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Do not try to remember theorems by the way I’ve numbered them here. I always try to remember a
theorem by what it says, sometimes informally.
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Chapter 1

Introduction to Honors Math

If I am being bold, the goal of the Honors Math sequence is to train you to effectively learn and communicate
mathematical understanding. (We will do this by studying linear algebra and multivariable calculus, and
hopefully get a good sense of those.) But what is mathematical understanding?

I can’t pretend to give an answer that would satisfy every mathematician, but I can identify some
recurring themes:

� Mathematicians like to find commonalities between similar examples and abstract them into a common
statement.

� Mathematicians like to see examples which elucidate abstract statements.

� Mathematicians like to use different types of understanding to grasp at a particular idea or object
(visual, computational, structural...)

� Mathematicians like to find patterns and structure to help them get a feel for how some ideas or objects
‘work’.

� Mathematicians want to see proofs of claims and deductions.

These are all important, and we’ll should see all of them over the next semester and year. The last, the
idea of formal proof, is both math’s bread and butter and its most subtle.

Question 1. What, exactly, is a proof ?
Here are some guesses at a definition.

� A proof is a complete explanation for why something is true, using nothing that we don’t already know.

� A proof is a sequence of logical deductions starting from a collection of axioms we take to be true.

� A proof is an argument that should be sufficiently detailed to convince any reader.

But it’s hard for me to say that any one of these are the correct definition: the notion of ‘complete
explanation’ depends on the reader; the second is transparently not how most math is communicated (we
don’t write math in pure symbols, and often steps are left implicit); the last is too broad (do we really mean
any reader, even one who doesn’t know the relevant terminology?)

I am not going to try to pin down an unambiguously correct definition of proof, which would be a major
achievement in the philosophy of mathematics. While flawed, the above attempts at a definition give a good
sense for what mathematicians mean when they talk about proofs, and a major part of this course is about
learning how to write arguments that mathematicians will agree are ‘complete proofs’.

Question 2. Why do we care about proving things?
Again, you are not going to get the same answer from every mathematician, but let me attempt to give

a few answers.
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� We are not satisfied by an argument that seems mildly convincing. We want to know that statements
are definitely, beyond true, without reasonable doubt.

� A proof helps us communicate mathematical understanding to one another. Its formal nature allows
one mathematician to write something which should be comprehensible to any other mathematician
with sufficient background.

� When carefully writing down a proof, we find errors in our thinking. In correcting these, we enhance
our thinking, and build better mental models of the objects we’re working with.

� We want to know that a theorem is true, but we also want to know why it is true.

The last two bullet points hew closest to my own viewpoint.
If you’re interested in seeing a professional mathematician’s thoughts about the notions of “mathemat-

ics” and “proof”, I strongly recommend Bill Thurston’s On proof and progress in mathematics (link here).
The first five sections are relatively non-technical; in section six he talks a bit about his early-career work
(graduate and onwards) which can get somewhat technical.

Let me now briefly describe the structure of Honors A–B, and explain why it is structured that way.

� The first two weeks of the course will be a crash course in mathematical logic and proof-writing. I do
not expect anyone to have mastered proof-writing by the end of these two weeks; the rest of the course
(or perhaps the rest your mathematics education) is meant to help you get closer to that. But these
will give you the tools you need to start your journey into writing formal arguments.

� In the third week, we will discuss the formal idea of sets and functions. On the one hand, we need
these for everything that’s to come. On the other hand, set theory is also a great place to get practice
with your new formal argument skills.

� For the rest of Honors Math A, we’ll learn about linear algebra. One can easily teach three or four very
different linear algebra courses depending on your focus (say, abstract, geometric, or computational).
We’ll try to take a mix of all three of these, with the abstraction being important for getting comfortable
with proofs. (It’ll give us a playground to start off in.) This should cover roughly comparable material
to UN2010 Linear Algebra.

� In the second semester, we learn multivariable calculus. To my mind, calculus is the study of linear
approximation (though see Thurston’s essay above for some other ideas of what differentiation is all
about). There will be a small amount of ϵ-δ style analysis, but mostly the point of this term is to
understand how the linear algebra we learned in the previous semester allows us to generalize the
ideas and structure you’re comfortable with from single-variable calculus. This contains the content of
UN1205 Accelerated Multivariable Calculus or UN1201-1202 Calc III-IV, but remains proof-based.

Finally, let me make some remarks on collaboration. I think you should absolutely work together; in
my own work I find my thinking better with collaborators, and I find that students who learn with other
students do better with the material overall. I’ll leave some time in class to help find groups of other students
to work with. I’d advise between 2-4 people; too large a group and it’s hard to communicate together much.

I often find that one learns things best when explaining them to others; it forces you to clarify and
articulate your own understanding, and is a rather active learning process. If one of your classmates is
explaining to you how something works, when they finish you should turn it on its head and tell them your
understanding, from start to finish. This puts the shoe on the other foot — now you’re forced to clarify and
articulate your understanding!

Mathematical jargon

In the sections to come, you will see me use a number of words that might mean something different here
than elsewhere in the English language. Let me try to pin down the relevant ones.

https://arxiv.org/abs/math/9404236
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� An axiom is something we take for granted (assume to be true).

� A definition is a new name, together with a description of what properties must hold for an object
to be called by that name. (A sentence like “We say the integer n is even if n � m�m for some other
integer m” is a definition; the clause after ‘if’ says what must be true for n to be called even.)

� A proposition is a claim which follows from a set of axioms, together with a proof that the proposition
is true (meaning, that it follows from those axioms).

� A lemma is like a ‘mini-proposition’: it’s a proposition you prove on the way to establishing some
bigger, more important proposition.

� A theorem is like a ‘mega-proposition’: it’s a proposition which is particularly important and worthy
of note.

� A proof is (something like) an argument which derives the truth of a proposition from the assumed
truth of some axioms, using only those axioms and other facts which we have established follow from
those axioms.

� A remark is an off-hand comment which is not important for the main discussion.

� An exercise is something that I think it would be useful if you did on your own time before moving
on to the next part of the notes.

If you feel I’ve missed some piece of math jargon which doesn’t coincide with more standard English, let
me know and I’ll add it to this list.

Comments on TeX

I wrote these notes in LaTeX, which is the tool almost all professional mathematics is written in. LaTeX
looks like a complicated programming language when you first see it, but it turns out to be relatively simple:
“Write math expressions between dollar signs, like $x^{2n} + 3$, use the online tool ‘DeTeXify’ to find the
codes for symbols I don’t recognize, and google why things are going wrong when they are”. I will introduce
the TeX commands for new symbols as we go.

If you want to learn to write in TeX, I suggest starting by using a sample document on Overleaf, which
is a great place to do TeX until you need a more serious TeX compiler. Play around a bit and see if you can
get a knack for writing in this language. I can also give access to the TeX for my notes if you want to use it
as a point of comparison.

I will give a small amount (up to 5%) of extra credit on homework assignments for writing them in TeX.
This is just meant to incentivize you to try. It will not be a big difference grade-wise if you choose not to,
or find TeX daunting.

Acknowledgements

Thanks to Shashank Choudhary, Peyton Chui, Lisa Faulkner, Jaylene Huang, Vishal Muthuvel, Aiden
Sagerman, Benjamin Silverman, and Jazmyn Wang for finding errors in the course materials.

https://www.overleaf.com/
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Chapter 2

Mathematical logic and formal proofs

In this chapter of the notes, we’ll go over introductory mathematical logic and how to use it to manipulate
mathematical statements (and write proofs). Some additional sources for relevant material (some of it
disjoint from what we cover in these notes) are:

� There is the very, very talkative book “How to prove it” by Daniel Velleman. What we cover in the
first chapter here he covers in about 80 pages. Still, if you find I’m too terse (or would like a more
approachable reference), his book could be useful for you. I do not have a link, but ask me if you want
to know how to find books online.

� Michael Hutchings’ introduction to proofs notes (link here). About 27 pages.

� Michael Thaddeus’ very brief cheat-sheet on mathematical logic (link here) and discussion of good
proof-writing style (link here).

The assignments and the lectures assume that you have read my own notes, but you may find it useful
to go over alternate sources (especially if you don’t like my writing style!); some students find it useful to
reference multiple sources for the same material during a single course. You may not even find my notes
necessary, so long as you read something else that covers the right content.

I will attempt to give alternate sources for the material we cover at the beginning of each chapter.

2.1 Propositional logic

To start everything off, we need to understand the basic language of deductive logic (propositions and logical
operations). This is not the most exciting thing we’re going to do, but it’s essential to have a firm grounding
in mathematical logic to be able to think effectively about what a proof is.

2.1.1 Statements and logical operations

To discuss rules of logical inference, first we need to discuss what those rules are meant to refer to. The basic
object of study is a proposition (or logical statement). I will be vague about what this means. As examples
of things I would call propositions:

Example 1. � P � “The number 9 is the square of an integer”

� Q � “Every injective map between sets is a bijection”

� A � “If a given day is a Monday or it’s raining that day, then I’m going to be miserable that day”

� B � “There exists a smallest positive integer and it is 0”

� C � “October 3rd, 2022 is a Monday”

11
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� D � “If today is a Monday or there is no lasagna, Garfield will be displeased”
♢

To a proposition we can assign a truth value. In standard models of logic, a truth value is always either
true or false. A proposition is one, and only one, of true or false. If one defines the terms above the way I’m
used to, P,C,D are true, while Q,A,B are false (at least, if A is applied to me: I can enjoy a Monday just
fine).

Remark 1. This is rather different from what I meant by ‘proposition’ when I discussed conventions on Page
7. There, I was saying that when you see a bolded, numbered proposition in these notes like “Proposition
14”, it’s a statement we’ve produced a proof of. This is an informal term, more or less what mathematicians
call a theorem that isn’t important enough to be named “theorem”.

This is distinct from the mathematical logic statement of “proposition”, which is just a statement with
a truth-value (not necessarily true, and we have not necessarily written a proof). While this overuse of the
word may be confusing, I am hoping it will be clear from context what is meant. ♢

Some of the statements above could be made out of smaller statements out of certain logical operations.

Definition 1. The following are the three basic logical operations.

a) If P is a statement, the statement “not P” (in symbols:  P ; in TeX, $\neg P$) is a statement which
is true if P is false and false if P is true. For instance, if P is the statement “October 3rd, 2022 is a
Monday”, then  P is the statement “October 3rd, 2022 is not a Monday”. Exactly one of these can
be true. (In this case, P is true and  P is false.)

b) If P and Q are statements, the statement “P or Q” (in symbols: P _Q; in TeX, $P \vee Q$) is true if
at least one of P and Q is true. For instance, let P be the statement “The integer 207 is even” and Q
be the statement “The integer 208 is even”, while R is the statement “The integer 207 is odd”. Then
P is false, Q is true, and R is true. The statement P _ Q reads: “Either 207 is even or 208 is even”
(true, since 208 is indeed even); the statement P _R reads: “Either 207 is even or 207 is odd” (true,
since 207 is odd). The statement Q_R reads “Either 208 is even or 207 is odd” which is true for two
different reasons: yes, 208 is even, and also 207 is odd. In mathematical writing, ‘or’ is the inclusive
or, unless otherwise specified; if P and Q are both true, then P _Q is still true, too.

c) If P and Q are statements, the statement “P and Q” (in symbols: P ^Q; in TeX, $P \wedge Q$) is
true if both P is true and Q is true, and false if either P is false or Q is false. For instance, if P is the
statement “Today is my birthday” and Q is the statement “I’m having a good day”, then P ^Q is the
statement (“Today is my birthday and I’m having a good day”). It can only be true one day per year,
and even then it’s not always true — not only does it have to be my birthday, I have to actually be
having a good one, too. ♢

You can combine these to create more complicated statements. For instance, “Q^ P” can be read as
“Q is true, and  P is true”, or it can be read more simply as “Q is true, and P is false”. This statement
holds whenever both Q is true and P is false, and this statement is false when Q is false or P is true (or
both).

In some sense, these logical operations are enough to describe all possible logical operations you can think
of.

Exercise. Try phrasing the relation of “Exclusive or” in terms of those above, where P xor Q is true
if exactly one of P and Q is true. (I will do this in the next section, so you should try this exercise before
moving on.)

2.1.2 Logical equivalence and truth tables

We say that two statements are logically equivalent if they share the same truth value. (This gets more
interesting when you talk about infinite families of statements, which we will below.)

When we start with a handful of statements — say, just P and Q for now — and we form a new statement
by applying some of our logical operations, the truth value of the resulting statement only depends on the
truth values of the statements we started with, P and Q.
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We can encode the dependence in the following diagram, a truth table. The left two columns indicate
the possible truth values of P and Q (there are four possibilities in total), while the right columns indicate
the truth value of some proposition made up out of P and Q. I include the three basic logical operations
discussed above, as well as a couple of more complicated ones.

Example 2.

P Q  P P _Q P ^Q P xor Q P _ pQ^ P q pP _Qq ^  pP ^Qq
F F T F F F F F
T F F T F T T T
F T T T F T T T
T T F T T F T F

To determine this table, I started with the truth-values on the left side and filled in what I know about
how the statements are defined. For instance, to determine the truth-value of P _pQ^ P q when P is false
and Q is true, I first notice that the statement “P or pQ^ P q is true” when at least one of its constitutient
parts are true; P itself is false, so the only way this could be true is if Q^ P is true. For an ‘and’-statement
to be true, I need both of its parts to be true. Because we started by assuming Q is true and P is false (so
that  P is true), we see that Q^ P is indeed true. So the whole mess, P _ pQ^ P q, is true.

In symbols, this read F _ pT ^  F q � F _ pT ^ T q � F _ T � T . In the first part, I negated false
to be true; in the second, I recognized that the statement “[true statement] and [true statement]” is true
by definition of ‘and’, and in the last, I recognized that “[false statement] or [true statement]” is true by
definition of ‘or’. ♢

In the above example, notice that the truth values in the final column and in the third-to-final column
(xor) are exactly the same. This proves:

Proposition 1. The statements P xor Q and pP _Qq ^ pP ^Qq are logically equivalent (no matter what
statements P and Q are).

In plain English, this states that the two claims “Exactly one of the statements P,Q are true” and “At
least one of P or Q is true, but it is not the case thath both are true” are the same claims, which I hope is
plausible even without the truth table.

2.1.3 Implications and equivalences

There are two more logical operations that are useful to us. We will see soon that they can be reframed in
terms of the operations above, but they play a special role in the structure of mathematical logic itself.

Definition 2. Suppose P and Q are statements. The statements “P ùñ Q” (in TeX, $P \implies Q$),
which should be read as “If P is true, then Q is true” (or ‘if P then Q’), is the statement defined by the
following truth table.

P Q P ùñ Q

F F T
T F F
F T T
T T T

That is, if P is false, then P ùñ Q is true; if P is true and Q is true, then P ùñ Q is true. The only
way for P ùñ Q to be false is if P is true and Q is false. ♢

The truth table is kind of confusing, at least to me. Why should “P ùñ Q” be true even when P is
false? The setup in terms of truth tables kind of hides the way we usually think about implications.

This is partly because a statement like “P ùñ Q” is usually proven before one knows the truth-value
of P itself. It can be used as a tool to say something about Q when you later learn that P is true. For
instance...
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Example 3. Let P be the statement “It is raining today”. This statement is really a bunch of statements,
depending on what day it is (and where the proposition is being spoken). It isn’t true at the time I’m writing
it, but it may be true at the time you’re reading it. I can’t really ascertain the truth value.

Though you couldn’t logically infer it from an earlier example, you might have guessed from above that
I don’t really like the rain. I get grumpy about having to hold an umbrella or walk home wet if I forgot one.
Because one of those must happen if it’s raining, the following statement is simply true:

If [it is raining today], then [I am going to be grumpy today].

This statement takes the form P ùñ Q, where P is as above and Q is “I am going to be grumpy today.”
If I look out the window and it’s raining today (so P is true), then this statement allows me to infer Q (that
I am going to be grumpy about it).

If I look out the window and the sun is shining, then I can’t infer anything at all (unfortunately, it’s
possible to be grumpy on sunny days, too). That doesn’t mean that the statement “P ùñ Q” is false,
since it’s a statement about what would happen if P were true! This statement just becomes boring if P is
false, since then it has no predictive power. ♢

By comparing truth tables, we can see that the statement P ùñ Q can be describes in terms of our
more simple logical operations. I’ll leave verifying this to you as an exercise.

Proposition 2. The statement P ùñ Q is logically equivalent to the statement  P _ Q. That is, the
statement “P ùñ Q” is true exactly when the statement “P is false or Q is true” is true.

Suppose you’re trying to prove a statement of the form “P ùñ Q”. Because this is automatically true
when P is false, this means you get to assume P and try to prove Q, using that piece of information.

Example 4. Let’s actually prove a mathematical statement. If n is an integer (like �1, 0, 1, � � � ), we say n is
even if n � 2m for some other integer m. We say n is odd if n � 2m � 1 for some other integer m. [See
footnote for a side comment which is not relevant to the rest of the discussion; I will occasionally put side
comments in footnotes like this.]1

Let’s prove the statement “If n is even, then n� 1 is odd.”

An implication is automatically true when the hypothesis is false, so we can ignore that possibility. We
may as well assume n is even, meaning that n � 2m for some integer m. Then n� 1 � 2m� 1, so that n� 1
is odd (by definition of odd!)

Now let’s prove the statement “If n is odd, then n� 1 is even.”

Again, when trying to prove an implication, we are allowed to take for granted the ‘if’ part of the
statement. (That’s why we like to prove conditionals! They give us something to work with.) So we may
assume n � 2m� 1 for some integer m.

Then n� 1 � p2m� 1q � 1 � 2m� 2 � 2pm� 1q. Because m is an integer, m� 1 is an integer too. So
by definition, n� 1 � 2k for some integer k — the integer k being m� 1. ♢

There is one more logical operation that is particularly important for mathematicians. It turns out it’s
logically equivalent to something we can cook up out of things we already know, but it’s so important it
deserves its own name and symbol.

Definition 3. We say that P is true if and only if Q is true (written P ðñ Q or $P \iff Q$) for the
statement with the following truth-table:

1At this point, it’s not even clear that an integer has to be exactly one of even or odd. What if it is neither? What if it
is both? You might be able to give me an argument that this is not true using, say, the division algorithm, but that’s not
something we’ve established in this example! If you defined the notion of ‘even’ and ‘odd’ the same way for rational numbers,
every rational number would be both even and odd, since you could just take m � n{2 and m � pn� 1q{2, respectively.
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P Q P ðñ Q

F F T
T F F
F T F
T T T

That is, P ðñ Q is true if P is logically equivalent to Q. ♢

Exercise. Check that the statement P ðñ Q is logically equivalent to the statement pP ùñ
Qq^ pQ ùñ P q, by comparing truth tables. In practice, you’ll see that you usually prove ðñ statements
by proving both statements P ùñ Q and Q ùñ P , one at a time. In plain words, I would say that
P ðñ Q means “P is true precisely when Q is true”, while pP ùñ Qq ^ pQ ùñ P q means in plain
words “If P is true, then Q is true, and if Q is true, then P is true.” Informally, this seems like the same
plain-language statement as the previous.

Remark 2. Why the phrase “if and only if”? Let’s try to understand this in plain language. “If P , then Q”
means that when P is true, Q has to be true as well. This could be rephrased as “P is true only if Q is
true”. That is, if P is true, then Q is forced to be as well. The “only if” suggests that we’ve ruled out a
possibility: if Q were not true, then P couldn’t be.

On the other hand, “P is true if Q is true” is the implication Q ùñ P . (It’s taken the sentence “If Q
is true, then P is true”, and moved that first clause to the end of the sentence.)

So we say “if and only if” to mean both of these implications hold: both P ùñ Q (P only if Q) and
Q ùñ P ) (P if Q).

♢

Let’s prove our first example of an ‘if and only if’ statement.

Proposition 3. An integer n is even if and only if the integer n� 1 is odd.

Proof. We are trying to prove a statement of the form P ðñ Q, which we do by proving that P ùñ Q
and Q ùñ P , one at a time.

We have already proven the implication P ùñ Q, here

rthe integer n is evens ùñ rthe integer n� 1 is odds.
What we need to show is the ‘reverse implication’ (sometimes called the ‘converse’)

rthe integer n� 1 is odds ùñ rthe integer n is evens.
It’s not so hard to do so, by the same technique — but it’s still a new argument. If n � 1 is odd, then

n� 1 � 2m� 1 for some m, so

n � pn� 1q � 1 � p2m� 1q � 1 � 2m,

and thus n is even.2

2.1.4 Standard equivalences

Suppose you wanted to show that the two statements pP _ Qq ^ pP _ pR ^ Sqq and P _ pQ ^ R ^ Sq are
logically equivalent. In principle, you could write out the two truth tables and compare them, but these have
sixteen rows — you’re going to get bored pretty quick. In practice, there are a list of standard equivalences
one can use to show two statements are equivalent (instead of writing out their truth tables).

2One reasonable objection might be: “This is the same as the previous argument. You’re just reversing your steps.” This is
true! But you’re using a non-trivial fact here, that the operations of addition and subtraction can be used to undo one another.
Once you know that, you can turn a proof in one direction into a proof for the other direction. But the directions themselves
remain logically distinct.
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Proposition 4. The following propositions are logically equivalent, as can be seen by comparing their truth
tables:

P _ T � T (2.1)

P _ F � P (2.2)

P ^ T � P (2.3)

P ^ F � F (2.4)

P _Q � Q_ P (2.5)

P ^Q � Q^ P (2.6)

pP _Qq _R � P _ pQ_Rq (2.7)

pP ^Qq ^R � P ^ pQ^Rq (2.8)

  P � P (2.9)

 pP _Rq �  P ^ R (2.10)

 pP ^Rq �  P _ R (2.11)

P _ pQ^Rq � pP _Qq ^ pP _Rq (2.12)

P ^ pQ_Rq � pP ^Qq _ pP ^Rq. (2.13)

These break up into rather distinct-feeling groups.

� The first four describe the behavior of _ and ^: for the first, if one of the statements is true the
‘or’ statement is true, while if one of the statements is false the ‘or’ reduces to the other statement;
similarly for ‘and’ statements.

� The next two assert that it doesn’t matter what order we list statements when we say “or” or “and”.
For instance, “P _ Q being true means “at least one of P or Q is true”, and that’s the same logical
idea as “at least one of Q or P is true”!

� The next two assert when we write strings of “or”s or strings of “and”s, we can do so without paren-
theses: for instance, the meaning of P ^ Q ^ R ^ S is unambiguous (this statement is true precisely
when all of P,Q,R, S is true). Notice that here all the operations are the same: when I talk about the
way the operations _ and ^ interact, we have to be careful about our bracketing.

� The next three talk about the behavior of the negation operation. The tenth and eleventh should be
pretty plausible. For instance, for (6): what does it mean to say ‘P or R’ is false? For ‘P or R’ to be
true, at least one of P,R should be true. If this is false, then neither can be true. So if P _R is false,
then both P and R are false — that is,  pP _Rq is true precisely when p P q ^ p Rq is true.
The ninth is rather special. It is sometimes called the law of the excluded middle. It asserts that a
statement has to be either true or false, and it cannot be both of them. If P is not not true, that is,
if P is not false, then P is true. Propositional logic is not fuzzy: a statement is true, or a statement is
false, and there is no in-between. It is essentially equivalent to the statement that P ^ P is false —
you cannot have both P and  P be true. On the other hand, P _ P is simply true.
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� The last couple are called de Morgan’s laws, or sometimes just distributivity. You should think of them
as somehow analogous to the distributivity laws for addition and multiplication:

p � pq � rq � pp � qq � pp � rq.
Exercise: Check de Morgan’s laws by showing that both sides of the equivalence have the same truth
tables. Then convince yourself, in plain language, that these ‘should’ be true.

Let’s use these to show how you can show some statements are equivalent without just writing truth
tables, using these common logical equivalences.

Example 5. Let’s show
pP _Qq ^ pP _ pR^ Sqq � P _ pQ^R^ Sq.

