Ak would

be a neighborhood of x that intersects no elements of A and thus would not

intersect Y , contradicting the assumption that x ∈ Ȳ .

Lemma 5.3. Let X be a metrizable space. If A is an open covering of X, then

there is an open covering S of X refining A that is countably locally finite

Proof. Choose a well-ordering < for the collection A: such an ordering is guar-

anteed to exist by the well-ordering theorem. Similarly choose a metric for X

which is guaranteed to exists since X is assumed to be metrizable. We will

denote the elements of A by the letters U, V,W, ...

First, we construct a locally finite refinement of A; We don’t yet worry that

the subsets are open or that they form a covering. Let n denote a positive

integer, fixed for the moment. Given an element U ∈ A we define Sn(U) to be

the subset of U that is at least a distance 1/n within U . More precisely, let

Sn(U) = {x|B(x, 1/n) ⊂ U}

Now we use the well-ordering < of A to further restrict the sets so that they

don’t overlap. For each U ∈ A let

Tn(U) = Sn(U)−
⋃

U<V

V

this sets are disjoint as the figure below suggests. Moreover they are separated

by a distance of at least 1/n. To see this, assume without loss of generality that

V < W with x ∈ Tn(V ) and y ∈ Tn(W ). Then by definition of Tn(V ) we also

have x ∈ Sn(V ) and the 1/n neighborhood of x lies entirely in V . On the other

hand y ∈ Tn(W ) implies by definition that y /∈ V which implies y /∈ B(x, 1/n)

since the 1/n neighborhood of y lies entirely in V . This implies d(x, y) ≥ 1/n.

Next, we’ll expand the constructed sets Tn(U) a bit so that we can be cer-

tain they’re open sets. We’ll expand them to an open set En(U) where En(U)

is the 1/3n neighborhood of Tn(U). More precisely

En(U) =
⋃

x∈Tn(U)

B(x, 1/3n)

Moreover, for any U and V distinct we have that d(x, y) ≥ 1/3n for any

x ∈ En(U) and y ∈ En(V ) by the triangle inequality so sets are disjoint. More

explicitly, there must also exist x′ ∈ Tn(U) and y′ ∈ Tn(V ) by definition. Then
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Figure 6: Locally Finite Open Cover

by the triangle inequality we have 1/n ≤ d(x′, y′) ≤ d(x′, x)+d(x, y)+d(y, y′) ≤
1/3n+ d(x, y) + 1/3n which implies d(x, y) ≥ 1/3n. See figure 6.

Now define

En = {En(U)|U ∈ A}

We claim that En a locally finite collection of open sets that refine A. En refines

A because En(U) ⊂ U for each U ∈ A. En is locally finite because for any x ∈ X,

the 1/6n neighborhood of x intersects at most one element of En because any

two elements of En are separated by a distance of at least 1/3n.

Of course, En does not cover X. However, we assert the collection

E =
⋃

n∈Z+

En

does cover X. To show this let x be a point of X. The collection A covers X by

assumption. Then choose U to be the first element of A (in the well-ordering

<) that contains x. Because U is open we can choose n so that B(x, 1/n) ⊂ U .

Then, by definition, x ∈ Sn(U). Moreover, because U is the first element of A
that contains x, the point x belongs to Tn(U) and thus also En(U) which is an

element of En ⊂ E . So E is an open covering of X refining A that is countably

locally finite.
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6 Nagata-Smirnov Theorem

We’re nearly done. I introduce the definition of a Gδ set before we prove two

lemmas on our way to the final theorem. These sets are nice because we can

construct them using countable intersections of open sets. This will prove ex-

tremely useful for constructing continuous functions.

Definition 6.1 (Gδ set). A subset A of a space X is called a Gδ set in X if it

equals the intersection of a countable collection of open subsets of X.

Example 10. In a metric space X, each closed set is a Gδ set. Given A ⊂ X,

let U(A, ϵ) denote the ϵ-neighborhood of A. If A is closed then we have

A =
⋂

n∈Z+

U(A, 1/n)

so A is a Gδ set.

Lemma 6.1. Let X be a regular space with a basis B that is countably locally

finite. Then X is normal, and every closed set in X is a Gδ set in X.