My first thought is that this expression looks like pP _Qq^pP _R1q, where R1 here is R^S. That expression
shows up in de Morgan’s first law! We know that

pP _Qq ^ pP _R1q � P _ pQ^R1q � P _ pQ^ pR^ Sqq.
Lastly, because Q^ pR^ Sq � pQ^Rq ^ S, it doesn’t matter how I group the ‘and’ terms: I can just write
this as P _ pQ^R^ Sq, as desired. ♢

Here’s a much more intricate example. In this case, the fastest approach would probably be to compare
truth tables — but I want to point out that we could still handle it using the standard equivalences above.
I wanted to show how to use these equivalences in a couple of different ways.

Example 6. Let’s prove that P ðñ Q is logically equivalent to the statement pP ^Qq _ p P ^ Qq. The
final statement says: “This statement is true if P and Q are both true, or if P and Q are both false.” That
should track: to say that P ðñ Q holds means that P,Q have the same logical content (one is true when
the other is, one is false when the other is).

Let’s argue this formally. By definition,

P ðñ Q � pP ùñ Qq ^ pQ ùñ P q � p P _Qq ^ p Q_ P q.
Here all I did was write down that an ðñ means that both implications P ùñ Q and Q ùñ P hold,
while the next step uses the equivalence from Proposition 2 between P ùñ Q and  P _Q.

Now we want to show that

p P _Qq ^ p Q_ P q � pP ^Qq _ p P ^ Qq.
The two sides look pretty different from one another. This is a good place to mention one of my favorite
proof strategies: mess around with the tools I have and see what happens.

On the left side, I know from de Morgan’s law how to “distribute” things across that wedge. Now, I
don’t know yet that this should be a good idea, but I’m going to apply it here and see what happens:

p P _Qq ^ p Q_ P q � rp P _Qq ^  Qs _ rp P _Qq ^ P s.
Here I thought of this statement as R^ pS _ T q, where R � p P _Qq and S �  Q and P � T ; because

R^ pS _ T q � pR^ Sq _ pR^ T q
by de Morgan’s law, that gives the expression above.

This last statement looks more complicated, but promising, because it looks like it can still be simplified
further. Let’s look at one of the pieces, p P _Qq ^  Q. If I apply de Morgan’s laws to that, it gives me

p P _Qq ^  Q �  Q^ p P _Qq � p Q^ P q _ p Q^Qq.
(In the first step I rearranged the terms around the ‘and’ so it looks more like the phrasing of de Morgan’s

law above.) Now this is very promising, because I see that Q^Q term and I know: “FALSE!” This statement
literally means “Q is false and Q is true”, which is simply not possible. I can write  Q^Q � F . Then

p Q^ P q _ p Q^Qq � p Q^ P q _ F �  Q^ P �  P ^ Q.
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The statement “R _ F” is true precisely when at least one of R and F is true. But R is false. So it just
simplifies to “R is true”.

All in all, we’ve simplified

rp P _Qq ^  Qs _ rp P _Qq ^ P s � p P ^ Qq _ rp P _Qq ^ P s.
Now you could argue like I did above to see that

p P _Qq ^ P � P ^ p P _Qq � pP ^ P q _ pP ^Qq � F _ pP ^Qq � P ^Q,
so that our final statement is equivalent to

p P ^ Qq _ rp P _Qq ^ P s � p P ^ Qq _ pP ^Qq � pP ^Qq _ p P ^ Qq,
which is what we wanted to show in the first place. ♢

Truth tables are certainly much more efficient in this argument — but less efficient in the first! It’s worth
having both tools in your toolkit.

2.2 Logical equivalences and proof strategies

In this section we’re going to describe how logical equivalences give rise to different ways of proving things.
(The idea: we take a statement, rewrite it in a logically equivalent but more-accessible form, and then prove
the more accessible form.) In most of these cases the specific kinds of propositions we’re trying to prove are
implications P ùñ Q.

2.2.1 Contrapositives

Take the statement “If it is raining, then I am sad”. The only thing such an implication tells me is that
when it is raining, I necessarily must be sad. We can turn this on its head: “If I am not sad, then it’s not
raining!” If I’m not sad, there’s no possible way it could be raining. We know that if it’s raining, I’m sad.
But I’m not sad, so it must not be raining!

This particular logical equivalence is called the contrapositive. Let’s record it and give a more formal
proof.

Proposition 5 (An implication is the same as its contrapositive). If P and Q are logical statements, the
local statements P ùñ Q and  Q ùñ  P are logically equivalent.

Proof. You can write down the truth tables, if you want (that’s basically what we did in the discussion
above). Here’s a proof in terms of the standard logical equivalences and Proposition 2. We have

r Q ùñ  P s � r p Qq _  P s � rQ_ P s � r P _Qs � rP ùñ Qs.
In the first and last step we used Proposition 2, and in the middle we used that   Q � Q and that the

order of the two parts of an “or” statement doesn’t matter — Proposition 4 (2.9) and (2.5), respectively.

Example 7. Imagine n is an integer. Suppose you want to prove the statement: “If n2 is even, then n is
even.” This is kind of hard. From what’s given, I can say that n2 � 2m for some integer m, and I want to
say n � 2k for some integer k. But why should the square root of 2m be an integer?

This is a statement of the form P ùñ Q. It seems like Q is the stronger of the two statements, and
maybe easier to work with; I want to ‘flip this around’ and work with the contrapositive  Q ùñ  P ,
which is logically equivalent to P ùñ Q. That is, it suffices to prove: “If n is not even, then n2 is not
even.”

This is suddenly a lot easier! Let’s take for granted something you’ll be able to prove after we cover
induction: every integer is either even or odd, but not both. Now.

If n is not even, it must be odd. So n � 2m�1 for some integerm. Then n2 � p2m�1q2 � 4m2�4m�1 �
2p2m2� 2mq� 1. So n2 is odd. Because an integer cannot be both even and odd, we see that n2 is not even
— which is what we wanted to show in our proof of the contrapositive  Q ùñ  P .

Because the contrapositive  Q ùñ  P of the original statement is equivalent to the original statement,
we’re finished! ♢
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Remark 3. The contrapositive  Q ùñ  P should not be confused with the converse Q ùñ P . The
contrapositive is equivalent to P ùñ Q; the converse is a logically different statement.

As an example, take P to be the statement “x is an integer”, and Q be the statement “x2 is an integer”.
The table below shows the three different implications we wrote above.

P ùñ Q an implication If x is an integer, then x2 is an integer
 Q ùñ  P its contrapositive If x2 is not an integer, then x is not an integer.
Q ùñ P its converse If x2 is an integer, then x is also an integer.

The statement in the second row is equivalent to the one in the first row (and is also true). The statement
in the last row is simply false; for instance, x � ?2 is a counterexample.

When you try to prove a statement of the form P ðñ Q, you have to prove both of the (independent)
implications P ùñ Q and Q ùñ P . If you want, using the contrapositive makes this equivalent to proving
both P ùñ Q and  P ùñ  Q. But you’d still have to write two proofs. ♢

2.2.2 Proving with ‘or’ and ‘and’

There are four particular kinds of statements I’d like to look at in this section — two simpler than the others:

pP ^Qq ùñ R P ùñ pQ^Rq pP _Qq ùñ R P ùñ pQ_Rq.

Let’s start with the somewhat simpler ones.

Example 8. Let’s look at a statement of the form P ùñ pQ^Rq — for instance, “If n is the square of an
integer, then n ¥ 0 and n � 2.”

Here, we’re allowed to assume that n � m2 is the square of an integer, and our goals are to prove both
that n ¥ 0 and n � 2. First, observe that either n is negative, zero, or positive; the product of two negative
numbers is positive, as is the product of two positive numbers, and the product of zero with itself is zero.
In any case, we’ve shown that the square of an integer has n ¥ 0.

To see that n � 2, observe that the larger an integer is in absolute value the larger its square is, and
4 � p�2q2 is larger than 2. The only integers which could square to 2 are �1, 0, 1, and those square to 0, 1.
So 2 is not the square of any integer, and in particular n � 2.

Punchline: The statement P ùñ pQ ^ Rq is logically equivalent to pP ùñ Qq ^ pP ùñ Rq. We
used the hypothesis P to prove Q, and then separately we used the hypothesis P to prove R. That’s how
you’ll always prove a statement of the form P ùñ pQ^Rq: proving each of the statements P ùñ Q and
P ùñ R separately.

The story is the same for statements of the form pP _ Qq ùñ R. To say “P or Q implies R” means
you’re allowed to assume one of P or Q is true, and from that conclude that R is true. But you don’t know
which one it is! If you’re going to prove this in general (where maybe P is true but Q is false, or maybe P is
false but Q is true, or maybe they’re both true), you have to prove both that P ùñ R and that Q ùñ R.

For instance, to prove “If n is odd or n is divisible by four, then n cannot be written as 4k � 2 for any
integer k,” I’ll just show the desired claim for both n odd and n divisible by four. If n is odd, then n is not
4k � 2 � 2p2k � 1q because this number is even, and a number can only be one of even or odd. (I promise
you’ll prove this soon!) On the other hand, if n � 4m is divisible by four, then n cannot be 4k � 2: this
would give 4m � 4k � 2 or 4pm� kq � 2, but 2 is not divisible by four.

Punchline. The statement pP_Qq ùñ R is logically equivalent to P ùñ R and Q ùñ R, and you’ll
prove the more complicated statement by proving the two simpler implications P ùñ R and Q ùñ R
separately.

♢

Now let’s look at the two slightly more intricate ways to include “and” and “or” statements in an
implication.
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Example 9. Let’s look at a statement of the form “pP ^Qq ùñ R” — for instance. In principle, this means
that you may assume that P and Q are both true, and do your best to prove R from that information. For
instance, if we wanted to prove “If n is an even integer and n ¡ 0, then n ¥ 2”, we start with the knowledge
that n � 2m and (because we also know n ¡ 0) that m ¡ 0. Because m is an integer, this means m ¥ 1, so
that n � 2m ¥ 2.

There are some statements where this direct approach is not sufficient, and the best approach is to use
a sort of contrapositive. For instance, consider:

“If n is an even integer and n is not divisible by 4, then n is twice an odd integer.”

In this statement, we can take for granted that n � 2m for some integer m, and also that n is not 4k
for any integer k. Because n � 2m, it seems like a reasonable goal to show that m is an odd number. I’m
going to once again take for granted that an integer has to be exactly one of even or odd, so that this is the
same as showing that m is not even.

Where we are is the statement: “Let n � 2m for m an integer. If n is not divisible by 4, then m is not
divisible by 2.” With there being “nots” in front of both terms here, this seems like a good place to apply
the contrapositive.

We still have that n � 2m for m an integer. The contrapositive is the statement “Let n � 2m for m an
integer. If m is divisible by 2, then n is divisible by 4.” Now we have way more leverage. If m is divisible by
2, then m � 2k for some k, so n � 2p2kq � 4k, and we have shown that n is divisible by 4. We’re finished!

Punchline 1. To prove a statement of the form pP ^Qq ùñ R, you assume both P and Q are true,
then do your best to use both of those pieces of information to prove R.

Punchline 2. A variant of the contrapositive holds: any statement pP^Qq ùñ R is logically equivalent
to pP ^  Rq ùñ  Q or pQ ^  Rq ùñ  P . If you know — or take for granted — that P is true, then
this literally is taking the contrapositive.

Here, we passed to the (equivalent) statement “If n is an even integer but n is not twice an odd number,
then n is divisible by 4.” Then n � 2m and m is not odd, so it’s even (m � 2k), and thus n � 4k.

♢

The most interesting, I think, is the following; you really need to use logical equivalences to make any
progress.

Example 10. How do we prove a statement of the form P ùñ pQ_Rq? For instance, let’s try the statement
“If x is a real number, then x   1 or x � y2 is the square of another real number.” (Let me take for granted
that every x ¥ 0 has a square root; I just want to make a point about logic.)

I find this very difficult to do anything with, because I don’t know what I’m trying to prove. I’m
told to prove one thing, or possibly another thing, with no direction about which to choose or why. How do
I prove something indefinite?

One way to think about this would be in terms of case analysis. If x is a real number which has x   1,
then we already know the conclusion holds: we just needed to show that x   1 or that x � y2, and we know
that x   1 is true by assumption.

In the other possible case x ¥ 1, the first statement in the ‘or’ (x   1) is false. If we want to show that
“x   1 or x � y2” is true, we have to show that x � y2 for some y. Because x ¥ 1 ¥ 0, we took this for
granted already: we can take y � ?x.

What we did amounted to the observation that our claim is equivalent to “If x is a real number and
x ¥ 1, then x � y2 is the square of another real number”. That is, P ùñ pQ _ Rq � pP ^  Qq ùñ R.
If we want to prove that some proposition P implies an “or” statement, we can assume that one of the “or”
statements is false and try to prove the other one — because if the first “or” statement was true, we’d
already be finished. ♢

Let’s record the logical equivalences we used above as a proposition.
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Proposition 6. The following statements are logically equivalent.

P ùñ pQ^Rq � pP ùñ Qq ^ pP ùñ Rq. (2.14)

pP _Qq ùñ R � pP ùñ Rq ^ pQ ùñ Rq. (2.15)

P ùñ pQ_Rq � pP ^ Qq ùñ R � pP ^ Rq ùñ Q. (2.16)

pP ^Qq ùñ R � pP ^ Rq ùñ  Q. (2.17)

Exercise: Verify these, either using truth tables or using standard logical equivalences.

2.2.3 Proof by contradiction

Suppose we’re trying to prove the statement P ùñ Q. First you try to write down a direct proof. Playing
with the assumption P , you can’t seem to really make progress; playing with  Q you don’t get anywhere.
But P and  Q seem somehow at odds with one another, and when both of them are true you can see things
you couldn’t from just one.

This situation is handled by the idea of proof by contradiction:

Proposition 7. The statement P ùñ Q is logically equivalent to the statement P ^ Q ùñ F . That is,
if from P and  Q you can derive something preposterous, the statement P ùñ Q is true.

Let’s see this done in a famous example.

Example 11. Let’s prove the statement “If x is a rational number, then x2 � 2.” Neither the hypothesis nor
the conclusion seems to get me far by itself: if x2 � 2, great, but why does that mean x is not rational? And
if x is a rational number p{q, how do I show pp{qq2 is not 2?

If I assume both of them, I can make some progress. Suppose x � p{q is a rational number written in
lowest terms (that is, there is no d ¡ 1 which divides both p and q); every rational number can be written
that way. Towards a contradiction3, we also assume that x2 � 2.

Our goal is to show that this contradicts something from earlier, so that this new hypothesis must be
false and in fact x2 � 2.

Let’s combine these. If x � p{q (where p and q have no common divisor), then x2 � p2{q2; so if x2 � 2,
after cross-multiplying we see that p2 � 2q2. Now, because p2 is even, we must have p divisible by 2 (as
otherwise p2 would be odd). But then p � 2m for some m, and r2ms2 � 2q2, so 4m2 � 2q2, so 2m2 � q2.

Now we see that q2 is even, so that q must be divisible by 2! This contradicts the fact that pp, qq were
chosen to have no common divisor d ¡ 1. Thus our new assumption x2 � 2 must be at fault.

We have given a proof (by contradiction) that if x is rational, we have x2 � 2 (or, as people more often
say, “

?
2 is irrational”). ♢

Remark 4. Usually, a majority of the proofs I see on an upper-level math assignment are proofs by contra-
diction, while a somewhat small minority of proofs in published mathematics are proofs by contradiction.
What’s the difference?

� I understand why students often prefer to write proofs by contradiction. They’re attractive: they give
you two pieces of information to play with (P and also  Q). For a student who’s looking to make
progress in any direction, this is great (and I encourage you to try it!) But oftentimes, the proof that
ends up being produced is something along the lines of “Towards a contraduction, assume P is true and
Q is false. Because [argument that only uses P being true], we can see that Q is true. This contradicts
the assumption that Q is false, so Q must have been true,” so the phrasing in terms of contradiction
obfuscates the real argument you want to make. (Similarly common is really a proof by contrapositive

3This means that I think this assumption will be erroneous (impossible). I introduce it because I think that if I do, I will
eventually be able to prove something false. Call the thing that I assume (but think is false) “P”. If I prove P ùñ F (so
assuming P is true leads me to a contradiction), then this gives a proof of  P . So the conclusion of this argument is going to
be: “Contradiction! We must have x2 � 2.”
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which is just phrased as a contradiction.) For instance, if you prove P ùñ R and  Q ùñ  R and
say “Then assuming P true and Q false gives a contradiction, because R and  R would both be true!”
you’ve used a superfluous contradiction; because you proved  Q ùñ  R, you also proved R ùñ Q.
Combining this with P ùñ R you see that P ùñ Q.

� Mathematicians usually want to phrase their arguments so that each individual step is a Lemma they
can now use elsewhere later. In a proof by contradiction, you start by assuming something erroneous
— if you start by assuming P ^  Q, which turns out to be false. If on the way to deriving your
contradiction, you prove something like R, you can’t use that outside the proof you’re writing.
Maybe your proof of R used your erroneous hypotheses! On the other hand, if you were trying to show
P ùñ Q directly by assuming P and attempting to prove Q, and on the way you establish R — then
you’ve given a correct proof of P ùñ R which you can use later in other contexts.

Mathematicians tend to prefer writing direct proofs, deriving contradictions as little as possible; it is
often cleaner and more clear to simply say how to go from A to B, and you don’t have to throw away
your intermediate work when you’re done. I like Joel David Hamkin’s answer (link here) about this.

In practice, mathematicians may find a proof by starting a proof by contradiction, and then rewrite it
into a more clear direct proof.

Interestingly, there are some theorems (for instance, the intermediate value theorem) which simply cannot
be proved without applying proof by contradiction. Mathematicians have formalized this by developing a
version of logic (called “constructive logic” among other names) for which   P is not equivalent to P ;
knowing that P is not false does not tell you that P is true, so a proof by contradiction (which establishes
that P is not false) doesn’t get you where you want to go. In constructive logic, the intermediate value
theorem is false! ♢

2.3 Quantifiers and induction

In many cases above, the statements I talked about were not really a single statement, but rather a family
of statements depending on some parameter. For instance, the statement “n is even” refers to an integer n;
I might refer to the family of statements P pnq, where for each integer n we have the statement “n is even”.
So P p0q is true (0 is even), but P p1q is false (1 is not even), while P p2q is true, and so on.

Given a family of statements, there are two important ways of constructing statements that refer to the
whole family :

� If we have a family of statements P pxq, we can say “For all x, P pxq is true.” This asks that the
statement P pxq is always true.

� If we have a family of statements P pxq, we can also say “For at least one x, P pxq is true.” This asks
that the claim is sometimes true, that there’s at least one example of an isntance when the claim is
true.’

These are so important they get their own notation.

Definition 4. Suppose we have a family of statements P pxq which depend on some parameter x. The
statement “@xP pxq (in TeX, $\forall x P(x)$; in plain language, “for all x, P pxq”) is the statement which
is true precisely when all of the statements P pxq are true.

The statement “DxP pxq (in TeX, $\exists x P(x)$; in plain language, “There exists an x such that
P pxq” is the statement which is true precisely when at least one of the statements P pxq are true. ♢

I implicitly used these many times in the examples earlier in the notes. For instance, the statement
P pnq � “n is even” means “there exists some integer m so that n � 2m”. If Qpn,mq is the statement
n � 2m (where n and m are understood to be integers), then the statement P pnq is

P pnq � DmQpn,mq.

https://math.stackexchange.com/a/1688
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(Make sure you understand this!)

The symbols @ and D are called quantifiers. They quantify over some ‘set’ of propositions (more on sets
next week). Sometimes when we want to specify more clearly exactly what exactly they quantify over, we
write something like @xPZ. The expression “x P Z” should be read as “x is in Z”, or better “x is an integer”.
The symbol Z (TeX: $\mathbb Z$, plain language: “the integers”, from German ‘zahlen’) refers to the set
of integers, while P (TeX: $\in$, plain language: “is in”) denotes membership — it says that x is a member
of the integers (that is, it is an integer).

Above I defined a statement Qpn,mq for integers n and m (the statement being n � 2m). Notice that
this statement makes sense more generally — for instance, it makes sense for n and m in the real numbers
(denoted R, TeX $\mathbb R$) or the rationals (denoted Q, TeX $\mathbb Q$). I will write PRpxq for the
statement “There exists a real number y so that x � 2y” — or in other words,

PRpxq � DyPRQpx, yq.

Now this statement is always true: given any real number x, we can take y � x{2, which always gives an-
other real number. (I wrote this in TeX as $P_{\mathbb R}(x) = \exists_{y \in \mathbb R} Q(x,y)$\.)

Thus @xPZPZpxq � @xPZDyPZQpx, yq is false (for instance, PZp1q is false — 1 is not even) and

@xPRPRpxq � @xPRDyPRQpx, yq

is true. The domain we quantify over matters, and can change whether statements are true or not.

Remark 5. In practice, when proving a statement such as @xP pxq, you do so by showing that the statement
is true for some arbitrarily chosen x (which you use no special information about, so that your argument
applies to any x whatosever). When the index set is the natural numbers (N), we will discuss a particular
proof strategy at the end of the day that helps you prove statements like @nPNP pnq indexed on the natural
numbers N � t0, 1, 2, � � � u. ♢

2.3.1 Nested quantifiers

In the discussion above you saw your first example of nested quantifiers, statements which use one or more
quantifiers of different types. These appear relatively often in math (the definition of continuity is a triply
nested quantifier), so it’s worth saying one or two things to be clear about them.

The statement @xDyQpx, yq means “For all x, you can find a y (which maybe depends on x!) so that
Qpx, yq is true.” For instance, if Qpx, yq is the statement y � x � 1, then @xDyQpx, yq is true: for each x, I
can find a y so that y � x � 1 (take y � x � 1). Notice that the y I found depended on what x was, but
that doesn’t matter — the point is that for any fixed x, I can find some y for which the statement is true
for that particular x.

If I reverse the order of these quantifiers, I get something differnt. The statement Dy@xQpx, yq means
“There exists some y so that, for this particular y and all x, the statement Qpx, yq is true.” This is very,
very different from the previous statement. For example... If Qpx, yq is the statement y � x � 1, then
“Dy@xQpx, yq reads: “There is some special number y so that for all numbers x, we have y � x � 1”. But
this is not true! It doesn’t matter what y is, there’s always some number x for which y � x is not one. For
instance, Qpy, yq is always false (since y � y � 0 � 1), no matter what y is.

For an example of a true statement of the form Dx@yRpx, yq, take Rpx, yq to be “xy � 0”. Then
Dx@yQpx, yq means “There exists some number x so that xy � 0 is always true, no matter what number y
is.” And this is true: x � 0 is such a number (because 0y � 0 is always true, no matter whath y is). Notice
that in this case @yDxRpx, yq is also true, and seems easier to prove. This says that for all numbers y, we
can find some number x (which maybe depends on y) so that xy � 0. But we already know how to find one,
and our choice doesn’t depend on y: we can just take x � 0.

This is a general phenomenon.
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Proposition 8 (D@ is stronger than @D). For any family of statements Qpx, yq, the statement

Dx@yQpx, yq ùñ @yDxQpx, yq

is true.

Proof. We’re trying to prove an implication. We’re allowed to assume the hypothesis is true, and our goal is
to prove the conclusion. If Dx@yQpx, yq is true, this means that there is some special x � x0 so that Qpx0, yq
is always true, no matter what y is.

The statement @yDxQpx, yq means that for every y, there is some x which maybe depends on y (which
we often denote by x � xpyq, to explain that it might depend on y) so that Qpx, yq is true. But we know
this, because Qpx0, yq is true for all y; we can take xpyq � x0.

Punchline: The order of these quantifiers matters!

Remark 6. We don’t consider @x@yP px, yq or DxDyP px, yq to be nested quantifiers, because these can be
rephrased as a single quantifier (over a different indexing set). For instance, “DxPZDyPZrx2�xy� y2�x � 1s
says “There exists an integer x, so that there exists a y, so that x2 � xy� y2 � x � 1 is true.” But we could
just rephrase this to: “There exists a pair of integers px, yq so that x2 � xy � y2 � x � 1 is true.” That
is, this is the same as Dpx,yqPZ2rx2 � xy � y2 � x � 1s, which is an existential quantifier indexed on pairs of
integers. ♢

2.3.2 Quantifiers and logical operations

Before moving on, I want to discuss how quantifiers interact with the standard logical operations. The most
important interaction is with negation.

Suppose you wanted to prove a claim like @xP pxq to be false (for instance, suppose the statement is “For
all integers n, we have n2 odd”). The only way this statement can be true is if P pxq is true for every single
x; so if we want to show that it’s false, we just need to establish that P pxq is false for some particular x. For
instance, @nrn2 is odds is false, because 22 � 4 is not odd (so P p2q fails).

What I’m asserting here is that there is a logical equivalence between  @xP pxq (“it is not true that P pxq
holds for all x”) and Dx P pxq “there exists an x for which P pxq is false”). This is mostly important when
thinking about how to prove a “for-all” type statement false. You’re going to provide a counterexample:
an x for which P pxq is false, together with a proof that P pxq is false.

On the other hand, how would you prove a claim like DxP pxq to be false (“there does not exists an x
for which P pxq’ is true”)? If there does not exist an x for which P pxq is true, then P pxq must be false for
every single x! Counter to the above, we’ve now established that  DxP pxq � @x P pxq; to show that an
“existence” statement is false, you must show that there is no such object.

For instance, take “There exists an integer n so that n is even and n is odd”. To show that this is false
amounts to showing “For any integer n, it is not the case that n is both even and odd”. This (to me) sounds
amenable to proof by contradiction: let’s suppose n � 2m and n � 2k� 1 and see if this results in nonsense.
If this is the case, then 2m � n � 2k � 1, so 2pm� kq � 1. Because m and k are both integers, so is m� k,
so this would imply that 1 is even; but that’s not true. Contradiction!

We have established that for all natural numbers, n is not both even and odd. Equivalently, there does
not exist a natural number n which is both even and odd.

To talk about the interactions with the and/or operations, I want to suggest two heuristics for under-
standing quantifiers.

Heuristic 1: “@xP pxq” is a really big “and” operation, where the “and” runs over every single parameter
x. (If there are four parameters 1, 2, 3, 4, then it would say: “P p1q and P p2q and P p3q and P p4q.” With
infinitely many parameters, it might be understood as “P p1q and P p2q and P p3q and ...”

Heuristic 2: DxP pxq is a really big “or” operation, where the “or” runs over every single parameter x.
If the parameter x is only 1, 2, 3, I understand this as “P p1q or P p2q or P p3q.”



2.3. QUANTIFIERS AND INDUCTION 25

These heuristics already explain the discussion above:  D � @ is related to the equivalence  pP _Qq �
p P q ^ p Qq, while  @ � D corresponds to the equivalence  pP ^Qq � p P q _ p Qq.

Let me remind you from Proposition 4 that it doesn’t matter what order you do a sequence of “ands” in,
and it doesn’t matter how you bracket them. From this perspective, if I have two families of statements P pxq
and Qpxq, and I want to prove @xrP pxq^Qpxqs, I recognize: “This means I’m trying to prove P pxq and Qpxq
both, for every x.” By moving the “ands” around, this statement is equivalent to showing @xP pxq^@xQpxq.

On the other hand, if I want to prove DxrP pxq _ Qpxqs, this says: “Find an example of an x for which
P pxq is true or Qpxq is true.” Any x is fine, and either statement is fine! Shuffling around the “or”s, this is
equivalent to

DxrP pxq _Qpxqs � rDxP pxqs _ rDxQpxqs.
Let me record the results of this discussion as a proposition below.

Proposition 9. We have the logical equivalences

 DxP pxq � @x P pxq (2.18)

 @xP pxq � Dx P pxq (2.19)

@xrP pxq ^Qpxqs � r@xP pxqs ^ r@xQpxqs (2.20)

DxrP pxq _Qpxqs � rDxP pxqs _ rDxQpxqs. (2.21)

2.3.3 Mathematical induction

Let’s finally talk about what we need to do to prove the statement “For all natural numbers n, either n
is even or odd, but not both”. More briefly, write Epnq for the statement “n is even” and Opnq for the
statement “n is odd”. We’re asserting @nrEpnq xor Opnqs, where xor is the exclusive or. (And hidden in
“Epnq” and “Opnq” are the existential quantifiers Dmrn � 2ms and “Dmrn � 2m� 1s”).

As I mentioned before, I don’t know how to do this with anything we’ve mentioned so far: maybe there’s
some really large and complicated integer which is nowhere close to an even integer, much less one away
from it. This seems wrong, because I know that when I add 1 to an even number it becomes odd and vice
versa, but that doesn’t get me to “for all n, an integer is exactly one of even or odd”, it only tells me how to
go from that statement for n to the corresponding statement for n � 1, and that’s not quite a proof of the
claim!

What we need to bridge the gap is precisely the principle of induction:

Theorem 10 (Principle of mathematical induction). If P pnq is a family of statements indexed by the natural
numbers n � 0, 1, 2, � � � , and both

(Base case) P p0q is true,

(Inductive step) for all natural numbers n, the statement [P pnq ùñ P pn� 1q] is true,

Then the statement P pnq is true for all natural numbers n. That is, the following implication always
holds: �

P p0q ^ r@nrP pnq ùñ P pn� 1qss� ùñ @nP pnq.
If I know both the statement P p0q and “@nrP pnq ùñ P pn� 1qs”, here’s how I’d try to prove @nP pnq:
We know P p0q is true, and we know P p0q ùñ P p1q, so P p1q is also true; we also know P p1q ùñ P p2q

is P p2q is also true; we also know that P p2q ùñ P p3q is P p3q is also true...
As a person writing a proof, I can only do this finitely many times. (Up above, I explained why P p0q

through P p3q are true). The principle of mathematical induction asserts that I can “just keep going” in this
argument: that I can jump one step at a time from 0 up through any natural number n. While (to me)
this is intuitive, it is not automatic: this is an axiom of the natural numbers. (If you’re interested more in
the axiomatization of the natural numbers, look into “Peano arithmetic”; the inductive axiom is the most
complicated axiom needed.)

Let me try to show how this works by using it in practice.
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Theorem 11 (Naturals are even or odd). If n is a natural number, then n is exactly one of even (a multiple
of 2) or odd (one above a multiple of 2).

Proof. As discussed above, let P pnq be the estatement Epnq xor Opnq, which is true when the natural number
n is exactly one of even or odd. To

(Base case) We need to show that P p0q is true: that is, that 0 is exactly one of even or odd. We know 0 is even,
as 0 � 2p0q. We also know that 0 is not odd, as 0 � 2m� 1 would imply �1 � 2m; but �1 cannot be
divisible by 2, as m would have to be between �1 and 0, and there is no integer between �1 and 0.
Because 0 is even but not odd, P p0q is true.

(Inductive step) We need to show that for any natural number n, the statement P pnq ùñ P pn� 1q is true; that is, if
we know that the integer n is exactly one of even or odd, then P pn� 1q is also exactly one of even or
odd.

The trick here is that we proved the equivalence Epnq � Opn� 1q in Proposition 3, and the argument
that Opnq � Epn� 1q is similar. Thus

P pn� 1q � Epn� 1q xor Opn� 1q � Opnq xor Epnq � Epnq xor Opnq � P pnq.

Thus the statement P pnq is equivalent to the statement P pn�1q, and in particular, P pnq ùñ P pn�1q
for all n.

We know that P p0q is true, and we know that @nrP pnq ùñ P pn � 1qs is true. By the principle of
induction, this shows that P pnq is true for all natural numbers n, which is what we wanted to show.

Example 12. Consider the statement P pnq which asserts the handy formula

ņ

i�0

i � 0� 1� 2� � � � � n � npn� 1q
2

holds. You can check by hand that this is true for n � 0, 1, 2, 3, . . . , at which point you might guess that it’s
true for all n. This is a perfectly reasonable place to try to prove @nP pnq by induction (that is, the formula
above is always true, for any natural number n).

You’ve already verified this statement for n equal to the first few integers; in particular, you’ve already
verified P p0q — so the base casae is finished. What you need to show is that P pnq ùñ P pn� 1q.

Now (as with any time we prove an implication) we may assume P pnq is true, so that
°n
i�0 i � npn�1q{2;

your goal is to show that
n�1̧

i�0

i � pn� 1qpn� 2q{2.

Now, using what we know, we have
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� pn� 1q � npn� 1q � 2pn� 1q
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2
,

so that P pn � 1q is true. Thus we’ve established P pnq ùñ P pn � 1q for all natural numbers n, and the
principle of induction tells us that P pnq is simply true for all n.

This proves our desired formula @nP pnq by induction. But that doesn’t mean it’s the only way we could
have proven that formula; we could also have just directly established P pnq for each integer n without relying
on knowledge about P pn� 1q. (If you want to try, here’s a hint: try adding terms in pairs, grouping 0 and
n as well as 1 and n� 1, and so on...) ♢

Remark 7. In the argument above, it would have made the calculations look a little bit nicer to prove
P pn� 1q ùñ P pnq for all natural numbers n ¥ 1. This is equivalent to proving P pnq ùñ P pn� 1q for all
natural numbers n ¥ 0, so it would have been fine to do so instead. ♢
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Remark 8. When arguing by induction, always be sure you’ve proved the base case as well as the inductive
step, otherwise you haven’t completed a proof! If all you know is @nrP pnq ùñ P pn � 1qs, then this tells
you that if one P pnq is true then all P pmq’s after it will also be true, but it doesn’t tell you anything be-
fore that one, and it doesn’t even tell you that any one of them are true (it could be that P pnq is always false!)

As a concrete example, take P pnq to be the statement “For every natural number n, the number 2n� 1
is even.” (Preposterous: this is false for every integer n.)

The statement @nrP pnq ùñ P pn�1qs is true, and you wouldn’t see any issue with an inductive approach!
If 2n� 1 really was even, so 2n� 1 � 2m, then 2pn� 1q � 1 � 2n� 3 � p2n� 1q � 2 � 2m� 2 � 2pm� 1q,
and thus 2pn� 1q � 1 would be even as well.

But P p0q is false, as it asserts that 1 is even, and it certainly is not. In fact P pnq is false for all n. ♢
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Chapter 3

Sets and functions

In this part, we investigate the foundational notion in mathematics: sets and functions between them. There
are two essentially different ways to talk about

� Naive set theory specifies a few reasonable axioms for the idea of ‘set’, quickly derives a list of basic
facts about these axioms (and the notion of set), and uses these facts to formulate and do other
mathematics. If the mathematics we want to do requires another axiom, we’re fine with adding it
without too much philosophical fuss, and we don’t spend too much time thinking about whether our
axioms are consistent with one another.

� Axiomatic set theory gives a complete list of axioms for set theory, and all reasoning is done with those
axioms. The axioms are themselves objects of study, as are the resulting notions of set theory (which
will depend on your precise axioms).

The latter is a major and active area of research in mathematical logic (the most common axiomatization
is called ZFC, or “Zermelo-Fraenkel set theory with the axiom of choice”). However, most mathematicians
think of sets along the lines of naive set theory: sets give a useful language to make mathematical state-
ments precise, but we mostly don’t worry about the technical details of the axiomatic framework. Most
mathematicians, myself included, could not tell you the precise list of axioms in ZFC without looking them
up.

We will go through a brief discussion of naive set theory, sufficient to do what the math we want to do
for the rest of the course (and no more). If you’re interested in axiomatic set theory, it’s really neat stuff!
But it’s not in the purview of this course.

For the purposes of this course, it will suffice to know the material in Sections 1-9 of Halmos’ book “Naive
set theory”. At some point in your studies, you should probably learn the rest of what’s in that book (which
primarily relates to some of the complications you can see with infinite sets). This is roughly what I will be
covering in these notes, albeit in a more abridged fashion than Halmos.

Another good reference is the first chapter of Munkres’ textbook “Topology” (Sections 1.1, 1.2, and 1.6
suffice for the purposes of this course, but it’s a well-written chapter in general).

If you find the exposition here insufficient (or if you have the time to spare), I encourage you to look at
one of those references as well. I’m going to be very brief!

3.1 Sets and operations

A ‘set’, informally, is simply a collection of things. We make essentially no constraint on what those “things”
could be: maybe they’re numbers, maybe functions, maybe sets themselves. To quote Halmos, “A pack of
wolves, a bunch of grapes, or a flock of pigeons are all examples of sets of things.” So as to be a foundation
for many different areas of mathematics, it is useful to allow sets to be comprised of many different kinds of
objects; we don’t specify what, exactly, a set has to be comprised of.

29
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What is important is that a set is comprised of things, its elements (a particular wolf, a particular grape,
a particular pigeon), and that we say two sets are the same if they have the same elements. This is our first
axiom.

Axiom 1 (Sets are specified by their elements). Sets are comprised of their members, or “elements”. We
write x P S to denote that x is an element of the set S (TeX: $x \in S$). Two sets are equal if they have
precisely the same elements. Symbolically,

S � T ðñ @xrx P S ðñ x P T s.

As an example, consider the sets

S � ta red fox, 2, 7u, T � t2, 7u, R � ta red fox, 3u.

The notation tlistu is intended to denote “The set which consists of the elements enumerated in the
braces”. For instance, T is the set which consists of two elements, the numbers 2 and 7. (In TeX,
$T = \{2, 7\}$.)

Here, the sets S, T,R are all different, because between each pair, one of them has an element the other
does not. For instance, S is different from T because S contains a red fox as an element and T does not
(so they do not contain the same elements). Curiously, U �  t2, 7u( is different from T . While T is the
set with two elements, the numbers 2 and 7, instead U is a set with one element: the set t2, 7u. Sets can
themselves be elements in other sets, and this is an important feature (not a bug).

It should be mentioned that there is no such thing as some elements appearing more than once in a set.
Something is either in the set or it is not. If someone told you that S � t0, 1, 1u, they are describing the set
which consists of 0 and 1 (for some reason they mentioned 1 twice, but that’s not relevant; they told you
that 0 is an element and 1 is an element, and there aren’t any other elements). We have t0, 1, 1u � t0, 1u,
because both are ways of describing “the set which contains the numbers 0 and 1 and nothing else”; they
have the same elements, and Axiom 1 tells us that this means they are the same set. (This confusion usually
doesn’t arise, because we rarely go out of our way to repeat elements when defining a set.)

In the previous section, we thought a lot about the natural numbers. If sets are going to be a foundation
for mathematics, we should at least assume that there is a set which encodes the natural numbers. That
will be our second axiom.

Axiom 2 (The natural numbers form a set). There is a set N of natural numbers, whose elements are
t0, 1, 2, � � � u.

Very frequently we want to specify “subsets” (for instance, now that we have the natural numbers, how
about the even natural numbers or the square natural numbers?). This is our third, very important, axiom.

Axiom 3 (We can define subsets with formulas). Suppose X is a set and that for all x P X we are given a
proposition P pxq. Then

S � tx P X | P pxq is trueu,
the set of x so that x P X and also P pxq is true, is also a set.

The notation S � tx P X | property of xu is called ‘set-builder notation’. The beginning of the string
(before the bar, written $\mid$ in TeX) gives a name to a generic element of your set, and states what larger
set it comes from; the portion after the bar tells us what conditions the elements of X must satisfy to be in
S.

Example 13. Here are some statements defined for natural numbers n:

Epnq � rDmPNrn � 2mss, Spnq � rDmPNrn � m2ss, P pnq � rn is primes.

In plain language, Epnq is true when n is even, and Spnq is true when n is a perfect square. (I didn’t
want to formalize P pnq, but see 2(a) on Homework 1.)
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Then Axiom 3 tells us that each of

E � tn P N | Epnq is trueu � tn P N | n is evenu � t0, 2, 4, 6, � � � u
and

S � tn P N | n is a perfect squareu � t1, 4, 9, � � � u, P � tn P N | n is primeu � t2, 3, 5, 7, � � � u
are all sets. So is

tn P N | Epnq ^ P pnq is trueu � t2u,
the set of even primes, as well as

tn P N | Epnq _ P pnq is trueu � t0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, � � � u,
the set of natural numbers which are either even or prime ♢

Example 14. This axiom forces us to accept the existence of a set denoted ∅ which contains no elements
whatsoever, called the ‘empty set’. This is a subset of any set X, defined by the proposition P pxq � False;
because P pxq is never true, tx P X | P pxq is trueu is precisely this so-called empty set.

♢

This construction always produces sets which are in a sense ‘smaller’ (or at least ‘no bigger than’) the
original set: all the elements in the new set were already in the old set. This is an important property which
deserves its own name and notation.

Definition 5. If all elements of S are also elements of a larger set X, we say S is a subset of X and write
S � X (TeX: $S \subset X$). If we want to emphasize that it’s possible that S could equal X, we write
S � X (TeX: \subseteq; this is synonymous with �. The only difference is emphasis). If X is strictly larger,
meaning that there exists some x P X which is not in S (x R S), we write S � X (TeX: $S \subsetneq X$).

Symbolically,
S � X is the formal statement @srs P S ùñ s P Xs,

while
S � X is the formal statement @srs P S ùñ s P Xs ^ rDxPX rx P Sss.

♢

This notion is often useful. Notice that S � X can be written as “rS � Xs ^  rX � Ss” (the set S is
contained in X, but X is not contained in S).

In fact, it’s the primary logical basis we use for proving that two sets are equal.

Proposition 12 (To prove two sets are equal, you show each is contained in the other). Given two sets S
and T , we have S � T if and only if each of S and T is contained in the other (that is, S � T and T � S).
Symbolically,

S � T ðñ rS � T s ^ rT � Ss.
Proof. Explicitly, remember that S � T means “The elements of S are precisely the same as the elements
of T”; that is,

@xrx P S ðñ x P T s.
If we remember that P ðñ Q is the same statement as rP ùñ Qs ^ rQ ùñ P s (and that’s how we
prove iff statements, anyway — we prove each implication separately), we can rewrite S � T as

@x
�rx P S ùñ x P T s^rx P T ùñ x P Ss� � �@xrx P S ùñ x P T s^@xrx P T ùñ x P Ss� � rS � T s^rT � Ss.

That is, to show “the elements of S are precisely the same as the elements of T” is the same as showing two
statements: that every element of S is contained in T , and every element of T is also contained in S.

We will come back to this proposition a lot. Showing that two sets are equal by showing that each is
contained in the other is called a double containment argument. Virtually every proof you write that two
sets are equal will be a double containment argument.
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Remark 9. There is a useful guiding principle which appears in both the proposition above and elsewhere
thusfar: when you’re trying to show an equivalence (or an equality), it is often helpful to break that into
two statements.

If I want to prove P ðñ Q, I prove both P ùñ Q and Q ùñ P , because each of those implications
gives me somewhere to start (assume that P is true, or assume that Q is true); I have something to work
with. Similarly, if I want to show that two sets S, T coincide, I show this in two steps: first I show that
every x P S is also in T , and then I show that every x P T is also in S. Each of these hypotheses gives me
something to work with (if x P S, I can look at the definition of S and try to argue from that that x is also
in T , and vice versa).

Oftentimes, the arguments you want to make to go from S to T will not be the same arguments you use
to go from T to S! ♢

3.1.1 New sets from old

We will need a total of four constructions of new sets out of old ones: products, power sets, unions, and
intersections.

Remark 10. There are more constructions one can define, and not all of them can be defined in terms of
what I write below; the most crucial constructions not discussed below are infinite products, unions, and
intersections. One further construction which we won’t cover is the idea of ‘quotient sets’. These will appear
in your studies when they have to, and it’s not worth learning them until you have a good reason to. ♢

The first kind of set we need to guarantee exists is the Cartesian product. You have already seen this
used elsewhere, just implicitly.

Axiom 4 (Products exist). Given two sets X and Y , there is a set called the ‘Cartesian product’ X � Y
(TeX: $X \times Y$), whose elements are ordered pairs tpx, yq | x P X, y P Y u.

For instance, the set Z�Z � Z2 is the set whose elements are pairs pn,mq, where each n,m is an integer;
the set R � R � R2 is the set of pairs px, yq where each of x, y is a real number. You can iterate this
construction: the set

R�Q� Z � tpx, y, zq | x P R, y P Q, z P Zu
is the set of triples px, y, zq, where the first component is a real number, the second component is a rational
number, and the final component is an integer. Linear algebra is, to some extent, about the study of vectors
in Rn (whose elements are strings of n real numbers, or ‘n-tuples’ of real numbers: think triples, quadruples,
etc).

You have certainly thought about elements of the next set before (we defined them in Definition 5!),
but you have probably not thought about it as a set in its own right.

Axiom 5 (There is a set of all subsets of X). Given any set X, there is a set called PpXq (the power set
of X, in TeX $\mathcal P(X)$) whose elements are the subsets S � X.

Example 15. If X � t0, 1u is a 2-element set, then

PpXq �  
∅, t0u, t1u, t0, 1u(

is a four-element set, consisting of: the empty set; the two one-element subsets of X; the single two-element
subset of X. If X � t0, 1, 2u, then PpXq has eight elements

PpXq �  
∅, t0u, t1u, t2u, t0, 1u, t0, 2u, t1, 2u, t1, 2, 3u(.

There are too many elements of PpNq to list them out (this is a theorem, proved using what is called
Cantor’s diagonalization argument). Some famous ones you know: the set of even naturals is an element of
PpNq; the set of odd naturals is an element of PpNq; the set of primes is an element of PpNq.

For a more arcane example, the set S of naturals which appear somewhere in the decimal expansion of π
— which includes, for instance, all of 1, 3, 4, 5, 314, 159, 926 — is an element of PpNq (though it would be a
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shocking advance if you could describe this set explicitly; it is probably all of N, but I do not expect someone
to prove this in my lifetime).

In general, the set PpXq is always much larger than the set X, in a sense we will not make precise. ♢

The power set is a very important construction, because in many cases we will understand mathematical
objects in terms of certain kinds of simpler subsets (elements of the power set). It is used in virtually every
construction of important sets, and you will see it used in the second homework to formally define a set of
functions using these axioms.

Definition 6. Let U, V � X be a pair of subsets of a larger set X. We define three more subsets of X as
follows:

� The complement U c (sometimes written XzU) is the set of points x P X which are not in U . That
is,

x P U c ðñ x P X and x R U.

� The union U Y V is the set of points x which are in either U or V . That is,

x P U Y V ðñ rx P U s _ rx P V s.

� The intersection U X V is the set of points x which are in both U and V . That is,

x P U X V ðñ rx P U s ^ rx P V s. ♢

I’m going to list out a handful of facts about these operations. I’m only going to prove one of them,
so that you can see how one would write a proof about these things. But here is a list of facts which can
generate any other fact about these operations.

Proposition 13. Let X be a set. For any subsets U, V,W of X, the following sets are equal:

U YX � X (3.1)

U Y∅ � U (3.2)

U XX � U (3.3)

U X∅ � ∅ (3.4)

U Y V � V Y U (3.5)

U X V � V X U (3.6)

pU Y V q YW � U Y pV YW q (3.7)

pU X V q XW � U X pV XW q (3.8)

pU cqc � U (3.9)

pU Y V qc � U c X V c (3.10)

pU X V qc � U c Y V c (3.11)

U Y pV XW q � pU Y V q X pU YW q (3.12)

U X pV YW q � pU X V q Y pU XW q. (3.13)

Does this resemble anything you’ve seen before? Can you give a reasonable guess as to why?

Proof of (3.10). Recall from Axiom 1 that to tell whether two sets are equal, we need to check that they
have the same elements. That means that I need to show two things. First, I need to show that every
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element of pU Y V qc is contained in U c X V c; secondly, I need to show that every element of U c X V c is
contained in pU Y V qc. This will establish a ‘double containment’

pU Y V qc � U c X V c � pU Y V qc,

which shows that these two sets are equal: any element in one is in the other, so they have precisely the
same elements. This is, more or less, always how you will reason to show that two sets are equal.

So first, what does it mean to talk about “an element x P pU YV qc”? Because this lies in a complement,
this means x R pU Y V q. Then we remember what it means to be in a union. If y P U Y V , we have1 either
y P U or y P V . If x is not in U Y V , then this is false — so x R U and x R V . This means precisely that
x P U c and x P V c; because x lies in both of these, we have x P U c X V c. This shows the first containment.

For the other containment, we start with x P U cXV c. This means x P U c and x P V c, or in other words,
x R U and x R V . Because x is not in U and it is not in V , it cannot sit in the union U Y V (which consists
of points lying in at least one of U, V ). Therefore x R U Y V , so that x P pU Y V qc. This shows the second
containment, and we are finished.