Proof. Step 1. Given W open in X we show that there is a countable collection

{Un} of open sets of X such that

W =
⋃

Un =
⋃

Ūn

Since the basis B is countably locally finite we can write B =
⋃
Bn where each

collection Bn is locally finite. Let Cn denote the set of basis elements B ∈ Bn

such that B̄ ⊂ W . Then Cn is locally finite since each Cn is a subset of Bn. Now

define

Un =
⋃

B∈Cn

B

which is open as a union of open sets and by lemma 5.2 we also have

Ūn =
⋃

B∈Cn

B̄

so Ūn ⊂ W because each B̄ ⊂ W and further this implies that⋃
Un ⊂

⋃
Ūn ⊂ W

We assert that the equality holds. Given x ∈ W there exist disjoint open sets

U and V containing x and X −W respectively since X is regular. Then there

exists a basis element B ⊂ U with x ∈ B and B̄ ⊂ W because B̄ ⊂ Ū and

Ū ∩ (X −W ) = ∅ since U and V are disjoint open sets and X −W ⊂ V . This
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B ∈ Bn for some n. Then B ∈ Cn by definition and so x ∈ Un. Then W ⊂
⋃
Un

and the equality follows.

Step 2. We show that every closed set C in X is a Gδ set in X. Given

C, let W = X −C. By step 1, there are sets Un in X such that W =
⋃
Ūn and

thus we have

C = X −W = X −
⋃

Ūn =
⋂

(X − Ūn)

Then C equals a countable intersection of open sets and is thus a Gδ set.

Step 3. We show that X is normal. Let C and D be disjoint closed sets

By step 1 we construct a countable collection {Un} of open sets such that⋃
Un =

⋃
Ūn = X −D. Then {Un} covers C and each set Ūn is disjoint from

D. Similarly, there is a countable covering {Vn} of D by open sets such that

each V̄n is disjoint from C. Then the sets U =
⋃

Un and V =
⋃

Vn are open

sets containing C and D respectively but they are not necessarily disjoint.

We perform a little trick to construct to open sets that are disjoint. Given

n, define

U ′
n = Un −

n⋃
i=1

V̄i and V ′
n = Vn −

n⋃
i=1

Ūi

Each set U ′
n is open as the difference of an open set Un and a closed set

⋃n
i=1 V̄i.

The same logic shows that V ′
n is open. The collection {U ′

n} covers A because

each x ∈ A belongs to some Un but x does not belong to any V̄i since each V̄i

is disjoint from C. Again, the same logic shows that the collection {V ′
n} covers D.

Now let

U ′ =
⋃

n∈Z+

U ′
n and V ′ =

⋃
n∈Z+

V ′
n

Then U ′ is open as a union of open sets and contains C since the collection{U ′
n}

covers C. Similar logic shows V ′ is open and covers D. We assert further that

the two sets are disjoint. Suppose, for contradiction, that x ∈ U ′ ∩ V ′. Then

x ∈ U ′
j ∩ V ′

k for some j and k. If j ≤ k then x ∈ Uj by the definition of U ′
j but

by the definition of V ′
k we have x /∈ Uj . Similarly, if k ≤ j then x ∈ Vk by the

definition of V ′
k but by the definition of U ′

j we have x /∈ Vk. In either case we

have a contradiction, so U ′ and V ′ are distinct. Then we have disjoint open sets

U ′ and V ′ containing C and D respectively, so X is normal. See figure 7.

Lemma 6.2. Let X be normal and let A be a closed Gδ set in X. Then there is

a continuous function f : X → [0, 1] such that f(x) = 0 for x ∈ A and f(x) > 0

for x /∈ A
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Figure 7: Disjoint Open Sets

Proof. Since A is a Gδ set let A =
⋂

Un where each Un is open. Then X − Un

is closed and the closed sets A and X − Un are disjoint because A ⊂ Un by

definition. Then by the Urysohn lemma, there exists a continuous function

fn : X → [0, 1] such that f(x) = 0 for x ∈ A and f(x) = 1 for x ∈ X − Un. Let

f(x) =
∑

fn(x)/2
n. This series converges uniformly (compare it to the series∑

1/2n) and so f is continuous by the uniform limit theorem (see theorem 26.1

in Munkres for a proof). f(x) = 0 for x ∈ A and f(x) > 0 for x /∈ A so this is

the desired function.

Theorem 6.3 (Nagata-Smirnov Metrization Theorem). A space X is metriz-

able if and only if X is regular and has a basis that is countably locally finite

Proof. Step 1. Assume first that X is regular and has a countably locally finite

basis B. We will show that X is metrizable by embedding X in the metric space

(RJ , ρ̄) for some J . We already know X is normal and every closed set in X is

a Gδ set by lemma 6.1.