Remark 11. It’s certainly possible to write the proof above in a more concise manner, but doing so wouldn’t
serve my purpose: explaining how to write a double containment argument and going through all the details
carefully and explicitly. You will be writing a lot of double containment arguments. I want you to get some
practice. ♢

3.1.2 The connection to logic

Here is a brief observation, which I’m not going to refer back to later.
You may have noticed that all of the relations satisfed by the logical operations  ,^,_ are also satisfied

by the operations of complement, intersection, and union; for instance,

pS Y T qc � Sc X T c compared to  pP _Qq � p P q ^ p Qq

or

S X pT YRq � pS X T q Y pS XRq compared to P ^ pQ_Rq � pP ^Qq _ pP ^Rq.
Here is a way to relate the two stories. Suppose you have some big set X of all possible parameters to

your logical statements (X � N was common in previous examples, especially when discussing induction).
A family of propositions P pxq indexed by x P X gives rise to a subset SpP q � X, the set of x P X so that
P pxq is true: in symbols,

x P SpP q ðñ P pxq is true.
This subset satisfies Sp P q � SpP qc:

x P Sp P q ðñ  P pxq is true ðñ P pxq is false ðñ x R SpP q ðñ x P SpP qc.

Similarly, you can check that SpP ^ Qq � SpP q X SpQq, while SpP _ Qq � SpP q Y SpQq. The various
relations between the logical operations (like de Morgan’s laws above) then translate immediately to the
corresponding set-theoretic statements about SpP q.

3.2 Functions and cardinality

Probably the single most important foundational idea in mathematics is the idea of a function. Most people
have seen functions presented to them as pictures on a page (the ‘graph’ of the function; more on this in the
homework) or as given by explicit formulas, but that’s not what a function is! Let me give a definition and
then a long slew of examples and non-examples.

1I refer to y here instead of x because I want to make a general observation about elements which lie in UYV ; the particular
element x we were discussing does not.
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Definition 7. Let X and Y be two given sets. A function f from X to Y (written f : X Ñ Y ; in TeX
$f: X \to Y$) is a rule which, for any element of x, produces a unique (unambiguous) output fpxq P Y .

♢

Remark 12. A function is three pieces of data: a domain X, a ‘codomain’ Y , and a machine which takes
inputs from X and produces unambiguous outputs in Y .

♢

Example 16. You already know a truly preposterous number of functions f : RÑ R. For instance, you can
take the functions given by fpxq � cosx or fpxq � x2 or fpxq � ex or fpxq � x � 17.3, or compositions of
these, or products of these.

One can construct more functions by changing the domain or codomain. For instance, the formula
fpxq � ex can also be used to define a function f : p0,8q Ñ p1,8q, or fpxq � x� 17.3 can be used to define
a function p0,8q Ñ R. The “codomains” do not need to include every output value (this would massively
limit our ability to talk about functions effectively); all that matters is that for every x in the domain X,
every output value fpxq actually lies in the codomain Y .

Similarly, the input domains do not have to be “as large as possible” (whatever that means). To define
a function, both domain and codomain must be specified. ♢

Example 17. Suppose I wanted to discuss “the function fpxq � 1{x” in this context. There are two issues.
The first is that one needs to specify a domain and codomain to define a function: what should those be
here? You might reasonably guess I want my domain and codomain to be R, but fp0q is not defined.

One reasonable way to replace this would be to define this function with domain

X � Rzt0u � p�8, 0q Y p0,8q

and the same codomain Y � Rzt0u. This does define a function. For each nonzero x P R, the number 1{x
makes sense, is unambiguous, and is again a nonzero real number (so an element of Y ). ♢

Remark 13. Here is an important notational point. When I tell you “let f be the function given by fpxq � x2,
I would not say that “x2” is the name of the function. The name of the function is f . However, to specify this
function, I need to tell you what it does to an arbitrary input real number x. What I have given above is a
formula which tells you how to compute f when given some arbitrary input; when I write fpxq, it represents
the output of the function on the input x.

Here, x is the input (an element of X � R), while f is the name of the function, and its output when
applied to x is called fpxq P R � Y . ♢

Example 18. There is a function f : NÑ t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u which sends an integer n to the n’th decimal
digit of π. For instance,

fp0q � 3, fp1q � 1, fp2q � 4, fp3q � 1, fp4q � 5, fp5q � 9, � � �

This is well-defined (the number π has an unambiguous decimal expansion), but good luck computing it,
much less graphing it! For instance, what is fp1032q? Computing this would be very time-consuming and I
doubt anyone here has the computation power available to do so. The point here is that just because you
can tell me how a function is defined doesn’t mean that should tell you a way to compute it.

A similar example is the following. Let f : RÑ R be the function defined as follows.

fpxq �
#
0 if the Collatz conjecture is true

1 if the Collatz conjecture is false
.

One of those is true, so this is indeed a function: it gives an unambiguous output for any given x. But you
will never be able to tell me what it is until someone proves or disproves the Collatz conjecture, so I can’t
actually tell you what the value fp3q is... ♢

Example 19. It is a theorem that there are too many functions f : NÑ N to count (basically also ‘Cantor’s
diagonalization argument’). Every single object which is describable by human language can be listed off
(counted), so this means there must be some function which cannot possibly be described in its entirety by
any human-communicable sentence. In fact, most are indescribable and uncomputable in this way. This is
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in stark contrast to the fact that every function you’ve ever worked with in your mathematical life so far
has most likely been given to you by an explicit formula. The horrifying truth is that you absolutely cannot
give an explicit formula for just about any function that actually exists, and we cannot analyze arbitrary
functions by thinking in terms of formulas.

♢

Example 20. Consider the following attempted definition. “Let f : r0,8q Ñ R be the function which sends
x to a number fpxq with fpxq2 � x.” This is not a definition of a function. As long as x ¡ 0, there are two
numbers which square to x: one negative, and one positive. The definition above is ambiguous about which
I prefer, so it does not define a function.

However, “Let f : r0,8q Ñ R be the function which sends x to a non-negative number fpxq with
fpxq2 � x” is indeed a function. Such a number fpxq always exists, and there is always exactly one such
number. So this does produce an unambiguous real number, given any real number x ¥ 0. ♢

3.2.1 Images and preimages

I mentioned above that the codomain of a function f : X Ñ Y does not need to include all ‘output values’.
It would still be useful to be able to discuss what those output values are. We record two definitions. The
first records the output values of f on a subset S of the domain; it shows what values f can take on over
the subset S. The second records the input values of f which land in a certain subset T of the codomain; it
shows where the inputs of f have to lie if we want them to get sent into a particular set of points.

Definition 8. If f : X Ñ Y is a function, we can use this to produce new subsets of X and Y :

a) If S � X is a subset, we say the image (or forward image) of S under the function f is

fpSq � ty P Y | y � fpsq for some s P Su.

That is,
y P fpSq ðñ DsPSry � fpsqs;

the image is the set of points in Y which are mapped to by some point(s) in S.

b) If T � Y is a subset, we say the preimage of T under the function f is

f�1pT q � tx P X | fpxq P T u.

That is, the preimage is the set of points in X which map to some point in T .

The forward image of the domain, fpXq, is sometimes called ‘the image of f ’, and is sometimes written
Impfq or imagepfq.
The inverse image of a singleton set tyu is usually denoted f�1pyq. ♢

Remark 14. By far, the most important of these for us are going to be the image fpXq of the whole domain
(which give the set of all possible output values of f) and the preimage f�1pyq of a singleton, which gives
the set tx P X | fpxq � yu of points which map to y. However, I find it useful to talk about the general
notion to get practice with double-containment arguments. ♢

Exercise. Show that f�1pY q � X no matter what X, f, and Y are. This implies that there is no useful
notion of “the inverse image of f”, unlike the idea of imagepfq � fpXq.

Below, I drew a function f : t1, 2, 3, 4, 5u Ñ t1, 2, 3, 4u, defined by

fp1q � 1, fp2q � 4, fp3q � 1, fp4q � 2, fp5q � 4.

To depict this, I drew all the elements of the domain in a column on the left, and all the elements of the
codomain in a column on the right. If y � fpxq, I drew an arrow from x to y.
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Next, I drew the forward image of three different subsets of the domain X. I drew the elements of the
given subset of X as blue dots on the left; the forward image is every point in the right column with an
arrow connecting it to a blue dot (I colored these blue as well).

Last, I drew the inverse image of three different subsets of the codomain Y . I drew the elements of the
given subset of Y as orange dots on the right; theh inverse image is every point in the left column with an
arrow connecting it to an orange dot (which I colored orange as well).

Example 21. Let’s use an example you’re comfortable with to see how these work in some specific cases:
suppose f : R Ñ R is the function defined by fpxq � x2. I encourage you to work through this example
carefully. If my arguments don’t make sense, try to write your own.

First, let’s calculate a small handful of forward images.
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� We have fpRq � r0,8q. To see this, we need to establish a double containment. The statement
fpRq � r0,8q means: “If x P R, then x2 ¥ 0.” You have been using this for a very long time; you can
prove it by splitting into cases x ¡ 0, x � 0, x   0. The other containment r0,8q � fpRq says: “For
every real x ¥ 0, there exists some y P R so that y2 � x.” In fact, you can take y to be the unique
non-negative number with this property, which we call

?
x. (A careful proof that this number exists

requires some analysis of the real numbers; you need to know the ‘least upper bound property’. I am
fine taking the statement that

?
x exists for granted.)

� We have f
�r�1, 1s� � r0, 1s. To prove this, we have to show two containments. First, if �1 ¤ x ¤ 1,

then 0 ¤ x2 ¤ 1, so f
�r�1, 1s� � r0, 1s. For the other direction, notice that each x P r0, 1s can

be written as the square of
?
x P r0, 1s. Because

?
x P r�1, 1s and x � fp?xq, this shows that

r0, 1s � f
�r�1, 1s�. This proves the other containment, so these two sets are equal.

� In fact, this is true even for a smaller input set: f
�r�1,�1{2qYr0, 1{2s� � r0, 1s. The first containment

follows as above: if x P r�1,�1{2q Y r0, 1{2s then in particular �1 ¤ x ¤ 1, so 0 ¤ x2 ¤ 1, which
establishes the containment fpSq � r0, 1s. As for the second containment, we have to be a little more
careful. For x P r0, 1s, it is no longer necesarily true that

?
x P S (for instance, x � 4{9 has

?
x � 2{3

which is not in S). However, either
?
x is in S or �?x is. (Proof: if

?
x ¤ 1{2 it lies in the r0, 1{2s

term; if 1 ¥ ?x ¡ 1{2 then �1 ¤ �?x   �1{2, which lies in the r�1,�1{2q term.) This shows that
r0, 1s � fpSq. We have established two containments, so these sets are equal. ♢

Next let’s look at some inverse images. I’m going to focus particular attention on the inverse images of
points, since these are the most useful for us in this course.

Example 22. Again, let’s consider the function f : R Ñ R defined by fpxq � x2, and compute the inverse
image of different points.

� Let’s look at f�1p0q. By definition, this is the set of points 
x P R | fpxq P t0u( � tx P R | x2 � 0u.

There is only one real number which squares to zero: x � 0. Thus

f�1p0q � tx P R | x2 � 0u � t0u.
� Next, let’s look at f�1p1q. This is the set of points 

x P R | fpxq P t1u( � tx P R | x2 � 1u � t�1, 1u.
There are two numbers which map to 1: we have 12 � p�1q2 � 1.

� On the other hand,
f�1p�1q � tx P R | x2 � �1u � ∅.

No real numbers map to �1.
In general, if x ¡ 0 is positive, f�1pxq � t?x,�?xu is a two-element set; if x   0 is negative, f�1pxq � ∅
is empty; if x � 0 then f�1p0q � t0u is a one-element set. ♢

I mentione above that only some special cases of these operations will be really useful to us, but they
do give us a good place to practice set containment / double containment arguments. Let me prove three
(kind of random) facts about the way these operations behave in terms of other operations we already know;
you’ll prove some more like this on your homework.

Proposition 14. We have the following set inclusions/equalities. (There are many more such relations;
these are only a few.)

S � f�1pfpSqq (3.14)

fpf�1pT qq � T (3.15)

fpAXBq � fpAq X fpBq. (3.16)

fpAYBq � fpAq Y fpBq (3.17)

(3.18)
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Exercise. Find examples of functions f and sets S, T,A,B so that the first, second, and third inclusions
are not equalities (that is, the sets on the right-hand-side are strictly larger: there is some element in the
set on the right-hand-side which is not in the set on the left-hand-side).

Proof. Let’s go down the list.

� If I want to show that S � f�1pfpSqq, this means I want to show that if x P S, we also have
x P f�1pfpSqq. What does this second statement mean? By definition,

f�1pfpSqq � tx P X | fpxq P fpSqu.

So if we want to show rx P Ss ùñ rx P f�1pfpSqqs, this amounts to showing: “if x P S, then
fpxq P fpSq.” OK, how do I show this? I’d better write out the definition of fpSq! An element y P Y
lies in fpSq if and only if there is some s P S so that y � fpsq. So if x P S, then y � fpxq is certainly
in fpSq! Here, our ‘s’ is the element x P S.

� This will be similar to the previous argument, but I am going to be more brief this time. If y P
fpf�1pT qq, then y � fpxq for some x P f�1pT q by definition of forward image. Next, if x P f�1pT q,
this means by definition of inverse image that fpxq P T . Thus y � fpxq P T . This proves that
fpf�1pT qq � T .

� If y P fpAXBq, this means there is some x P AXB with fpxq � y. Because x P AXB, we have both
x P A and x P B. By definition of forward image, this means y � fpxq P fpAq and also y � fpxq P fpBq.
It follows from the definition of intersections that y P fpAq X fpBq.

� Here we finally have an equality, so it’s time to write out a double inclusion argument! First, let’s show
fpAYBq � fpAq Y fpBq. This is very similar to the previous part. If x P AYB, our goal is to show
that fpxq P fpAq Y fpBq. The assumption means that either x P A or x P B. If we’re in the first case
x P A, we know by definition that fpxq P fpAq, so in particular fpxq P fpAq Y fpBq. Alternatively,
if in fact x P B, then fpxq P fpBq, so in particular fpxq P fpAq Y fpBq. Since this exhausts the two
possibilities, we have shown that AYB � fpAq Y fpBq.
For the reverse inclusion fpAq Y fpBq � fpAYBq, suppose y P fpAq Y fpBq. Thus either y � fpaq for
some a P A or y � fpbq for some b P B. Because A � AYB and B � AYB, we have both a P AYB
and b P A Y B; in either case we see that y � fpxq for some x P A Y B (our element x will either be
a P A or b P B, depending on which of the two cases we’re in).

This completes the double containment, and establishes fpAq Y fpBq � fpAYBq, as desired.
Remark 15. The statements above are probably never going to be used in this course. However, the argu-
ments above are crucial. These are called ‘definition-pushing’ arguments. How do I show S � f�1pfpSqq?
First I write out the definition of subset (each x P S is in f�1pfpSqq). How do I show that? To show it, I
have to understand what it means, so I write out a definitition of f�1pfpSqq. Then to show membership in
this set, I have to spell out what fpSq means. Once I have spelled everything out completely, it all falls like
a line of dominoes.

In some sense, this sounds like it should easy (algorithmic, even: just keep unwrapping definitions until
they are as clear as possible!), but these kinds of arguments are consistently difficult for early mathematics
students, and are worth practicing — especially because a great many arguments in early undergraduate
mathematics are precisely such ‘definition-pushing’ arguments.

The best advice I have for them is: don’t stop working. If you’re writing an argument but you don’t
see what to do next, look for anything you can work with — any definition you haven’t expanded out, any
relevant formula/theorem you haven’t used, and see if you can put it to work. Time when you’re spent
waiting for the idea to come to you is usually very unproductive! ♢
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3.2.2 Injectivity, surjectivity, and bijectivity

There are three properties of functions which we will find extremely important when discussing the ‘size’
of various sets (in particular, when discussing stuff about the idea of dimension in linear algebra). They
deserve to be named explicitly.

Definition 9. Suppose f : X Ñ Y is a function.

a) If fpXq � Y (that is, the image of f is all of Y ), we say that f is surjective (or we say f is a
surjection).

b) Suppose we know that for any two elements x1, x2 P X, the implication fpx1q � fpx2q ùñ x1 � x2
holds. (That is, whenever two elements x1, x2 have the same output value, they were actually the same
element to begin with!) Then we say f is injective (or we say f is an injection).

c) If f is both injective and surjective, we say it is bijective (or we say f is a bijection). ♢

Remark 16. Sometimes, in introductory math textbooks, you will see the term “one-to-one” used synony-
mously with injective, and the term “onto” synonymously with surjective. Sometimes they will refer to a
bijection as a function which is “one-to-one and onto” (injective and surjective).

Mathematicians do not regularly use these terms (despite perhaps seeming more accessible), and I will
not either. ♢

Here are three pictures of functions like the examples above. The example I gave earlier of a function
f : t1, 2, 3, 4, 5u Ñ t1, 2, 3, 4u was neither injective nor surjective; I also give a picture of an injective function
and a picture of a surjective function.

In a bit, we’ll try to rephrase these conditions to more clearly see what they mean.

Example 23. Consider the function f : ZÑ N given by

fpnq �
#
2n n ¥ 0

�1� 2n n   0
.

I claim that f is a bijection. To prove this, we need to show that f is both an injection and a surjection.

� To see that f is injective, start with two (a priori distinct) integers m,n P Z so that fpmq � fpnq.
Our goal is to show that m � n. Notice that when m ¥ 0, we have fpmq even, while if m   0 we
have fpmq odd. Because odd numbers cannot be even and vice versa, we see that if fpmq � fpnq, we
must either have both m,n ¥ 0 or we must have both m,n   0. In the first case, fpmq � fpnq implies
2m � 2n, so that m � n as desired. In the second case, fpmq � fpnq implies �1� 2m � �1� 2n, so
adding 1’s and cancelling the factor of �2 we see that m � n, as desired. Thus in either case, we see
that fpmq � fpnq implies m � n. Thus f is injective.
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� To see that f is surjective, we nee to show that every natural number m P N is in the image of
f . Let us show this in cases, first proving this when m is even, and then proving this when m is
odd. Remember that every natural number is non-negative. If m � 2k is even, then k ¥ 0 so
fpkq � 2k � m by definition. If m is odd, then m � 2k � 1 for some k ¡ 0. Because �k   0, we have
fp�kq � �1� 2p�kq � 2k� 1 � m. Thus every m — whether even or odd — appears in the image of
f . This means that f is surjective, as desired.

This completes the proof that f is a bijection.
♢

The next proposition is how I actually think about injectivity and surjectivity.

Proposition 15. Let f : X Ñ Y be a function.

a) f is an injection if and only if, for all y P Y , the set f�1pyq contains at most one element.

b) f is a surjection if and only if, for all y P Y , the set f�1pyq contains at least one element.

c) f is a bijection if and only if, for all y P Y , the set f�1pyq contains exactly one element.

Before giving the proof, here are some pictures of the idea this proposition is trying to encode.

Proof of Proposition 15. Let’s show these one by one. There are a lot of steps here: each “if and only if” is
secretly two implications!

a) Suppose f is an injection. Let’s try to show that each f�1pyq contains at most one element. Suppose
I have two (possibly identical!) elements x1, x2 P f�1pyq. This means that fpx1q � fpx2q. By the
definition of injectivity, this tells us that x1 � x2. Therefore, any two elements in f�1pyq are actually
equal! There cannot be more than one distinct element in f�1pyq. (It is possible that there are zero
elements in this set! All we can confidently rule out is that there are not 2 or more.)

Now suppose that for all y P Y , the set f�1pyq contains at most one element; let’s show that f is an
injection. If fpx1q � fpx2q, our goal is to show x1 � x2. If y � fpx1q, then by definition we have
x1, x2 P f�1pyq. Because f�1pyq contains at most one element, we see that in fact x1 � x2 — they
must have been the same element of X all along.

This completes the proof of the ðñ statement.
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b) Now I am going to speed up my exposition a bit. Suppose f is a surjection. This means that fpXq � Y ;
in particular, Y � fpXq. Thus for each y P Y we have y P fpXq. Recalling the definition of fpXq, this
means there exists some x P X so that fpxq � y. But then x P f�1pyq. Thus, for all y P Y , the set
f�1pyq contains at least one element (it is not empty).

Conversely, suppose that for all y P Y , the set f�1pyq is nonempty. This means there is some x P f�1pyq,
which means there is some x with fpxq � y. Thus, for all y P Y , we have y P fpXq. Thus Y � fpXq.
Because f is a function from X to Y , we have fpXq � Y , so that fpXq � Y as desired.

c) If f is a bijection, it is both an injection and a surjection, so that each set f�1pyq has ¤ 1 elements
(by injectivity) and ¥ 1 elements (by surjectivity). Hence each f�1pyq contains exactly one element.
Conversely, suppose each set f�1pyq has exactly one element. In particular, each f�1pyq contains ¥ 1
elements (so f is surjective) and each f�1pyq contains ¤ 1 elements (so f is injective). Thus f is
bijective. We have proved both implications; this establishes the ðñ claim.

We can now use this to prove our first major theorem.

Theorem 16. Let X � t1, � � � , nu denote the set of integers between 1 and n (so X has exactly n elements).
Let Y � t1, � � � ,mu denote the set of integers between 1 and m (so Y has exactly m elements).

a) If f : X Ñ Y is an injection, then n ¤ m.

b) If f : X Ñ Y is a surjection, then n ¥ m.

c) If f : X Ñ Y is a bijection, then n � m.

This suggests a good intuition. If there exists an injection f : X Ñ Y , you can think of this as exhibiting
the claim that Y has ‘at least as many elements as X’. If there exists a surjection f : X Ñ Y , you can
think of this as exhibiting the claim that Y has ‘at most as many elements as X’. And a bijection can be
understood as exhibiting the claim ‘X and Y have exactly the same number of elements.’

Correspondingly, we often write |X| for the number of elements of X. (This gets subtle when X is
infinite, but you can make sense of it.) The statement above says that if f : X Ñ Y is injective, surjective,
or bijective, then we have respectively |X| ¤ |Y | or |X| ¥ |Y | or |X| � |Y |.

Proof. Notice that every single element of X lies in some f�1pjq for some 1 ¤ j ¤ m; in fact, it lies in exactly
one such f�1pjq — we have x P f�1pjq ðñ fpxq � j. This ‘partitions’ the set X into a bunch of disjoint
subsets f�1pjq, as j runs between 1 and m. Thus we have

n � |X| �
m̧

i�1

|f�1pjq|.

On the page is a picture which should help you intuitively justify this claim.

If f is injective, each term in the sum above is ¤ 1, which implies n ¤ m:

n � |X| �
m̧

i�1

|f�1pjq| ¤
m̧

i�1

1 � m.

On the other hand, if f is surjective, each term in the sum above is ¥ 1, which implies n ¥ m. Finally, if f
is bijective, then each term in the sum above is � 1, so n � m.



3.2. FUNCTIONS AND CARDINALITY 43



44 CHAPTER 3. SETS AND FUNCTIONS



Chapter 4

Foundations of linear algebra

Alternate references

Linear algebra takes many forms and can be taught in as many different ways as there are linear algebra
professors. (Maybe this is an exaggeration, but I can think of at least four very different ways to teach a
linear algebra course).

We will be looking at linear algebra from a number of different perspectives, and no standard textbook
fits all of our course goals. Still, as we cover each ‘unit’ in linear algebra, I will recommend alternate sources
which match the perspective of that unit.

The next two or three weeks of this course match closely with the contents of the first chapter of Axler’s
textbook on linear algebra (‘Linear Algebra Done Right’); we will begin to veer away from his perspective as
we move forward towards the study of linear maps. If you’re feeling bold, everything we’ll do in these first few
weeks is covered in the first 18-20 pages of Halmos’s textbook ‘Finite-dimensional vector spaces’. His exercises
are also exceptional, and no doubt I will be using some of them on occasion. Formulated appropriately, almost
all of the results of this chapter apply to infinite-dimensional vector spaces as well; precisely one towards the
end is special to finite-dimensional vector spaces. These generalizations are discussed in a curio.

4.1 Introduction to linear algebra

4.1.1 What is linear algebra?

This is a difficult question to answer. Once again, I will give multiple answers.

� Geometry of flat objects in Euclidean space. Linear algebra is the study of objects which include
lines and planes in 3-dimensional space R3, as well as the study of areas and volumes of flat objects
(like rectangles or parallelgrams sitting in 3D space). It also includes generalizations that we cannot
visualize so easily to flat objects in high-dimensional Euclidean spaces Rn. This is the perspective
that motivated the early history of Grassmann’s1 study of linear algebra, nowadays called “exterior
algebra” or “geometric algebra.” This is about half of the perspective taught in calculus classes, and
it is a perspective which is important for physicists.

When you study linear algebra geometrically, you will study linear transformations of space, such
as rotations, shearing maps, reflections and scaling maps. These ‘linear transformations’ carry out
visual operations that we see and do in our own real lives; for instance, rotation is what happens when
we turn our head. This visual understanding of linear algebra is invaluable in computer graphics; a
friend of mine in this field once asked me to “if nothing else, make sure your students know linear
transformations are geometric things that do stuff you can see.”

1Hermann Grassmann was a German mathematician in the 1800’s. His work was not celebrated by his colleagues at the time,
though history has redeemed him. He later moved on to being an incredibly influential linguist, most known for “Grassmann’s
law.”

45
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� The abstract study of vector spaces and linear transformations. After extensive experience
with linear algebra in Rn, mathematicians begin to notice that the use of the real numbers specifically
is not crucial (for instance, one may carry out almost all basic theorems in linear algebra over either
the rationals or complex numbers, and the latter fact is useful even if you’re mainly interested in the
real numbers). Similarly, the ‘linear transformations’ described above can be defined in terms of two
simple properties.

The definition of ‘abstract vector space’ and ‘linear transformation’ was written down in the early 20th
century, though at the time was considered rather pointlessly abstract. Since then, mathematicians
have found a great many places where this abstraction is useful (and I think the next decade or so of
mathematical research convinced them, but my history on this topic is weak): any time you can fit
some example into the paradigm of ‘vector spaces and linear maps’, you immediately get all the results
we’ll prove over the course of the term.

� A computational tool. This perspective you’ve probably seen a lot in high school (possibly dis-
guised): “We like to solve systems of linear equations, and we’ll show you how to do Gaussian elim-
ination to solve them!” It’s not a very honest picture of linear algebra: Gaussian elimination is a
basic tool, not the fundamental point of linear algebra. The majority of applications of linear algebra
do not come from solving some system of linear equations, but rather from the study of linear maps
(or, relatedly, matrices). This shows up a lot when studying the evolution of systems that evolve by
some ‘transition matrix’ over time (see: predator-prey models or the old widely publicized version of
the PageRank algorithm), and understanding the behavior of these transition matrices helps us un-
derstand how our system changes over time, and what the “limiting behavior” is as time goes to infinity.

� The numerical study of the behavior of finite-dimensional arrays (matrices). This is the
perspective you would see in a ‘computational linear algebra’ class: the goal is to find well-behaved
(‘numerically stable’) algorithms to quickly compute objects of interest in linear algebra: bases for
kernels and images; diagonalizations; eigenvalues; inverses; ...

This is a mind-bogglingly important part of linear algebra. On the other hand, we’re still not going to
talk about it in any detail! If you want to learn that, you’ll have to take a class on numerical linear
algebra (sometimes: “linear algebra for computation”). We don’t have the time!

All of these perspectives are useful. My own perception is: one should understand linear algebra first by
seeing some basic geometric examples. This should motivate one into studying the idea of vector spaces and
linear transformations. When you study linear transformations, you should see the abstract definition, but
also many concrete examples, and you should do concrete computations to get a sense of how it all works in
practice.

Today, we’ll start off by getting that “geometric picture”.

4.1.2 Coordinatewise addition

Here is an unhelpful first sentence for a class in linear algebra. “We are already comfortable with addi-
tion and multiplication of numbers. In linear algebra, we move on to addition and multiplication of pairs
or triples or sequences of numbers. For instance, we add in each coordinate separately: we would define
p3, 1q � p�1, 2q � p2, 3q.”

I think this is unhelpful for two reasons. First, it’s not clear to me why I care about adding pairs of
numbers. Secondly, and perhaps most importantly, I cannot make heads or tails of what this addition
operation is supposed to “represent”. What am I trying to model by defining addition this way?

Here is a picture of the three points p3, 1q, p�1, 2q, p2, 3q (for the sake of discussion, I’m not displaying
the origin):
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In what sense does the first and second point add to the third? These appear to me to be
completely and totally unrelated points. Yes, it’s true, I can define addition this way. But why would I do
that? What is it supposed to mean? And how would I ever use it?

This makes me confused about the very beginning of the discussion above. What does it even mean
to add numbers?

4.1.3 Vectors in R

Let’s go back to second grade. You just learned what a ‘number line’ is: it’s a bunch of numbers on a line,
each spaced out the same distance from one another.

But even in terms of this picture, it is not clear to me what addition is supposed to mean. Why is
2� 1 � 3? What does that mean? When a grade school teacher discusses this, they will often draw arrows
for the operation “add 1”. To add 1 to an integer means to move to the right.

Write e⃗1 for the little arrow I drew which starts at 0 and ends up at 1 on the number line. When I write
that 2 � 1 � 3, what I mean is: “If I slide that arrow so that its foot/base sits at 2, then its head sits at
3.” Notice that we’re freely sliding this arrow around the number line, but we always keep its length and
direction (right or left) fixed. This is our first example of a ‘vector’.
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This gives us a geometric explanation for what “adding 1” should mean. But what is adding 2? What
does it mean that 1 � 2 � 3? We know that 2 � 1 � 1. When we add 2, we should be able to do this in
two steps, as p1� 1q � 1. (I just used that addition should be associative.) So this should be the same as
starting at 1 and moving to the right twice, moving one unit along e⃗1 each time.

This leads us to two ideas. The first is adding numbers/vectors. To add e⃗1 to itself, I took two copies of
this arrow and placed them head-to-tail, and looked at the arrow I got by concatenating them. We wrote
2e⃗1 � e⃗1 � e⃗1 to mean the vector I got as the result. It still points right, but it moves twice the distance in
total.

This leads us to the idea of multiplying numbers, or scaling numbers. This new vector 2e⃗1 � e⃗1 � e⃗1
moved twice as far as the original e⃗1. We can carry out the same idea for other numbers on the number line:
3e⃗1 moves three units to the right, while 1

2 e⃗1 moves half a unit right, and �4e⃗1 moves four units left (the
minus indicating that we do the opposite of what we wanted to do at the beginning; instead of moving 4



4.1. INTRODUCTION TO LINEAR ALGEBRA 49

units right, we undo that in moving 4 units left).

If c is a number, then ce⃗1 will be represented by the arrow which starts at 0 and ends at c.

Thus addition is given by stacking arrows together, and scaling is given by making vectors longer or
shorter (or possibly moving in the opposite direction). These operations satisfy some simple relations;
they’re associative, distributive, and commutative (doesn’t matter whether I move 3 right first and then 1
right or if I move 1 right then 3 right; I still end up moving 4 units right in total).

This in hand, I can try to give a sense of what vectors in R2 are meant to be.

4.1.4 Vectors in R2

What is a vector?

First, let me try to formalize the previous discussion.

Definition 10. A vector v⃗ P R2 is an arrow between two points in the plane, where we consider two arrows
v⃗ and w⃗ to be equal if we can translate (slide without changing angle or length) v⃗ to obtain w⃗. ♢

Notice that there are no numbers involved whatsoever. All of this is completely geometric. Vectors are
just arrows! And the same is true for the main operations on vectors.
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What are vector operations?

Definition 11. Suppose we have two vectors v⃗, w⃗ P R2. Their sum v⃗ � w⃗ is the vector obtained as follows:
translate w⃗ so that its foot is placed at the head of v⃗. Then v⃗ � w⃗ is the vector whose foot lies at v⃗’s foot,
and whose head lies at w⃗’s head. ♢

This operation is commutative: v⃗ � w⃗ � w⃗ � v⃗. Both of these represent the diagonal of a parallelogram
with sides v⃗ and w⃗:

Similarly (but more simply), this operation is also associative.

Remark 17. It is sometimes helpful to think of the vector v⃗ as an instruction. If I sit at a point P , then I
can cook up a new point P � v⃗ by placing the vector so that its foot is at P , and defining P � v⃗ to be the
location of the head of v⃗. In this way, a vector tells us an instruction: it tells us how to move from one point
to another.

In this perspective, the vector sum v⃗ � w⃗ is the simple instruction “First follow the instruction v⃗ gives
you, then the instruction w⃗ gives you.”

If this remark doesn’t make sense, don’t worry about it. ♢

Definition 12. The zero vector 0⃗ is the vector which starts at some point P and ends at that same point
P ; it does not move anywhere at all. ♢
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This vector has the property that 0⃗ � v⃗ � v⃗ � 0⃗ � v⃗. Adding the zero vector to another vector doesn’t
change anything at all. (From the perspective of ‘instructions’, the zero vector is the instruction: “Stay
put!”)

Definition 13. If v⃗ P R2 is a vector and c P R is a number, we say the scaled vector cv⃗ P R2 is the vector
parallel to v⃗, which is |c| times as long, and points in the same direction as v⃗ if c ¡ 0 but the opposite
direction if c   0. ♢

Scaling is a simple operation (it is associative in the sense that pcdqv⃗ � cpdv⃗q, it distributes over addition,
and scaling by 1 changes nothing whatsoever).

One crucial fact is true precisely because we can divide by real numbers:

If v⃗ and w⃗ are parallel, in the sense that cv⃗ � dw⃗ for some c, d � 0, then w⃗ can be written as a multiple of v⃗.

(Proof: We have w⃗ � c
d v⃗ and similarly v⃗ � d

c w⃗.) This may sound trivial, but it ends up being crucial to a
lot of the theory later!

What are coordinates?

This has all been pictorial so far. Let me conclude by going back to the original question: what does it
mean to say that p�1, 2q � p3, 1q � p2, 3q?

To make sense of this, we need to make some choices. Somewhere on the plane:

� Pick a point O to represent the origin.

� Pick a vector e⃗1 starting from the origin to represent “moving one unit right”.

� Pick a vector e⃗2 (we usually choose the one perpendicular and counterclockwise to this, of the same
length) to represent “moving one unit up”.

Then for any vector v⃗, we can represent this vector as xe⃗1 � ye⃗2, or: “move x units right, and y units

up.” We write this vector as v⃗ �
�
x
y



.

Here is a picture of

�
3
1



:
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Now let’s draw the vectors

�
3
1



and

��1
2



and

�
2
3



:

Finally, our original picture has some meaning! The operation we defined completely geometrically gives
us precisely the notion of coordinate-wise addition:�

x1
x2



�
�
y1
y2



� px1e⃗1 � x2e⃗2q � py1e⃗1 � y2e⃗2q � px1 � y1qe⃗1 � px2 � y2qe⃗2 �

�
x1 � y1
x2 � y2



.

Similarly, the notion of coordinate-wise scaling is given by

c

�
x1
x2



� cpx1e⃗1 � x2e⃗2q � pcx1qe⃗1 � pcx2qe⃗2 �

�
cx1
cx2



.

I hope I’ve convinced you that some standard operations on numbers or pairs of numbers — addition and
scaling — can be represented entirely geometrically. Whenever a geometric intuition is useful (for instance,
in any physics problem), this notion of vector becomes useful. On the other hand, we will see that the entire
apparatus of linear algebra is useful far outside the context of physics (or geometry).

Using the discussion today as motivation for what ‘linear algebra’ ought to be, over the next few weeks
we will set up the axioms and some of the basic theory.
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4.2 Fields: where scalars live

Last time, we looked at an important motivating example for the study of linear algebra: vectors in R2 and
the algebraic structure on them. The most important things were:

� Given two vectors in R2, we can add them to obtain another vector;

� Given a vector in R2 and a number (‘scalar’) in R, we can scale the vector by the given quantity to
obtain a new vector.

What I want to do in this section is go from this to an axiomatization of the relevant object of study: a
vector space. This is precisely what is outlined in the bullet points above: something where we know how
to add and we know how to scale, where the two notions of ‘addition’ and ‘scaling’ satisfy some reasonable
axioms which are satisfied for R2.

The first thing to axiomatize is what we scale by. The obvious answer is: “We scale a vector by a number!”
But what kind of number, and what axioms do these have to satisfy? It turns out we can do linear algebra
with scalars in any of Q,R, or C, as well as more exotic examples (which do appear in applications). The
reason we come up with the axiom scheme below is that it allows us to see exactly the generality we can use
our work — no need to repeat the arguments again the moment I study linear algebra with a new kind of
scalar.

Mathematicians call a set of scalars with the required properties a “field”. (The name is an accident of
history; it doesn’t carry much meaning.) I’m going to write the axioms below, and then we’ll start to reason
about it.

To make it easy to refer back to, I’m going to put the definition of a field on its own page. Notice that
I divide the definition into two parts. This is common in abstract algebra; you will have a structure which
is defined in terms of a collection of operations, and a list of axioms those operations must satisfy. Here we
have two: addition and multiplication.
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Definition 14. A field is three pieces of data pF,�, �q
The data are:

(D1) A set F (‘the scalars’, or ‘the elements of the field’),

(D2) An addition map � : F� FÑ F, meaning for every pair of scalars a, b P F, we define a sum a� b P F;
(D3) A product map � : F� FÑ F, meaning for every pair of scalars a, b P F, we define a product a � b P F.

These are required to satisfy the following axioms.

(F1) Associativity. Addition and multiplication are ‘associative’, meaning that for all a, b, c P F, we have

pa� bq � c � a� pb� cq and pa � bq � c � a � pb � cq.

(F2) Commutativity. Addition and multiplication are ‘commutative’, meaning that for all a, b P F, we
have

a� b � b� a and a � b � b � a.

(F3) Distributivity. Multiplication distributes over addition, meaning that for all a, b, c P F, we have

a � pb� cq � a � b� a � c.

(F4) Identities. There exist elements 0, 1 P F which serve as ‘additive and multiplicative identities’,
meaning that for all a P F, we have

0� a � a and 1 � a � a.

(F5) Additive inverses. For all a P F, there exists an element b P F with a� b � 0. We call b the ‘additive
inverse’ of a, and denote it as �a.

(F6) Multiplicative inverses. For all nonzero scalars a P F, there exists an element b P F so that ab � 1.
We call b the ‘multiplicative inverse’ of a, and denote it 1{a or a�1.

(F7) Nontriviality. There are at least two elements of F.

♢

In symbols, the axioms are

@a,b,cPF
�rpa� bq � c � a� pb� cqs ^ rpa � bq � c � a � pb � cqs�.

@a,bPF
�ra� b � b� as ^ ra � b � b � as�.

@a,b,cPF
�
a � pb� cq � a � b� a � c�.

D0,1PF@aPF
�r0� a � as ^ r1 � a � as�.

@xPFDyPFrx� y � 0s.
@aPF

� ra � 0s ùñ rDbPFab � 1s�.
Da,bPFra � bs.
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I want to give a handful of examples and non-examples, but first, let me make some remarks on the
axioms. First, the ‘data’ just says “we know how to multiply and we know how to add;” nothing more. The
first three axioms about these operations are things you use constantly and implicictly when doing arithmetic
without even thinking about it; for instance,

p22� zqp3x� 4yq � 66x� 88y � 3xz � 4yz.

uses all three of them. We’d like to be able to continue doing that.
The next three axioms are more interesting. they assert the existence of certain elements which behave

well with respect to the algebraic operations; every one of these assumptions is crucial one way or another
when studying vector spaces. First I’d like to list a few examples (some you know, some you may not) of
fields. Afterwards, I’ll talk about some algebraic structures which satisfy some (but not all) of the axioms
above, and what we lose in doing so.

4.2.1 Some things which are fields

There are three fields which we will use most often throughout the course. (Frankly, most of our geometric
thinking happens over R, but the others can be useful on occasion — there are some things which R just
can’t do.)

Example 24. The rational numbers Q of fractions p{q (where p, q are integers, q � 0) form a field, with the
usual addition

a

b
� c

d
� ad� bc

bd

and multiplication
a

b
� c
d
� ac

bd
.

If p{q is a rational number, its additive inverse is �p{q; if p{q is a nonzero rational number (so p � 0) its
multiplicative inverse is q{p.

I won’t verify the axioms, but they’re not too hard to check by hand if you believe that (F1)-(F3) are
true for the integers. ♢

Example 25. The real numbers R form a field, too, with the usual addition and multiplication. ♢

Example 26. One example which might be more (or less) familiar to you is the complex numbers C. We
think of elements of C as being x� iy, where x, y are real numbers and i is some new number with i2 � �1.
Formally, as a set, we have

C � tx� iy | px, yq P R2u.
We define the addition operation as

pa� ibq � pc� idq � pa� cq � ipb� dq,

while the multiplication operation is more intricate:

pa� ibqpc� idq � pac� bdq � ipad� bcq.

To understand where this comes from, just expand out the product as

ac� iac� ibc� i2bd,

and remember that we want to have i2 � �1. (This is how I compute the product anyway; I don’t memorize
the formula.)

It is not obvious that C is a field, but it is, and you’ll prove it as a homework exercise. ♢

The three fields above are by far the most useful to us. However, let me point out that there are more
examples than just these. Here is one particularly strange one.
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Example 27. The field with two elements F2 � t0, 1u has addition and multiplication defined as follows:

0� 1 � 1� 0 � 1, 0� 0 � 0 � 1� 1, 0 � 0 � 0 � 1 � 1 � 0 � 0, 1 � 1 � 1.

The only operation here which should be surprising is 1� 1 � 0. In this field, we have 2 � 0! This field
appears in two contexts. First, this is related to understanding “modular arithmetic” over the integers Z
with respect to the modulus 2. This is a fancy way of saying that the number 0 represents “even”, while 1
represents “odd”. The equation 1� 1 � 0 corresponds to the fact that the sum of two odd integers is even.
One can generalize this to define fields Fp with p elements t0, 1, � � � , p� 1u for any prime number p, where
the addition and multiplication are given by taking the usual sum or product, then subtracting off multiples
of p until the result is between 0 and p � 1. Once again, it is not obvious that this is a field; proving it
requires some background knowledge about number theory you may not have.

Another place the field F2 occurs is in mathematical logic itself. We can think of the elements of F2 as
being tT, F u, with 1 representing ‘true’ and 0 representing ‘false’. We take xor as our addition operation and
^ as our multiplication operation. ♢

This field may come back once or twice, but mostly to point out assumptions we make that don’t apply
in full generality.

4.2.2 Things which aren’t fields

Now that we’ve seen some examples, let’s see the ways in which a number system can fail to be a field, and
get a sense for why these issues are undesirable.

Non-example 1. The set of even integers 2Z carries an addition and multiplication operation; we set 2k�2m �
2pk�mq and 2k�2m � 2p2kmq. These operations are associative, commutative, and multiplication distributes
over addition. There is also an additive identity 2p0q � 0 P 2Z and additive inverses exist, as 2k� 2p�kq � 0
for all k P Z.

However, 2Z does not include a multiplicative identity, because the integer 1 is odd! So 2Z is not a
field. ♢

We need both additive and multiplicative identities when we talk about scaling, because we’ll find need
for both operations “don’t scale at all” and “scale everything down to zero”. (They’re also crucial in stating
(F5) and (F6), which are even more important.)

Non-example 2. The set of non-negative real numbers r0,8q carries addition and multiplication operations
which satisfy (F1)-(F3). The real number 0 serves as an additive identity, while the real number 1 serves
as a multiplicative identity. There are even multiplicative inverses: if t � 0 is a real number, there is a real
number 1{t so that t � 1{t � 1.

However, r0,8q is not a field. It fails axiom (F5), the existence of additive inverses: there’s no non-
negative real number I can add to 1 so that 1� x � 0. ♢

We need additive inverses so we can talk about subtraction. If I asked you what the solutions to x�2y �
2x � y are, you might say “If you subtract x and y from both sides, the resulting equation reads y � x”.
When you did so, you implicitly used all of axioms (F1), (F2), (F4), and (F5): first, in subtracting x, you
assert that there is some number �x with x� p�xq � 0. Then the left side simplifies to

px� 2yq � p�xq � p2y � xq � p�xq � 2y � px� p�xqq � 2y � 0 � 0� 2y � 2y;

spot where I use each of (F1), (F2), and (F4) here. Simplifying the right-hand side even uses (F3) and (F4)
to rewrite 2x� p�1qx � p2� 1qx � 1x � x!

The last axiom is the most subtle.

Non-example 3. The integers Z with the usual addition and multiplication satisfy all axioms (F1)-(F5).
However, they fail (F6): multiplicative inverses usually do not exist. There is no integer x so that 2x � 1;
that variable x wants to be 1{2, which is not an integer. ♢
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Without multiplicative inverses, it becomes much harder to describe solutions to simple equations like
2x � 3y. Over a field,2 I can tell you right away “The solutions are pairs p 32y, yq, where x P F”: the expression
“3{2” makes sense, because it’s 3 � p1{2q, where 1{2 is the multiplicative inverse of 2 � 0. This is because I
can scale both sides by 1{2, and

1{2 � p2xq � p1{2 � 2q � x � 1 � x � x, while 1{2 � p3yq � p1{2 � 3qy � p3{2q � y.
Over the integers, however, the answer is that px, yq is a solution if it takes the form p3n, 2nq for some

integer n P Z. This feels to me like a clunkier answer, and one that’s harder to find. It’s possible to make
more complicated examples, too.

Non-example 4. There is only one F which satisfies axioms (F1)-(F6) but fails axiom (F7): F � t0u, with
0 � 0 � 0 and 0 � 0 � 0. In this not-quite-a-field, 0 is the multiplicative identity; in some sense this means
0 � 1 in this not-quite-a-field.

There is nothing interesting to say about this F, and using it makes a bunch of different actually interesting
theorems false. So we add (F7) to exclude it from the set of fields. ♢

4.2.3 Our first facts about fields

Now that I’ve tried to justify why these axioms are good ideas (and seen a few examples), let me go through
some standard consequences of the field axioms: things which serve as a sanity check that our field axioms
make sense and nothing too weird happens.

Lemma 17. The additive identity in a field is unique.
To be precise, suppose 0 and 01 both satisfy the following property: for all a P F, we have

0� a � 01 � a � a.

Then 0 � 01.

Proof. Apply 0 � a � a to a � 01 to see that 0 � 01 � 01. On the other hand, apply 01 � a � a to a � 0 to
see that 01 � 0 � 0. Combining these (and axiom A2, that addition is commutative), we see that

0 � 01 � 0 � 0� 01 � 01,

so that 0 � 01.

Thus we are justified in saying the additive identity 0.
Next, remember that for every a P F, we know that there exists an additive inverse b with a � b � 0.

However, this doesn’t really justify the notation “�a”, which suggests we’ve pinned down a specific additive
inverse. Our next goal is to show that these are unique, and then to give a formula for the additive inverse.

Lemma 18. Additive inverses in a field are unique.
To be precise, fix an element a P F. If b, b1 are two elements so that a� b � 0 � a� b1, then b � b1.

Proof. I want to cancel out a from both sides of the equation a� b � a� b1. To do that, I’ll use one of these
additive inverses. Add b to both sides and simplify; we see

b � 0� b � pa� b1q � b � a� pb1 � bq � a� pb� b1q � pa� bq � b1 � 0� b1 � b1,

so that b � b1; that proves what we wanted to show.
The middle equality is where we “add b to both sides”; really, I pass from pa � bq � b to pa � b1q � b

because I happen to know that a� b � a� b1. Everything else is either (F1), (F2), (F4), or (F5).
As you’ve seen in practice by now, it doesn’t really matter how I arrange the brackets when I’m adding

different elements of F, nor does it matter what order we write them in. If we internalize this, we could write
the previous string of equalities more simply as

b � 0� b � pa� bq � b � pa� b1q � b � pa� bq � b1 � 0� b1 � b1,

where we skipped all the juggling needed to go from pa� b1q � b to pa� bq � b1.
2Technically, I’m assuming here that 1 � 1 � 0, which is not true in every field! It’s true in every case we’ll cover in this

class, though.
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From now on, as discussed above, I will be more brief when passing between two expressions like pa�b1q�b
and pa� bq � b1.