Let B =
⋃
Bn where each Bn is locally finite. For each positive integer n
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and each basis element B ∈ Bn, choose a continuous function

fn,b : X → [0, 1/n]

such that fn,b(x) > 0 for x ∈ B and fn,b = 0 for x /∈ B. Such a function is

guaranteed to exist by lemma 6.2 since X −B is closed as the complement of a

basis element, and thus a Gδ set. Observe that the collection {fn, B} separates

points from closed sets in X: Given a point x0 and a neighborhood U of x0,

there is a basis element B such that x0 ∈ B ⊂ U . Then B ∈ Bn for some pos-

itive integer n so we have fn,B(x0) > 0 and fn,B(x) = 0 for x ∈ X−U ⊂ X−B.

Let J denote the subset of Z+ × B consisting of all pairs (n,B) where B is

an element of Bn. Define F : X → [0, 1]J by the equation

F (x) = (fn,b(x))(n,B)∈J

and observe F is an embedding relative to the product topology on [0, 1]J by

the embedding theorem.

Now we show that F is an embedding relative to the uniform topology on

[0, 1]J as well. Clearly, F is still injective. Now recall that the uniform topology

on [0, 1]J is finer than the product topology (see theorem 20.4 in Munkres for

a proof). Then F is open relative to the uniform topology. For any U open in

X, F (U) is open in the product topology since F is an embedding, and thus

F (U) is open in the uniform topology since the uniform topology is finer than

the product topology. We now need to prove that F is continuous.

Note that on the subspace [0, 1]J of RJ , the uniform metric equals the met-

ric ρ(x,y) = sup{|xα − yα| : α ∈ J}. To prove continuity, we take a point

x0 ∈ X and a number ϵ > 0, and find a neighborhood W of x0 such that

x ∈ W =⇒ ρ(F (x), F (x0)) < ϵ

Fix n for the moment. Choose a neighborhood Un of x0 that intersects only

finitely many elements of the collection Bn. This is possible because Bn is locally

finite. Then we have fn,B(Un) = {0} for all but finitely many functions since

only finitely many basis elements intersect Un. For each of these finitely many

remaining functions, because they are continuous, there exists a neighborhood

around x0 where fn,B varies from f(x0) by no more than ϵ/2. Let Vn denote

the intersection of these neighborhoods.

Choose such a neighborhood Vn of x0 for each n ∈ Z+ and choose N suffi-

ciently large so that 1/N ≤ ϵ/2. Define W = V1 ∩ ... ∩ VN . We assert that W
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is the desired neighborhood of x0. Let x ∈ W . Then

n ≤ N =⇒ |fn,B(x)− fn,B(x0)| ≤ ϵ/2

because the function fn,B is either equal to zero on all of W or varies by at most

ϵ/2. Additionally,

n > N =⇒ |fn,B(x)− fn,B(x0)| ≤ 1/n < ϵ/2

because fn,B maps x into [0, 1/n]. Therefore we have

ρ(F (x), F (x0)) ≤ ϵ/2 < ϵ)

as desired so F is continuous. F is injective, open, and continuous, so it can be

embedded in the metric space (RJ , ρ̄). Then X is metrizable.

Step 2. Now we prove the converse. Assume X is metrizable. Then X is

normal by theorem 2.3 and thus regular. Now we need to show that X has a

countably locally finite basis.

Choose a metric for X. Given m let Am denote the covering of X by all

open balls of radius 1/m. By lemma 5.2 there is an open covering Bm of X

refining Am that is countably locally finite. Observe that each element of Bm

has diameter of at most 2/m. Let

B =
⋃

m∈Z+

Bm

which is a countable union of countable sets thus countable. So then B is count-

ably locally finite as well.

Last we show that B is a basis for X. Given x ∈ X and ϵ > 0 we show there is a

basis element B such that x ∈ B ⊂ B(x, ϵ). First choose m sufficiently large so

that 1/m < ϵ/2. Then because Bm covers X we can choose an element B ∈ Bm

that contains x. Since B contains x and has diameter at most 2/m < ϵ, it is

contained in B(x, ϵ) as desired. Since x ∈ X and ϵ > 0 were arbitrary, B is a

basis.
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