In the next theorem, we show that the additive identity behaves like you expect in terms of multiplication:

Lemma 19. Let F be a field, and write 0 P F for the additive identity. Then 0 � x � 0 for all x P F.
Proof. This uses axioms (F1), (F3), (F4), and (F5): we actually need subtraction to show this!

The trick is to use the fact that 0 � 0 � 0, and multiply by x; this will give us “two copies” of 0 � x on
one side, and one copy on the other; cancelling one copy out shows that 0 � x � 0.

We have
p0� 0q � x � 0 � x� 0 � x � 0 � x.

Adding �p0 � xq to both sides, we see that

p0 � x� 0 � xq � p�p0 � xqq � 0 � x� p�p0 � xqq;
the left-hand side simplifies to 0 � x, while the right-hand side simplifies to 0; thus we see that

0 � x � 0.

We needed the previous lemma to show

Lemma 20. If a P F, then the additive inverse is given by �a � p�1q � a.
Proof. Here we’ll use (F3), plus the stuff that came before. Because additive inverses in a field are unique
(Lemma 18), it suffices to show that p�1q � a is an additive inverse of a. For this, we use distributivity:

a� p�1q � a � 1 � a� p�1q � a � p1� p�1qq � a � 0 � a � 0.

In the last step, we used Lemma 19, that the product of any scalar with 0 is again 0.

That about covers everything there is to say about addition and additive inverses. I want to move on to
an important property of multiplication.

Proposition 21. If a, b P F, then a � b � 0 if and only if a � 0 or b � 0.

Proof. Here is where multiplicative inverses make their first (and crucial!) appearance.
First, let’s show

ra � 0s or rb � 0s ùñ ra � b � 0s.
If a � 0, then we can use Lemma 19 to see that 0 � b � 0, as desired. On the other hand, if b � 0, then notice
that a � 0 � 0 � a � 0, first using commutativity and then applying the same lemma.

The other direction is more interesting. We’re trying to show

a � b � 0 ùñ ra � 0s _ rb � 0s.
Because this is logically equivalent to

ra � b � 0s ^  ra � 0s ùñ b � 0,

we can rephrase this as follows: suppose a � b � 0 and a � 0. Prove that b � 0.
Why is this good? Because a � 0 promises us the existence of a multiplicative inverse c P F with c �a � 1.

Now, because a � b � 0, we see that
c � pa � bq � c � 0;

the left-hand side simplifies to
c � pa � bq � pc � aq � b � 1 � b � b,

while the right-hand side simplifies to
c � 0 � 0 � c � 0

by Lemma 19. This proves that b � 0. Thus ab � 0 and a � 0 implies b � 0, which is what we wanted to
show.

The property above can hold even when you don’t have multiplicative inverses (for instance, it’s true in
Z), but it’s usually harder to establish.
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4.3 Vector spaces: where vectors live

Last time, we talked about the kind of object the “set of scalars” should be. Today we’ll get into the meat
of the subject: what is a vector space, and what properties should it satisfy?

When studying vector spaces, we’ll always be studying them with respect to a fixed field of scalars.
There’s no good way to discuss the relationship between vector spaces where your scalars are in Q and
vector spaces where your scalars are in F5. This isn’t really an issue, and there is very rarely a good reason
to want to think about multiple kinds of scalars at once.

Definition 15. A vector space pV,�, �q (over the field F) consists of the following data, satisfying the following
axioms.

(D1) A set V of vectors.

(D2) An addition map � : V � V Ñ V ; that is, for each v, w P V , we define a sum v � w P V ;

(D3) A scalar multiplication map � : F � V Ñ V ; that is, for each scalar a P F and each vector v P V , we
define a scalar multiplication a � v P V . We sometimes abbreviate this to av, without the �.

These are required to satisfy the following axioms.

(V1) Associativity. Addition and scalar multiplication in V are associative: for all v, w, u P V , we have

pv � wq � u � v � pw � uq,

and for all a, b P F we have
pabq � v � a � pbvq.

(V2) Commutativity. Addition is commutative: for all v, w P V , we have

v � w � w � v.

(V3) Distributivity. Scalar multiplication distributes over addition: for all a P F and all v, w P V , we have

apv � wq � av � aw.

Similarly, for all a, b P F and all v P V , addition distributes over scalar multiplication: we have

pa� bqv � av � bv.

(V4) Additive identity. There exists an additive identity, the “zero vector” 0⃗ P V , so that for all v P V
we have

0⃗� v � v.

(V5) Additive inverse. For any v P V , there exists a w P V so that v � w � 0⃗. We usually denote w by
the symbol �v.

(V6) Multiplicative identity. If 1 P F is the multiplicative identity, then for any v P V , we have 1 � v � v.

♢
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Remark 18. Notice that it does not make sense to assert that scalar multiplication is commutative. The
inputs of scalar multiplication are a scalar a P F and a vector v P V , and the output is the vector av. There
is no way to “swap the two inputs”; va is not something we’ve defined, nor would it be terribly interesting
to talk about it.

For similar reasons, there is no notion of a “multiplicative inverse” for scalar multiplication. The only
multiplicative identity in sight is 1 P F, which is a scalar; on the other hand, scalar multiplication produces
a vector. It does not make sense to write av � 1. ♢

Remark 19. This time, I separated out the additive identity and multiplicative identity axioms into two sep-
arate axioms. That’s because here they’re actually of a different character: here (V4) asserts the existence
of a certain vector, while (V6) prescribes the way the scalar 1 P F behaves; this scalar is already known to
exist from the field axioms. ♢

Proposition 22. Let V be a vector space over a field F. Then the following are true.

(P1) Additive identities in V are unique: if 0⃗ and 0⃗1 are both additive identities, then 0⃗ � 0⃗1.

(P2) Additive inverses in V are unique: if v P V is a vector and w,w1 P V have v � w � 0⃗ � v � w1, then
w � w1.

(P3) If a P F and v P V , then a � v � 0⃗ if and only if either a � 0 or v � 0⃗.

(P4) The additive inverse to v P V is given by p�1q � v, the scalar multiplication of v by �1 P F.
The proofs of these propositions mirror those in the previous section, and I will not repeat them (though

I will ask you to prove at least one of these on the homework).

4.3.1 Examples

Last week we discussed the example of R2 (and more generally Rn). This same example makes sense —
though becomes much less visual — over any field.

Example 28. Fix a field F. The vector space Fn has as elements n-tuples of elements in F. For instance,
p3, π, 2q is an element of R3, while p1, 1{2, 1{3, 1{4, 1{5q is an element of Q5.

For good reasons I will justify later, we usually write elements of Fn as vertical lists

v⃗ �
�
�a1
� � �
an

�

P Fn ðñ For all 1 ¤ i ¤ n we have ai P F.

For instance, I will write

�
1
2



P R2 to refer to the vector which points one unit right and two units up. The

different terms a1, � � � , an are usually called the components or coordinates of v⃗.
To describe a vector space V over a field F, I need to give you three things: a set V (which I have given

you), as well as an addition map and a scalar multiplication map, which I still have to describe. The addition
map on Fn is defined coordinatewise: �

�a1
� � �
an

�

�

�
� b1
� � �
bn

�

�

�
�a1 � b1

� � �
an � bn

�



(notice that this makes sense because we already have a notion of addition in F, which is what we’re using
in each coordinate!)

The scalar multiplication on Fn is also defined coordinatewise. Given c P F and v⃗ P Fn, we define the
scalar multiplication by

c �
�
�a1
� � �
an

�

�

�
�ca1� � �
can

�

.
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It is straightforward to verify that the vector space axioms follow from the field axioms. The additive
identity is the zero vector

0⃗ �
�
� 0
� � �
0

�

;

the additive inverse is

�
�
�a1
� � �
an

�

�

�
��a1� � �
�an

�

,

and for instance, we have�
�a1
� � �
an

�

�

�
� b1
� � �
bn

�

�

�
�a1 � b1

� � �
an � bn

�

�

�
�b1 � a1

� � �
bn � an

�

�

�
� b1
� � �
bn

�

�

�
�a1
� � �
an

�

,

which establishes the vector space axiom (V2). Here I used the field axiom (F2) to assert that ai�bi � bi�ai
for each i.

The justifications for (V1), (V3), and (V5)-(V6) are similar: they reduce to the corresponding claims for
fields. ♢

The preceding example is the foundational example — in some sense, every example can be artificially
made to look like the example above (more on this later).

This example naturally generalizes to an ‘infinite-dimensional version’ (not that we know what ‘dimension’
means!)

Example 29. Fix a field F, and let X be any set whatsoever. We write MappX,Fq for the set of functions
f : X Ñ F. That is, an element of MappX,Fq is a function f : X Ñ F.

The addition is termwise. We define a function f � g by the formula

pf � gqpxq � fpxq � gpxq,
which makes sense because fpxq and gpxq are unambiguously defined elements of F, and we know how to
add two elements of F.

The scalar multiplication is termwise, too. If c P F and f P MappX,Fq, we define a new function by

pcfqpxq � cfpxq.
Once again, this makes sense because fpxq P F, and I know how to take the product of two elements of F.

The “zero vector” is the function f0pxq � 0 which takes every input x and spits out the number 0 P F.
If f : X Ñ F is a function, its additive inverse is p�fqpxq � �fpxq. The vector space axioms here follow
quickly once more from the field axioms. ♢

Remark 20. Example 28 is more or less a special case of Example 29: take X � t1, � � � , nu. A function
f : t1, � � � , nu Ñ F is the same as the data of n elements fp1q, � � � , fpnq P F, or in other words is the same
data as an n-tuple pfp1q, � � � , fpnqq P Fn. The novelty of Example 29 is it allows for possibly infinite sets X,
which give rise to “infinite-dimensional vector spaces”.

Formally, there is a bijection between the set Mappt1, � � � , nu,Fq and the set Fn, and this bijection
“preserves” the addition and scaling. This is called an isomorphism, and we will be spending a lot of time
thinking about these soon enough. ♢

Example 30. There are a family of examples from analysis, written CkpRq for 0 ¤ k ¤ 8.
The first of these, C0pRq, is the set of continuous functions f : R Ñ R. I would like to say that this

has a sum operation defined as follows: if f, g are continuous functions RÑ R, then we define f�g to be the
function pf � gqpxq � fpxq � gpxq. To say that f � g P C0pRq means that this function is again continuous.
This is something which is usually asserted in a standard Calculus class, and is not hard to prove as soon
as you have a rigorous definition of continuity. I will take it for granted.

Similarly, if c P R and f : R Ñ R is continuous, the function cf defined by pcfqpxq � cfpxq is also
continuous, so this defines a scalar multiplication map on C0pRq.
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The next set, C1pRq, consists of those functions which are continuous, and for which f : R Ñ R has
a well-defined derivative f 1, for which f 1 is also a continuous function. Again, this has a sum and scalar
multiplication defined by the same formula, and the key observation is that if f, g are differentiable so is f�g
with pf�gq1 � f 1�g1, and therefore if f 1, g1 are continuous so is pf�gq1; similarly with scalar multiplication.

In general, CkpRq is the set of functions for which the first k derivativies are defined everywhere, and so
that the first k derivatives are all continuous functions. The set C8pRq is the set of functions for which all
derivatives are defined and continuous. ♢

Let me conclude with a sort of silly example.

Example 31. In Example 28, take n � 0. The vector space F0 is supposed to be the set of 0-tuples of
elements of F. It’s not clear what this should mean (I take... no elements of F?) By convention, we usually
set F0 � t⃗0u to consist of a single element, named 0, for which c � 0⃗ � 0⃗ and 0⃗� 0⃗ � 0⃗. This rather trivially
satisfies all of the vector space axioms, and this is usually called the trivial vector space. You can visualize
it as a dot, a single point. It is more important than it seems. ♢

4.3.2 Non-examples

Just like with fields, the first three axioms of vector spaces — (V1)–(V3) — are purely arithmetical. They
usually hold automatically in most examples of interest, and are necessary to do anything even remotely
interesting. What is more interesting is things that fail because of axioms (V4)–(V6) (or places where you
fail to provide the necessary data in (D1)-(D3).)

Non-example 5. The empty set ∅ is not a vector space over any field. The issue is Axiom (V4), which asserts
that there exists a vector 0⃗ P V — yes, with a particular property, but in particular there is at least one
vector! ♢

Non-example 6. Here is a bizarre example where additive identities exist but additive inverses do not. If F
is a field, write Fo � FYtou for the set F together with a new element named o. We define a sum operation
on Fo by setting, for a, b P Fo,

a� b �

$'''&
'''%
a� b P F a, b P F
b a � o

a b � o

o a � b � o

.

We also define scalar multiplication as usual on F, but set a � o � o for all a P F. It is irritating but not
difficult to establish (V1)-(V3) for this set. Further, o P Fo is an additive identity, as a� o � a for all a P Fo.
It’s a bit like we added a new copy of 0 to our set, except that 0� o � o� 0 � o � 0, so 0 is no longer the
additive identity.

As a result, there are no additive inverses! The only two elements that add to o are o � o � o. Every
other sum spits out an element in F. So no element except for o itself has an additive inverse. (What goes
wrong in the proof that �1 � v should be an additive inverse to v?) ♢

Non-example 7. The following extremely artificial example satisfies every axiom but (V6), but is also totally
worthless. Fix your favorite field F. Let V � F with the usual addition, but with the new multiplication

For all c P F and v P V, set cv � 0⃗.

Then 1 � v � 0⃗ � v for most v, so (V6) fails. In this vector space, there is no way to “unscale”, because
scaling is a silly operation that crushes everything to zero. ♢

4.4 Subspaces of vector spaces

In studying the geometry of Euclidean space, one often wants to consider lines and planes in that Euclidean
space, such as

V �
$&
%
�
�xy
z

�

P R3 | x� y � z � 0

,.
- .
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Exercise. Verify that the usual coordinatewise addition and scalar multiplication make V into a vector
space. (Among other things, this includes verifying that if v⃗, w⃗ P V , then v⃗ � w⃗ P V as well, and similarly
for scalar multiplication.)

This is a common phenomenon: we start with a vector space, and then want to look at another vector
space contained in it. It’s sufficiently common that we encode it as a definition.

Definition 16. Suppose V is a vector space over the field F. A subsetW � V is said to be a linear subspace
(or more briefly ‘a subspace’) of V if the following three conditions hold:

(S1) For all w1, w2 PW , we have w1 � w2 PW . We say ‘W is closed under addition.’

(S2) For all c P F and all w PW , we have cw PW . We say ‘W is closed under scalar multiplication.’

(S3) We have 0⃗ PW .

♢

This includes the example I just mentioned:

Example 32. Let’s verify that the set V � tpx, y, zq P R3 | x� y � z � 0u is indeed a subspace of R3. First,

we should verify that if

�
�x1x2
x3

�

and

�
�y1y2
y3

�

are both in V , then their sum

�
�x1 � y1x2 � y2
x3 � y3

�

 is as well. To show this

element is in V means precisely showing that

px1 � y1q � px2 � y2q � px3 � y3q � 0.

But this follows from the assumption that our first two vectors were in V , as

px1 � y1q � px2 � y2q � px3 � y3q � px1 � x2 � x3q � py1 � y2 � y3q � 0� 0 � 0;

first I rearranged, and in the second step I used that we knew x1 � x2 � x3 � 0 and y1 � y2 � y3 � 0 by
hypothesis.

Secondly, we should show the same claim for scalar multiplication: if c P R and v⃗ �
�
�x1x2
x3

�

P V , then we

have cv⃗ P V as well. Because cv⃗ �
�
�cx1cx2
cx3

�

, this amounts to the fact that

cx1 � cx2 � cx3 � cpx1 � x2 � x3q � cp0q � 0.

Finally, we should verify that 0⃗ �
�
�0
0
0

�

P V . This amounts to the claim 0� 0� 0 � 0, which is certainly

true. ♢

In this example, the subspace V � R3 was a plane sitting inside 3D space. This is a good visual intuition
for what a subspace should look like in general. You will show in your homework that the subspaces of F2

are t⃗0u,F2 itself, and the lines through the origin. A similar statement is true in F3: the subspaces are all
t⃗0u,F3, lines through the origin, or planes through the origin.

In fact, the 1-dimensional case of this is interesting, and the first place that the existence of multiplicative
inverses is really used.

Proposition 23. Consider F as a vector space over itself. If V � F is a linear subspace, then V � t⃗0u or
V � F.

Proof. We are trying to prove a statement of the form P ùñ rQ _ Rs. P is “If V is a linear subspace”,
while Q is “V � t⃗0u” and R is “V � F”. Whaht I am actually going to prove is the equivalent statement:



64 CHAPTER 4. FOUNDATIONS OF LINEAR ALGEBRA

“If V � F is a linear subspace and V � t⃗0u, then V � F.” So we are going to start with a subspace
V � t⃗0u and show that V � F by a double containment argument. The containment V � F is automatic
from the definition of subspace, so our goal is to show F � V .

Notice that 0⃗ P V by (S3) in the definition of linear subspace, so t⃗0u � V . The claim V � t⃗0u therefore
means that there exists some nonzero c P V . Because c P V � F and c � 0, the multiplicative inverse axiom
(F6) for fields guarantees that there exists some d P F so that dc � 1.

Now suppose a P F is arbitrary. By (S2) in the definition of linear subspace, we have padqc P V , because
c P V and V is closed under scalar multiplication. But padqc � apdcq � ap1q � a by distributivity and the
multiplicative identity axiom.

Therefore for any a P F, we have a P V . This proves the reverse inequality, and thus V � F, as
claimed.

Remark 21. The subspace t⃗0u � V is always a subspace of any vector space whatsoever. It is not very
interesting, and is often called the “trivial subspace”. By (S3), the trivial subspace is contained in every
other subspace. ♢

The examples discussed above are very visual (lines and planes in Euclidean spaces!), but some of our
more abstract examples come with natural subspaces, too:

Example 33. Each CkpRq is a subspace of C0pRq. This amounts to the following claims:

(S1) If f, g are continuous and their first k derivatives exist and are continuous, the same is true of f � g.

(S2) If f is continuous and its first k derivatives exist and are continuous, the same is true of cf , for any
c P R.

(S3) The function f0pxq � 0 is continuous, and its first k derivatives exist and are continuous. (True: all
derivatives of f0 are still f0, and f0 is continuous.)

(S2) and (S3) reduce to the facts that pf � gq1 � f 1 � g1 and pcfq1 � cf 1. ♢

As is the case with all of these examples, in general, a subspace is a vector space in its own right:

Proposition 24. If W � V is a linear subspace of the vector space V , then W is in a natural way once
again a vector space.

Proof. If w1, w2 P W , we define their sum to be w1 � w2 using the addition operation from V ; by (S1) this
is indeed an element of W . Similarly if c P F and w PW , we define the scalar multiplication to be cw, which
is again an element of W by (S2).

Axioms (V1)-(V3) and (V6) follow from the corresponding axiom for V . For instance, (V2) for V asserts
that for all v, w P V , we have v � w � w � v, while (V2) for W asserts this only for v, w P W , which is a
smaller set of vectors!

As for (V4), notice that (S3) says that 0⃗ P W , so we at least have a candidate for the additive identity.
But because the addition in W is th same as that of V , we have w� 0⃗ � 0⃗�w � w (because 0⃗ is an additive
identity for V ). Thus (V4) is true for W .

The existence of additive inverses follows from the fact that additive inverses in V are given by �1 � v
and the fact that W is closed under scalar multiplication.

Let us conclude with some examples of subsets which are not subspaces.

Example 34. Consider the set

C � tpx, yq P R2 | xy � 0u � tpx, yq P R2 | x � 0 or y � 0u.

This is the union of the coordinate axes, drawn as follows:
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C satisfies (S2) (proof: if px, yq P C, then cpx, yq � pcx, cyq has
pcxqpcyq � c2pxyq � c2p0q � 0,

so cpx, yq P C as well) and (S3) (proof: p0, 0q P C because 0 � 0 � 0). However, it fails (S1): there exist
vectors v, w P C so that v � w R C. For instance,

p1, 0q P C and p0, 1q P C but p1, 0q � p0, 1q � p1, 1q R C.
♢

Example 35. Consider the set
Q � tpx, yq P R2 | x ¥ 0 and y ¥ 0u.

Q stands for “quadrant”, as this is the first quadrant of the plane. Then Q satisfies (S1) — if px1, x2q P Q
and py1, y2q P Q, so that xi, yi ¥ 0 for i � 1, 2, then

px1, x2q � py1, y2q � px1 � y1, x2 � y2q P Q
as well, because x1 � y1 ¥ 0 (being the sum of two non-negative reals), and similarly for x2 � y2 ¥ 0.

Because p0, 0q P Q, the set Q also satisfies (S3). But it fails (S2). To see this, I need to give you a single
example of a scalar c and a vector v P Q so that cv R Q. We can take c � �1 and v � p1, 1q: we have
cv � p�1,�1q R Q. (In fact, any c   0 and any v � p0, 0q will be a counterexample to (S2).)

♢
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4.5 Spans

Last Tuesday, I ended the lecture by taking about the idea of coordinates in R2. The essential point is that

I had two vectors, e⃗1 �
�
1
0



and e⃗2 �

�
0
1



which I can use to describe any vector in R2, in a unique way.

For instance, the vector which moves three units right and five units up can be written 3e⃗1 � 5e⃗2, and it
cannot be written as ae⃗1 � be⃗2 for any other a, b.

We should encode the idea of “making a vector out of other vectors” into a definition.

Definition 17. Suppose V is a vector space. If a1, � � � , an P F are elements of the underlying field, and
v1, � � � , vn P V are elements of V , then

a1v1 � � � � � anvn
is also an element of V , called a linear combination of the vectors v1, � � � , vn. ♢

Hidden in this definition is a mathematical statement (a linear combination of elements of V is a mean-
ingful description of another element of V ), and this deserves a proof, our first proof by induction.

Proof that a linear combination of elements of V defines another element of V . The idea is that each new
step in forming a linear combination involves only adding and scaling, operations we know how to do. The
reason induction comes into play is that we are carrying out these operations n times (where n can be any
integer), and induction is precisely the tool that lets us argue claims about all integers.

Let P pnq be the claim: “For all a1, � � � , an P F, and all v1, � � � , vn P V , we can cogently define an element
a1v1 � � � � � anvn P V.” Let’s prove this claim by induction.

� Base case P p1q. Our goal is to show thaht if a1 P F and v1 P V , then a1v1 P V . This is part of the
definition of a vector space: if we have an element of the field and an element of our vector space, we
have a well-defined scalar multiplication a1v1 P V .

� Inductive step P pnq ùñ P pn � 1q. Suppose we know that, for all a1, � � � , an P F and for all
v1, � � � , vn P V , we know how to define a sum a1v1 � � � � � anvn P V . I want to know that, for all
a1, � � � , an, an�1 P F and for all v1, � � � , vn, vn�1 P V , we know how to define a sum a1v1� � � � � anvn�
an�1vn�1 P V .

We already know what v � a1v1�� � ��anvn is, by the inductive hypothesis that we know how to take
a linear combination of n vectors. We’re trying to define v � an�1vn�1. But we already know how to
define an�1vn�1 (this is part of the data in a vector space: we know how to scale any given element
by any given scalar), and we already know how to add two vectors (again, this is part of the data of a
vector space), so we know how to define this element v � an�1vn�1, as claimed.

The content of the above is: “Just scale each new vector and add it, one at a time.” The phrasing in
terms of induction is just to justify that “one at a time” makes sense.

When we discussed R2 above, what we were saying is the statement: “Every vector v⃗ P R2 can be written
in a unique way as a linear combination v⃗ � a1e⃗1 � a2e⃗2.” Whenever I have an idea like the above of the
form “there exists a unique” (there exists a unique way to write v⃗ as a linear combination of e⃗1 and e⃗2) I
like to break this up into two parts. In this section, we’ll focus on existence.

Definition 18. Suppose V is a vector space over the field F, and suppose S � V is a subset (with no other
conditions). The span of S is the set

spanpSq � ta1v1 � � � � � anvn | a1, � � � , an P F and v1, � � � , vn P Su � V.

That is, the span is the set of all possible linear combinations we can make out of elements of S. ♢

Remark 22. The definition above does not suppose that S is a finite set. If you look at, for instance, Axler’s
textbook, he only refers to spans of finite lists of vectors, and many other authors only look at spans of finite
sets. In this case, if S � tv1, � � � , vnu, then the span is precisely

spanpv1, � � � , vnq � ta1v1 � � � � � anvn | a1, � � � , an P Fu � V.
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That is, the span of tv1, � � � , vnu is the set of all possible linear combinations of these vectors.

When we work with possibly infinite sets S, it does not make sense to take infinite sums, so the definition
must be modified as above: it’s the set of all possible vectors I can make by picking a finite collection of
vectors from S, a finite collection of scalars, and then scaling and adding everything up. ♢

Remark 23. This remark can safely be skipped on a first reading unless you feel rather comfortable with
what we’ve done so far.

The definition above does not appear to work correctly for S � ∅; what is the span of no vectors? What
is a linear combination of no vectors?

We will see in a moment that spanpSq is always a subspace, at least for S nonempty. So that this holds
true when S is the empty set, we usually set spanp∅q � t0u � V by assumption. But there is actually a
good reason this edge case should work like this.

Suppose I have two finite, non-empty, non-intersecting sets S and T of vectors, so I have a vector vi P V
for every i P S. I can define

°
iPS vi to be the sum of all of these finitely mant vectors. For instance,°

iPt1,2u vi � v1 � v2, while
°
iPt1,4,5,18u vi � v1 � v4 � v5 � v18.

When S X T � ∅, we have the relation
°
iPS vi �

°
iPT vi �

°
iPSYT vi. For instance,¸

t1,2u
vi �

¸
t3,4,17u

vi � v1 � v2 � v3 � v4 � v17 �
¸

t1,2,3,4,17u
vi.

If I want this to hold for all sets S and T , including the empty set, I am forced to say that the empty
sum is zero: the above relation should say ¸

∅
vi �

¸
iPS

vi �
¸
iPS

vi,

because ∅YS � S. That is, if v∅ �
°

∅ vi and vS �
°
iPS vi, then v∅� vS � vS . Subtracting vS from both

sides, this says the only reasonable definition of v∅ is v∅ � 0!

This tells me that it is reasonable to define the sum of an empty set of vectors to be zero. Therefore, I would
say that spanp∅q is not the empty set. It includes only one element: the sum over the empty set of vectors,
and this element is zero. The discussion above, I hope, justifies the convention that spanp∅q � t0u. ♢

Examples

Let’s look at a small handful of examples of spans.

Example 36. Our first example was discussed above. Write ei P Fn for the vector

ei �

�
�����

0
� � �
1
� � �
0

�
����
, where the only nonzero entry is in the i’th coordinate.

For instance, in F3, we have e2 �
�
�0
1
0

�

.

Then the set te1, � � � , enu spans the whole of Fn. This is because I can write a vector in Fn as

�
�x1
� � �
xn

�

�

�
���
x1
0
� � �
0

�
��
�

�
���

0
x2
� � �
0

�
��
�

�
���

0
0
� � �
xn

�
��
� x1e1 � x2e2 � � � � � xnen.

We saw this for R2 in picture the other day:
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♢

Example 37. Another good example of a vector space is

V �
$&
%
�
�xy
z

�

P F3

���� x� y � z � 0

,.
- .

I claim that this is the span of the set tv1, v2u, where v1 and v2 are the vectors

v1 �
�
� 1

0
�1

�

, v2 �

�
� 0

1
�1

�

.

To carry this out, let’s start with an arbitrary vector v P V , so v �
�
�xy
z

�

where x� y� z � 0. My idea is to

use x of the first vector (as this is the only vector with a nonzero x component) and y of the second vector
(as this is the only vector with a nonzero y component). Notice that

xv1 � yv2 �
�
� x

0
�x

�

�

�
� 0
y
�y

�

�

�
� x

y
�x� y

�

.

But because x�y�z � 0, we see that z � �x�y, so in fact the last component of xv1�yv2 agrees with the
last component of v. This proves that our arbitrary vector v can be written as xv1 � yv2 for some x, y P F,
so that

V � spanpv1, v2q.
On the other hand, because v1, v2 P V are elements of this subspace, and subspaces are closed under addition
and scalar multiplication, we also have xv1�yv2 P V . This proves the reverse containment spanpv1, v2q � V .

In lecture I will present a picture of this space for F � R, as well as a visual description of what it means
to say these vectors span V . (Unfortunately, a still image is not really sufficient to “see” this space.)

♢
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Example 38. There can be huge amounts of redundancy in spanning sets. For instance, the span of the set
of vectors "�

1
0



,

�
1
1



,

�
1
2



,

�
1
3


*

is all of R2: for an arbitrary

�
x
y



P R2, we have for instance

�
x
y



� px� yq

�
1
0



� y

�
1
1



.

In this description of the vectors in R2, we didn’t use either of the last two vectors!

Another example with redundancy is given by, say,$&
%
�
�1
0
0

�

,

�
�1
1
0

�

,

�
�3
2
0

�

,

�
�0
1
1

�


,.
- .

The span of this set is all of R3, as before:�
�xy
z

�

� px� y � zq

�
�1
0
0

�

� py � zq

�
�1
1
0

�

� z

�
�0
1
1

�

.

In this case, the third vector on the list was totally unnecessary, but this time it wasn’t at the end of the
list. In fact, there is nothing we can “reach” with the third vector that we can’t reach by using the first and
second vectors. ♢

Example 39. Let’s try an infinite example. Consider the set MappN,Fq, whose elements are functions
f : N Ñ F (that is, an element of this vector space is a choice, for each natural number n, of an element
fpnq P F.) For instance, p1, 3, 5, 7, 9, 11, 13, � � � q is an element of MappN,Qq; writing this as a function, this
corresponds to f : NÑ Q defined by fpnq � 2n� 1.
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Let’s write fi : NÑ F for the function

fipnq �
#
1 i � n

0 i � n
.

In terms of sequences, f0 corresponds to the sequence p1, 0, 0, � � � q while f1 corresponds to p0, 1, 0, � � � q and
so on: each fi corresponds to the sequence which is nonzero in exactly the i’th term. Thus I have a set
S � tf0, f1, f2, � � � u � MappN,Fq. What is the span of this set?

I claim that the span of this set is the subspace Mapfin � MappN,Fq, where f P Mfin if and only if f is
eventually zero:

f PMfin ðñ DNPN such that @m¡Nfpmq � 0.

Explicitly, the sequence p1, 3, 1, 4, 1, 5, 0, 0, 0, 0, � � � q is an element ofMfin, as is the sequence p0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, � � � q
which starts as zero, becomes nonzero for a bit, but eventually goes back to always being zero. On the other
hand, p1, 3, 5, 7, � � � q is not in Mfin, as this sequence is never zero!3

In the next Proposition, I will prove that this is indeed the span of S. ♢

Proposition 25. In Example 39, we have spanpSq � Mapfin.

Proof. We have two containments to prove. First, observe that each fi P S is an element of Mapfin: it is
only nonzero at one point, so is certainly eventually zero. Next, notice that Mapfin is a linear subspace: it
is closed under scalar multiplication and addition (if f has fpnq � 0 for all n ¡M , the same is true for cf ;
if f has fpnq � 0 for all n ¡ N , and g has gpnq � 0 for all n ¡M , then so long as n ¡ maxpM,Nq, we have

pf � gqpnq � fpnq � gpnq � 0� 0 � 0.

Thus sums of elements of Mapfin are also in this set, so this is a subspace of MappN,Fq.)
It follows that any linear combination of the fi are also in Mapfin, because subspaces are closed under

linear combinations. This proves the containment spanpSq � Mapfin.
For the other containment Mapfin � spanpSq, pick an arbitrary function g : N Ñ F which is eventually

zero, so fpnq � 0 for all n ¡ N . I claim

g �
Ņ

i�0

gpiqfi.

The expression on the right is given by�
Ņ

i�0

gpiqfi
�
pnq �

Ņ

i�0

gpiqfipnq �
#
gpnq n ¤ N

0 n ¡ N
.

But this is precisely the same as g, beause gpnq � 0 for all n ¡ N . Therefore we’ve shown that every
g P Mapfin can be represented as a linear combination of elements in tf0, f1, � � � u � S, showing the reverse
containment. This completes the proof.

A crucial property

We implicitly saw the following fact in the previous argument.

Proposition 26. Let V be a vector space, and let S � V be an arbitrary subset.
The set spanpSq satisfies the following three properties:

(a) The set spanpSq � V is a linear subspace.

(b) We have S � spanpSq.
(c) If W � V is any linear subspace which contains S (so S �W � V ), then we have spanpSq �W .

3I chose the name Mapfin to mean “maps with finite support”, as in, they are only nonzero in finitely many terms.



4.5. SPANS 71

Remark 24. We usually interpret this as meaning that spanpSq is the ‘smallest linear subspace containing
S’. The first two parts assert that spanpSq is indeed a linear subspace containing S, while the last part
asserts that any other set with the same property contains spanpSq, vis a vis, the span is the smallest such
set. In fact, we can precisely state

spanpSq �
£

S�W�V
W a linear subspace

W.

This latter formulation is not very useful; the formulation of Proposition 26 says the same thing, but more
explicitly. ♢

Proof of Proposition 26. I am going to present a proof under the additional assumption that S � tv1, � � � , vnu
is finite, because the notation is mildly irritating for infinite S (and we are by far more interested in the
finite case anyway). In a remark after the proof, I will explain how to modify the same proof to work when
S is infinite.

a) To prove that spanpSq is a linear subspace, we need to argue three things. For (S1), we need to show
it is closed under addition. Suppose v, w P spanpSq. This means

v � a1v1 � � � � � anvn for some a1, � � � , an P F
w � b1v1 � � � � � bnvn for some b1, � � � , bn P F.

Their sum is

pa1v1 � � � � � anvnq � pb1v1 � � � � � bnvnq � pa1 � b1qv1 � � � � � pan � bnqvn,

which is by definition again an element of spanpSq. Similarly for (S2), if v � a1v1�� � ��anvn P spanpSq,
then we have

cv � cpa1v1 � � � � � anvnq � pca1qv1 � � � � � pcanqvn P spanpSq.

Finally, for (S3), we should argue that the zero vector is in spanpSq. When S is nonempty (so v1 P S,
say), this follows because 0v1 � 0⃗ P V is a linear combination of elements of S. When S is empty,
one must either say that this is true by convention or argue that 0⃗ should be called the empty linear
combination, as in Remark 23.

b) For any vi P S, we have vi � 0v1 � 0v2 � � � � � 1vi � � � � � 0vn P spanpSq — that is, take the linear
combination with exactly one coefficient equal to 1, and all others equal to zero. Therefore S � spanpSq.

c) Suppose v P spanpSq; our goal is to show v PW . By definition of the span, we have

v � a1v1 � � � � � anvn for some a1, � � � , an P F.

Because we assumed S � W , we know that v1, � � � , vn P W . Because W is a subspace, it is closed
under scalar multiplication, so aivi PW for all 1 ¤ i ¤ n. Finally, because W is closed under addition,
we can argue inductively that a1v1 � � � � � anvn PW as well. Thus v � a1v1 � � � � � anvn PW .

Exercise: Write out the inductive proof alluded to above.

Remark 25. When S is infinite, the proof above is made more irritating by the fact that when I define a
linear combination of elements of S, I have to choose the finitely many terms I’m adding (whereas when S is
finite, I can just say “add all the elements, with some weights”). This is resolved if I instead define a linear
combination in S to be ¸

iPS
aivi where all but finitely many of the ai are zero.
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Thus this infinite-looking sum is secretly a finite sum. When this is the case, the above argument goes
through without change: �¸

iPS
aivi

�
�
�¸
iPS

bivi

�
�

¸
iPS
pai � biqvi,

and because all but finitely many ai are zero and all but finitely many bi are zero, this implies for all but
finitely many i we have both ai and bi zero. Thus all but finitely many ai�bi are zero, so the sum described
above is again a finite sum, hence an element of spanpSq.

The rest of the proof proceeds with minimal change. ♢

Earlier I said a lot of times “The span of this set is the whole space.” This is a common enough notion
that it is worth naming.

Definition 19. If S � V is a subset for which spanpSq � V , we say that ‘S spans V ’. If there is a finite set
S which spans V , we say that V is finite-dimensional. ♢

This course is the study of finite-dimensional vector spaces, and how they relate to each other.

Let me conclude this section by spelling out the definition above. By definition, we have spanpSq � V
for any set S � V whatsoever, so the content of ‘S spans V ’ must be the other containment V � spanpSq.
This containment asserts that

For all v P V, there exist some natural number n and scalars a1, � � � , an P F and vectors v1, � � � , vn P S
so that v � a1v1 � � � � anvn.

4.6 Linear independence

Before getting into definitions, let me return to an example of spans. The following example about redun-
dancy in spans is similar to Example 38.

Example 40. Recall the notation e1 �
�
1
0



and e2 �

�
0
1



for the two standard vectors in F2 (which we will

soon call ‘the standard basis vectors’). We saw that spanpe1, e2q � F2, and in fact every vector v �
�
x
y



P F2

can be written in a unique way as a linear combination of these two vectors: v � xe1 � ye2.
We also have spanpe1, e2, e1 � e2q � F2, but that last vector was unnecessary. I already know that this

space is the span of the first two vectors; this third vector is a linear combination of the first two. Now there
are many ways to write a given vector as a linear combination of the three of these; for instance,

v �
�
3
2



� p3� xqe1 � p2� xqe2 � xpe1 � e2q

for any x P F. I might say that there are many representations of v as a linear combination of the vectors in
the set te1, e2, e1 � e2u.

Here is a useful trick. Take two such representations; for instance, v � 3e1 � 2e2 � 0pe1 � e2q and
v � 2e1 � 1e2 � 1pe1 � e2q. “Subtracting the second equation from the first”, we find that

0⃗ � v � v � p3e1 � 2e2 � 0pe1 � e2qq � p2e1 � 1e2 � 1pe1 � e2qq � e1 � e2 � 1pe1 � e2q.

That is, there is a non-trivial linear combination of the vectors te1, e2, e1 � e2u which gives us the zero
vector. This is not true for the pair of vectors te1, e2u, as if�

x
y



xe1 � ye2 � 0⃗ �

�
0
0



,

then x � 0 and y � 0. ♢
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There were three issues enumerated above with the spanning set te1, e2, e1 � e2u of F2: there was an
unnecessary vector in the list; there’s more than one way to write a vector as a linear combination of these;
you can make the zero vector out of these in a non-trivial way. These all turn out to be equivalent, and the
last of these is easiest to check, and we encode it as a definition.

Definition 20. Let V be a vector space over a field F. Given a set S � tv1, � � � , vnu � V of vectors, a linear
relation between them is a sequence a1, � � � , an P F so that

a1v1 � � � � � anvn � 0⃗.

No matter what v1, � � � , vn is, p0, � � � , 0q always defines a linear relation

0v1 � � � � � 0vn � 0⃗

between them, and is called the trivial linear relation. Any other linear relation, a linear relation
pa1, � � � , anq for which there exists an i so that ai � 0, is called a nontrivial linear relation. ♢

Remark 26. The set of linear relations

RelpSq � tpa1, � � � , anq P Fn | a1v1 � � � � � anvn � 0⃗u
is a linear subspace of Fn: it contains the zero vector p0, � � � , 0q (the trivial relation!); if pa1, � � � , anq and
pb1, � � � , bnq are linear relations, then pa1 � b1, � � � , an � bnq is too:

pa1 � b1qv1 � � � � � pan � bnqvn � pa1v1 � � � � � anvnq � pb1v1 � � � � � bnvnq � 0⃗� 0⃗ � 0⃗.

The set of linear relations is closed under scalar multiplication by a similar argument.
The subspace RelpSq is related to the subspace spanpSq in an interesting way that we will explore when

we learn about linear transformations (the space RelpSq can be understood as the ‘kernel’ of a certain linear
map, and spanpSq the image of that same linear map). ♢

Remark 27. You can make sense of this definition when S is infinite: a linear relation is a choice of vectors
v1, � � � , vn � S and a1, � � � , an P F so that a1v1 � � � � � anvn � 0⃗. ♢

The first example of the section suggests that the property I want is that there are no non-trivial linear
relations between the vectors in S. I’ll write this in a logically equivalent form.

Definition 21. We say that a set S � tv1, � � � , vnu � V of vectors is linearly independent if the only linear
relation between them is the trivial linear relation. That is, tv1, � � � , vnu is linearly independent when

@a1,��� ,anPFa1v1 � � � � � anvn � 0⃗ ùñ a1 � � � � � an � 0.

On the other hand, if there exists a non-trivial linear relation between the vectors in S, we say S is
linearly dependent. ♢

Remark 28. “S is linearly indepedent” as saying that the subspace RelpSq � t⃗0u is the trivial subspace of
Fn. ♢

Example 41. The set te1, � � � , enu � Fn is linearly independent:

a1e1 � � � � � anen � 0⃗ ùñ
�
�a1
� � �
an

�

�

�
� 0
� � �
0

�

;

to say these vectors are equal in Fn precisely means all their coordinates are equal, so ai � 0 for all i.
This is hardly the only linearly independent set in Fn. It is easy to come up with more. For instance, for

any choice of x P F, the pair

"�
1
0



,

�
x
1


*
is a linearly independent set in F2: if

�
a1 � a2x

a2



� a1

�
1
0



� a2

�
x
1



� 0⃗ �

�
0
0



,

then by comparing coefficients we see that a1 � a2x � 0 and a2 � 0. Applying the latter to the first, we see
that a1 � 0 as well. Thus any linear relation pa1, a2q between these vectors must have pa1, a2q � p0, 0q, and
the vectors are linearly independent. ♢
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Example 42. We saw earlier that the set te1, e2, e1 � e2u is linearly dependent, because p1, 1,�1q gives a
non-trivial linear relation between them:

1e1 � 1e2 � p�1qpe1 � e2q � 0⃗.

♢

Example 43. Any set tv1, � � � , vnu which contains the zero vector (so vi � 0⃗ for some i) is linearly dependent,
because

0v1 � 0v2 � � � � � 1vi � � � � � 0vn � vi � 0⃗;

here the only non-zero coefficient is the coefficient of vi � 0⃗. ♢

4.6.1 Redundancy

I mentioned at the beginning that another way the list of vectors pe1, e2, e1� e2q was inefficient (for the sake
of taking spans) is that I could write the last term as a linear combination of the previous terms. Notice
that this requires talking about ordered lists of vectors (to refer to ‘the previous terms’) as opposed to sets,
whose elements are not ordered (the set t1, 2u is the same as the set t2, 1u, as they have the same elements).
Let’s record this in the following definition.

Definition 22. Let V be a vector space. Given an ordered list of vectors pv1, � � � , vnq, with vi P V for all
1 ¤ i ¤ n, we say that a vector vi on this list is redundant if

vi P spanpv1, � � � , vi�1q.
That is, vi is redundant if and only if there are scalars a1, � � � , ai�1 P F so that

a1v1 � � � � � ai�1vi�1 � vi.

In the case that i � 1, we say v1 is redundant if and only if v1 � 0⃗. ♢

Remark 29. If you accept that ‘the empty sum’ is 0⃗ or that spanp∅q � t⃗0u, the case i � 1 is subsumed into
the case above. ♢

The notion of redundancy depends on the order I list the vectors. For instance, in pe1, e2, e1 � e2q, the
first two vectors are non-redundant (e1 is nonzero and e2 is not a multiple of e1), but the third vector on
the list is redundant, as e1 � e2 � 1e1 � 1e2.

On the other hand, in the list pe1, e1�e2, e2q, the first two vectors are still non-redundant — e1 is nonzero
and e1 � e2 is not a multiple of e1 — but e2 is now the redundant vector, as

e2 � p�1qe1 � 1pe1 � e2q.
Lemma 27. Suppose V is a vector space, and pv1, � � � , vnq a list of vectors in V . If vi is redundant (for
some 1 ¤ i ¤ n), then spanpv1, � � � , vnq � spanpv1, � � � , vi�1, vi�1, � � � , vnq; that is, the span does not change
by excluding vi.

Proof. We suppose vi is redundant and try to show these two spans are equal. The containment

spanpv1, � � � , vi�1, vi�1, � � � , vnq � spanpv1, � � � , vnq
is automatic (and has nothing to do with the assumption that vi is redundant): all the vectors in the first
list are contained in the second list, so all linear combinations of vectors in the first list are among the linear
combinations of vectors in the second list.

The other containment

spanpv1, � � � , vnq � spanpv1, � � � , vi�1, vi�1, � � � , vnq
has more content. First, let me spell out what it means to say that vi is redundant: this means there exist
b1, � � � , bi�1 P F so that vi � b1v1 � � � � � bi�1vi�1. Now given a vector in the first span, so some vector of
the form

v � a1v1 � � � � � anvn,
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notice that we can use the expression above to rewrite this without vi whatsoever; it’s

v � pa1v1 � � � � � ai�1vi�1q � aivi � pai�1vi�1 � � � � � anvnq
� pa1v1 � � � � � ai�1vi�1q � aipb1v1 � � � � � bi�1vi�1q � pai�1vi�1 � � � � � anvnq
� pa1 � aib1qv1 � � � � � pai�1 � aibi�1qvi�1 � ai�1vi�1 � � � � � anvn P spanpv1, � � � , vi�1, vi�1, � � � , vnq,

as desired. (If i � 1 so that v1 redundant means v1 � 0⃗, we just ignore the a10⃗ term, as this contributes
nothing to the sum anyway.)

Corollary 28. Let V be a vector space. If pv1, � � � , vnq is a list of vectors in V , there is a smaller list
pvi1 , � � � , vikq of vectors, obtained by removing the redundant vectors of pv1, � � � , vnq, so that

spanpv1, � � � , vnq � spanpvi1 , � � � , vikq

but pvi1 , � � � , vikq contains no redundant vectors whatsoever.

To make the statement clear, suppose pv1, v2, v3, v4, v5q is a list of vectors where v1, v3, v4 are all redundant.
Then spanpv1, v2, v3, v4, v5q � spanpv2, v5q, but the list pv2, v5q has no redundant vectors whatsoever.

Proof. This is a proof by induction, where we induct on the number of vectors in the list which are redundant.
Precisely, let P pmq be the statement: “If pv1, � � � , vnq has exactly m redundant vectors, then there exists a
smaller list pvi1 , � � � , vin�m

q of vectors, obtained by removing the m redundant vectors, so that this smaller
list has the same span as the original list.”

The base case, P p0q, states: if this list has no redundant vectors, then removing no vectors gives us a list
with the same span and with no redundant vectors. This is a tautology.

Now suppose the statement P pmq is true (the inductive hypothesis). Let’s prove that P pm� 1q is true.
So suppose we have a list pv1, � � � , vnq that has exactly m � 1 redundant vectors. If the first of these is vi,
then the list pv1, � � � , vi�1, vi�1, � � � , vnq is a list of n� 1 vectors of which exactly m are redundant: if vj is
redundant in the original list for j ¡ i, it can be written as a linear combination of the previous vectors;
by replacing vi with a linear combination of terms before it, this gives an expression for vj as a linear
combination of vectors before it excluding vi, so it is redundant in the new list as well. By Lemma 27, this
new list has the same span as the previous, because vi is redundant.

By the inductive hypothesis, there is a sublist pvi1 , � � � , vin�m�1q of this list with the same span for which
none of these vectors are redundant. Because spanpv1, � � � , vi�1, vi�1, � � � , vnq � spanpv1, � � � , vnq, this sublist
has the same span as our original list, and is obtained by removing all the redundant vectors (vi, and all the
redundant vectors after it), and has no more redundat vectors. This completes the proof of P pm� 1q.

By the principle of induction, P pmq is true for all m; that is, the claim is true no matter how many
vectors there are.

To conclude this discussion, let me observe that the notion of linear dependence is the same as the notion
of having a redundant vector in the list.

Proposition 29. Let V be a vector space. Given a finite list of vectors pv1, � � � , vnq in V , these vectors are
linearly dependent if and only if there is some 1 ¤ i ¤ n so that vi is redundant.

Proof. Suppose these vectors are linearly dependent. This means there exist a1, � � � , an P F so that

a1v1 � � � � � anvn � 0⃗

so that at least one aj is nonzero. Let 1 ¤ i ¤ n be the largest number so that ai is nonzero, so that this
relation reads

a1v1 � � � � � aivi � 0vi�1 � � � � � 0vn � 0⃗, or a1v1 � � � � � aivi � 0⃗.

Subtracting aivi from both sides, we have

a1v1 � � � � � ai�1vi�1 � �aivi.
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By the assumption that ai � 0 we also have �ai � 0 (as �0 � 0), so there exists a multiplicative inverse
�1{ai P F. Scaling both sides by this quantity, we see that

�a1
ai

v1 � � � � � �ai�1

ai
vi�1 � vi,

so that vi is redundant.
Conversely, if vi is redundant — so that a1v1 � � � � � ai�1vi�1 � vi for some a1, � � � , ai�1 P F — then

subtracting vi from both sides gives a non-trivial linear relation between our list of vectors, given by

a1v1 � � � � � ai�1vi�1 � p�1qvi � 0vi�1 � � � � � 0vn � 0⃗;

this relation is non-trivial because �1 � 0 (as 1 � 0).

It’s worth pointing out that linear dependence is a notion which does not depending on the ordering of
the vectors in the list. If we reorder a list of vectors, this will change which vectors are considered redundant.
On the other hand, it will not change whether or not there is a redundant vector: there will be a redundant
vector in the list if and only if the list is linearly dependent.

Corollary 30. Given any set S � tv1, � � � , vnu of vectors in a vector space V , there is a subset S1 �
tvi1 , � � � , viku with S1 � S of these vectors so that spanpS1q � spanpSq and S1 is linearly independent.

Proof. Order these vectors into a list pv1, � � � , vnq and apply Corollary 28 to produce a smaller list of vectors
with the same span and no redundancy, then apply the contrapositive of Proposition 29 to see that this list
is linearly independent.

4.6.2 Linearly independent sets and spans

We can use what we’ve proved so far to establish a really powerful result, which will be the foundation of an
important idea in the next section. It’s important enough to call it a theorem. The argument largely follows
the presentation in Axler’s book.

Theorem 31 (Size of linearly independent set ¤ size of spanning set). Let V be a finite-dimensional
vector space, so that there exists a finite spanning set for V . Given any set tv1, � � � , vnu of linearly
independent vectors in V , and any set tw1, � � � , wmu of vectors which spans V , we have n ¤ m.

Remark 30. This result holds for infinite-dimensional vector spaces as well, but the proof here does not
directly apply, as our proof is by a sort of induction which doesn’t make sense in infinite-dimensional vector
spaces. ♢

We will prove this by first proving a lemma, which will amount to the inductive step in a proof.

Lemma 32. Let V be a vector space. If pv1, � � � , vnq is a linearly independent list of vectors in V , and
pv1, � � � , vk, w1, � � � , wm�kq is a spanning list of vectors for V (where k   n and k ¤ m), there is also a
spanning list pv1, � � � , vk�1, w

1
1, � � � , w1m�k�1q with the same number of vectors total but one more vector from

pv1, � � � , vnq. In particular, we have k � 1 ¤ m as well.

Proof. Consider the list pv1, � � � , vk, vk�1, w1, � � � , wm�kq with m � 1 vectors and one more vector from the
list of vi. This list is linearly dependent: because vk�1 P spanpv1, � � � , vk, w1, � � � , wm�kq there is a linear
relation of the form

a1v1 � � � � � akvk � p�1qvk�1 � b1w1 � � � � � bm�kwm�k � 0⃗.

Because this list is linearly dependent, there must be a redundant vector on this list. But it cannot be
among the first pk�1q, as tv1, � � � , vnu is linearly independent. Thus there must be a later vector on this list
(so m� k ¡ 0, or k� 1 ¤ m) which is redundant, and in particular, wi is redundant for some 1 ¤ i ¤ wm�k.
Removing it, we obtain a list

pv1, � � � , vk�1, w1, � � � , wi�1, wi�1, � � � , wm�kq
of precisely m vectors which has the same span as the previous list, as desired.
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Iterating this process (a proof by induction!) we eventually obtain a new spanning list of the same size
which starts with the list of linearly independent vectors.

Corollary 33. If pv1, � � � , vnq is a linearly independent list of vectors in V , and pw1, � � � , wmq is a span-
ning list for V , then there exists a spanning list pv1, � � � , vn, w11, � � � , w1m�nq which starts with the linearly
independent list but has exactly the same number of vectors.

Proof of Theorem 31. By Corollary 33, there is a spanning set of size m which contains the linearly inde-
pendent set tv1, � � � , vnu. Thus the linearly independent set has no more vectors than the spanning set:
n ¤ m.

Notice that Fn has a set te1, � � � , enu of vectors which is linearly independent and also spans Fn. It
follows that every set of linearly independent vectors in Fn has at most n vectors — for instance, no list of
four vectors in F3 can be linearly independent — and every spanning set for Fn has at least n vectors — so
no list of two vectors in F3 can span it.

Corollary 34. A subspace W of a finite-dimensional vector space V is finite-dimensional.

Proof. Passing to the contrapositive, the claim is: ifW is infinite-dimensional, then V is infinite-dimensional.
You will prove on your homework that ifW is infinite-dimensional, then there exists an infinite set pw1, w2, � � � q
of linearly independent vectors in W , which are also linearly independent when considered as vectors in V .
Thus, there are linearly independent sets tw1, � � � , wnu in V of size any natural number n. Applying Theo-
rem 31, there is no finite set of vectors which span V , because for any natural number m there is a linearly
independent set of size larger than m.

Thus V is infinite-diimensional.

4.7 Bases and dimension

We are now going to combine the ideas from the last two sections into one extremely powerful idea.

Definition 23. Let V be a vector space. A basis for V is a linearly independent set S � V for which
spanpSq � V . ♢

Example 44. The standard basis for Fn is the set te1, � � � , enu, where

ei �

�
�����

0
� � �
1
� � �
0

�
����
, where the only nonzero coordinate is the i1th coordinate.

We have already seen both that these span Fn and that these vectors are linearly independent. ♢

Example 45. While Fn comes equipped with a canonical basis you can see and start computing with right
away, most vector spaces don’t have a canonical such basis. Moreover, it is hardly the only basis for Fn; in
fact, there are a humongous number of bases for any vector space (and this is a good thing: we will later
want to work with a basis suited for the problem at hand). Because most vector spaces you can think of
have infinitely many elements, it is difficult to give a good sense of how large this is, so let me refer briefly
to the finite fields Fq with q elements (where q � pm is some prime power).

Then the set
tpv1, � � � , vnq P pFnq qn | pv1, � � � , vnq is a basis for Fnq u

has exactly

pqn � 1qpqn � qq � � � pqn � qn�1q � qn
2

elements. (Idea: You have exactly qn � 1 choices for the first term, because you just need to make sure it’s
not zero; you have qn� q choices for the second term, since you need to make sure it’s not in the span of the
first; and so on, until you have a list of n, and we will see by the end of the section that a list of n linearly
independent vectors in Fn is necessarily a basis.)



78 CHAPTER 4. FOUNDATIONS OF LINEAR ALGEBRA

That is, there are approximately 250 � 1015 basis for the vector space F10
2 ; the vector space itself, by

contrast, has 210 � 1024 � 103 elements. The number of bases for a vector space grows at an insane speed
as you increase the ‘dimension’ of the vector space.

(By the end of this section, you will have enough information to prove that this calculation is correct,
but I will not ask you to do so on homework.) ♢

As before, I am going to focus on finite-dimensional vector spaces, even though this discussion extends
with minimal change to the infinite-dimensional setting. A great many of the results below apply in the
infinite-dimensional setting (and I will say when they don’t), but the proofs use the axiom of choice in an
essential way; this is something you can pursue in the curios, if you want.

The following lemma gives a useful interpretation of bases, and shows how we’ll use them in the future
(in particular, when we discuss matrices). Still, when actually verifying whether some set is a basis, you
should return to the definition.

Lemma 35. Let V be a vector space. A set S � tv1, � � � , vnu is a basis for V if and only if for all v P V ,
there exists a unique way to express v as a linear combination

a1v1 � � � � anvn
of the elements of S. That is,

tv1, � � � , vnu a basis for V ðñ @vPV D!a1,��� ,anPFv � a1v1 � � � � � anvn.

Proof. Let’s start with the backward direction, which is easier. Given any vector v P V , the assumption
says there exists a way to represent v as a linear combination v � a1v1 � � � � � anvn of the vectors in S, so
S spans V . Further, because each vector v can be represented in an unique way as a linear combination of
vectors in S, applying this to v � 0⃗ asserts that there exists a unique linear relation

a1v1 � � � � � anvn � 0⃗.

Because pa1, � � � , anq � p0, � � � , 0q is such a relation, and there is a unique such relation, this implies every
relation between these vectors is trivial — so S is a linearly independent set. Because S is a linearly
independent spanning set, it is by definition a basis.

Conversely, suppose S is a basis for V . For every vector v P V , there exists a representation v �
a1v1 � � � � � anvn as a linear combination of the elements of S, and we need to argue that it’s unique. That
is, if

v � a1v1 � � � � � anvn and also v � b1v1 � � � � � bnvn then ai � bi for all i.

The information we have is that the only linear relation is the trivial relation, so we want to use that
fact somehow. Subtracting the two equations from one another, we see that

0⃗ � v � v � pa1 � b1qv1 � � � � � pan � bnqvn.

Thus pa1� b1, � � � , an� bnq are the coefficients in a linear relation between the vectors tv1, � � � , vnu. Because
the only such relation is the trivial relation, we have ai � bi � 0 for all i, or equivalently, ai � bi for all i.
This is what we wanted to prove.

Next, I want to prove a handful of technical facts about bases which are useful in constructing them in
practice. I will use these so often I’m going to name them.

Lemma 36 (Basis reduction lemma). If S � tv1, � � � , vnu is any spanning set for V , there is a subset S1 � S
which is a basis for V .

Proof. This is the content of Corollary 30: given any finite set of vectors, you can order them into a list
and remove all the redundant vectors to obtain a linearly independent set with the same span. In this case,
a linearly independent set with the same span has spanpS1q � spanpSq � V , so is a linearly independent
spanning set for V — that is, it’s a basis.

Proposition 37. Every finite-dimensional vector space V has a finite basis.
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Proof. Choose a finite spanning set tv1, � � � , vnu for V and apply the basis reduction lemma to find a basis
contained in this set.

We can slightly extend this result.

Lemma 38 (Basis extension lemma). Suppose V is a finite-dimensional vector space. If S � tv1, � � � , vnu
is any linearly independent set for V , there is a larger set S1 � tv1, � � � , vn, v11, � � � , v1ku which is a basis for
V (where k � 0 if spanpSq � V ).

Proof. Let tw11, � � � , w1mu be any spanning set for V , and consider the list pv1, � � � , vn, w11, � � � , w1mq. This is
a spanning list for V whose first n terms are linearly independent. It follows that all redundant vectors are
among the vectors w1i. Discarding these, we obtain a set tv1, � � � , vn, w1, � � � , wku of linearly independent
vectors which span V . If pv1, � � � , vnq already span V , then all the added vectors are redundant and thrown
out.

Proposition 39. Suppose W � V is a subspace of a finite-dimensional vector space. Then there exists a
basis pw1, � � � , wnq for W and a basis pw1, � � � , wn, v1, � � � , vkq for V which begins with the given basis for W
(where k � 0 if W � V ).

Proof. First, choose a basis pw1, � � � , wnq for W : one exists by Proposition 37 and the fact that W is
finite-dimensional (because subspaces of finite-dimensional spaces are finite-dimensional, Corollary 34). In
particular, this set is linearly independent. Next, apply the basis extension lemma to extend this linearly
independent set to a basis for V .

So we finally know that every vector space has a basis, and we can study vector spaces by studying their
bases.

4.7.1 Dimensions

Let’s use the results from the previous section to show that you can in fact extract information from a basis
for a vector space.

Corollary 40 (Dimension is well-defined). Any two bases for a finite-dimensional vector space V have the
same number of elements. If tv1, � � � , vnu and tw1, � � � , wmu are bases for V , then n � m.

Proof. If tv1, � � � , vnu and tw1, � � � , wmu are both bases for V , notice that in particular the first set is linearly
independent while the second spans V ; applying Theorem 31 we see that n ¤ m. On the other hand, the
second set is also linearly independent and the first spans V , so that m ¤ n as well. Because n ¤ m ¤ n, we
must in fact have m � n.

This quantity — the number of elements in a basis — is crucial. It tells us exactly how much information
we need to describe an arbitrary element of V . If pv1, � � � , vnq is a basis, then there is a bijection A : Fn Ñ V
given by sending

A

�
�a1
� � �
an

�

� a1v1 � � � � � anvn.

(This is our first example of a ‘linear transformation.) Surjectivity is the fact that pv1, � � � , vnq spans V ,
while injectivity follows from the fact that pv1, � � � , vnq is linearly independent.

I need n coordinates to describe an arbitrary element of V . If V � spanpvq (where v � 0⃗) is a line,
this means I need exactly one coordinate to describe a point on a line; if V � spanpv, wq (where v � 0⃗ and
w R spanpvq) is a plane, this means I need exactly two coordinates to describe a point on a plane. To my
reckoning, a line is 1-dimensional, and a plane is 2-dimensional, so this inspires the following definition.

Definition 24. Let V be a finite-dimensional vector space. We define dimV P N to be the number of elements
in a basis for V . ♢

The fact that this actually gives an unambiguous number is precisely because of the previous corollary:
any two bases have the exact same number of elements.
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Example 46. Because te1, � � � , enu is a basis for Fn, we have dimpFnq � n. ♢

Remark 31. As a special case of the previous example, we have dimt⃗0u � 0, because ∅ is a basis for t⃗0u.
♢

Example 47. Let’s find a basis for the space

V �

$''&
''%

�
���
a
b
c
d

�
��
P F4

���� a� 3c� 4d � 0, a � c

,//.
//- ,

where F is a field in which 4 � 0 (for instance, Q; a field where 2 � 0 is called ‘a field of characteristic two’,
and 4 � 0 in a field in fact implies 2 � 0).

My first thought is to find a spanning set (maybe with some redundant vectors) and remove any redundant

vectors as necessary. I notice that v1 �

�
���

1
1
1
�1

�
��
 is in this set, because 1� 3p1q � 4p�1q � 0 and 1 � 1; I also

notice that v2

�
���
0
1
0
0

�
��
 is in this set. Now, if

�
���
a
b
c
d

�
��
 is an arbitrary vector in V , notice that because a � c we have

4a� 4d � 0, so that (because 4 � 0 so that we can divide by 4) we have d � �a. Thus thus vector takes the
form �

���
a
b
a
�a

�
��
� a

�
���

1
1
1
�1

�
��
� pb� aq

�
���
0
1
0
0

�
��
� av1 � pb� aqv2.

Thus these two vectors span V . On the other hand, neither is redundant, as v1 � 0⃗ and v2 R spanpv1q, so
they are linearly independent, and thus tv1, v2u forms a basis for V .

Thus dimV � 2. (If we work in a field where 2 � 0, interestingly enough dimV � 3 instead: the two
defining equations simplify to just the one equation a � c.)

♢

Example 48. If I want, I can extend the previous basis to a basis for the whole of F4. One way to do this is
to stick on a set I already know spans F4 and remove redundant vectors: pv1, v2, e1, e2, e3, e4q is a spanning
set for F4. The first two vectors were shown to be non-redundant above. The vector e1 is not redundant
because it does not lie in spanpv1, v2q � V (eg, we do not have a � c for the vector e1). On the other hand,
the vector e2 already appeared earlier in this list (in fact, v2 � e2), so it is redundant.

Next we should determine if e3 is redundant. The general form of a vector in spanpv1, v2, e1q is

a1v1 � a2v2 � a3e1 �

�
���
a1
a1
a1
�a1

�
��
�

�
���

0
a2
0
0

�
��
�

�
���
a3
0
0
0

�
��
�

�
���
a1 � a3
a1 � a2
a1
�a1

�
��
.

In particular, the third coordinate is the negative of the fourth coordinate. The vector e3 does not take this
form, as its third component (1) is not the negative of its fourth component (0).

Lastly, e4 is indeed redundant, as

e4 �

�
���
0
0
0
1

�
��
�

�
���
�1
�1
�1
1

�
��
�

�
���
0
1
0
0

�
��
�

�
���
1
0
0
0

�
��
�

�
���
0
0
1
0

�
��
� �1v1 � 1v2 � 1e1 � 1e3.

Thus pv1, v2, e1, e3q is a basis for F4 whose first two terms give a basis for V .
♢
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The second part of the next theorem is the first result that legitimately uses finite dimensionality. (The
point is that for finite sets S � S1, if S is a proper subset of S1, then |S|   |S1|. This is no longer true for
infinite sets, where you can have proper subsets of nonetheless the same cardinality, such as the naturals N
and the even naturals 2N).

Theorem 41. If W � V is a subspace of a finite-dimensional vector space, we have dimW ¤ dimV . If
dimW � dimV , then in fact W � V .

Note the useful contrapositive statement: if W � V is a proper subspace of a finite-dimensional vector
space (W � V ), then dimW   dimV .

Proof. Use Proposition 39 (that there exists a basis for V which starts with a basis for W ) to find a basis
pw1, � � � , wn, v1, � � � , vkq for V so that pw1, � � � , wnq is a basis forW . This gives dimV � n�k and dimW � n;
as k ¥ 0, we have dimW ¤ dimV .

If dimW � dimV , then we must have k � 0, so in fact pw1, � � � , wnq is a basis for V . In particular, as it
spans both W and V , we have W � V .

Remark 32. There is a sort of arithmetic for infinite cardinalities, and in it this argument fails, because for
‘infinite numbers’ you can have n � k � n even though k ¡ 0. For instance, |N| � |N| � |N|: two copies of
the naturals are in bijection with the naturals themselves by sending one copy to the even integers and one
copy to the odd integers.) You still have n� k ¥ n, so the first part is fine. ♢

This is our first result which truly requires the use of finite-dimensional vector spaces, and it will be the
foundation for many future results that truly require finite-dimensionality. The next — which uses it —
often appears in computational linear algebra courses (in a different guise, which we will see explicitly later).

Corollary 42. If tv1, � � � , vnu is a set of n linearly independent vectors in an n-dimensional vector space
V , then in fact tv1, � � � , vnu spans V .

So if you can find n linearly independent vectors and you happen to know that’s enough (say, in Fn),
you now know that’s a basis without doing any span computations.

Proof. Suppose tv1, � � � , vnu is linearly independent. Consider W � spanpv1, � � � , vnq � V . Because
tv1, � � � , vnu is a linearly independent spanning set for W , we have dimpW q � n � dimV . By Theorem
41, this implies W � V , so tv1, � � � , vnu spans V .
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Chapter 5

Foundations of linear maps

Alternate references

We now move on to the study of linear transformations (sometimes called linear maps or linear functions).
Chapter 3 of Axler’s book “Linear Algebra Done Right” remains somewhat adjacent to our approach, but
starts to diverge; in particular, he has a strong desire to mention matrices as little as possible, whereas I
want to try to make the matrix picture comprehensible to you (as if you had also taken a computational
linear algebra class).

Chapter 1.3-1.6, Chapter 2 of Sergei Treil’s book “Linear Algebra Done Wrong” may also serve as a nice
supplemnt (you may find Chapter 1.8 interesting, though it won’t help you understand the material). He
is less interested in removing matrices (and later, determinants) from the exposition, which more closely
matches my own view.

5.1 Linear maps

Finite-dimensional vector spaces are a useful language, but as it turns out there is not much to study about
them. In a very important sense, every finite-dimensional vector space is “equivalent to” Fn for some n
(technically, we will say every vector space is isomorphic to Fn), and even if we want to talk about subspaces,
we can prove that every pair pW,V q where W � V is a subspace of the vector space V is “equivalent to”
some pair pFk,Fnq, where Fk � Fn is the subspace

Fk �

$''''''&
''''''%

�
�������

a1
� � �
ak
0
� � �
0

�
������

P Fn

����� a1, � � � , ak P F; ak�1 � � � � � an � 0

,//////.
//////-
� Fn.

Thus as objects of study, vector spaces and their subspaces by themselves are not very interesting: we
will later say that they are determined up to isomorphism by their dimensions.

In reality, vector spaces themselves are used as homes for more interesting things of actual importance.
The actual fundamental object of study is a linear map between vector spaces: a function which takes us
from one vector space to another, in a way compatible with the operations of linear algebra (addition and
scaling).

Definition 25. Let V and W be vector spaces over the field F. A linear map from V to W (sometimes
“linear transformation” or “linear operator”) is a function A : V ÑW which satisfies

(L1) For all v1, v2 P V , we have Apv1 � v2q � Apv1q �Apv2q (“A respects addition”),

(L2) For all c P F and v P V , we have Apcvq � cApvq (“A respects scaling”).

83
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♢

Example 49. The function f : R3 Ñ R defined by

f

�
�xy
z

�

� 3x� 7y � z

is a linear function: it satisfies (L1) because

f

�
�
�
�x1y1
z1

�

�

�
�x2y2
z2

�


�

� f

�
�x1 � x2y1 � y2
z1 � z2

�



� 3px1 � x2q � 7py1 � y2q � pz1 � z2q � p3x1 � 7y1 � z1q � p3x2 � 7y2 � z2q

� f

�
�x1y1
z1

�

� f

�
�x2y2
z2

�

,

and (L2) because

f

�
�cxcy
cz

�

� 3pcxq � 7pcyq � pczq � cp3x� 7y � zq.

In fact, much more generally, pick a1, � � � , an P F. The function f : Fn Ñ F given by

f

�
�x1
� � �
xn

�

� a1x1 � � � � � anxn

is linear, by essentially the same argument: explicitly compute both sides of the equalities in (L1) and (L2)
and see that they are equal. In fact, every linear function is of this form. ♢

Lemma 43. Every linear function f : Fn Ñ F takes the form f

�
�x1
� � �
xn

�

 � a1x1 � � � � � anxn for some

a1, � � � , an P F.

Proof. Notice that

�
�x1
� � �
xn

�

� x1e1 � � � � � xnen. If f : Fn Ñ F is a linear map, we have

fpx1e1 � � � � � xnenq � fpx1e1q � � � � � fpxnenq � x1fpe1q � � � � � xnfpenq.
Set ai � fpeiq; because multiplication in a field is commutative, we have just shown that

f

�
�x1
� � �
xn

�

� x1fpe1q � � � � � xnfpenq � a1x1 � � � � � anxn,

as claimed.

Exercise. Before moving on, show that for any vector space V over F, a linear map T : F Ñ V takes the
form T pcq � cv for some vector v P V . I think of the map T as tracing out a line in V (if v � 0⃗). Then show
that T is injective if and only if v � 0⃗.

Non-example 8. The function f : F2 Ñ F defined by fpx, yq � x � y � 1 is not a linear function, because
fp1, 0q � 2 and fp0, 1q � 2, while

fp1, 1q � 3 � 4 � fp1, 0q � fp0, 1q.
You may be used to functions fpxq � ax� b being called linear; they are not, according to the definition

above of linear map. In linear algebra I would call fpxq � ax� b for b � 0 an affine function. ♢
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The above point is important: linear maps do not have ‘constant terms’ ! You could axiomatize that,
but the axiom system is much more complicated and unpleasant (for instance, the axiom corresponding to
(L1) would be Apv1 � v2 � v3q � Apv1q �Apv2q �Apv3q). The claim that linear maps do not have ‘constant
terms’ is formally the following statement:

Lemma 44. If A : V ÑW is a linear map, we have Ap⃗0q � 0⃗.

Proof. We have Ap⃗0q � Ap0 � 0⃗q � 0 �Ap⃗0q � 0⃗.

So far, the linear maps we have seen have not been very interesting (they take the form: “scale the
coefficients and add them up”). It turns out that already in two dimensions linear maps can get very
intricate.

Example 50. We are going to work with R2 in a way which is, for once, actually special to the real numbers.
Pick a point in the plane and an angle θ P R (though two angles which differ by an integer multiple of 2π
will lead to the same result). Define a map rotθ : R2 Ñ R2 by saying that rotθpvq is the result of rotating
the vector v by θ radians counter-clockwise around the circle.

Even without giving a formula for this function, we can prove that it’s linear. If v and w are vectors in
R2, then v � w is the third vector in a triangle whose sides are v and w (where the foot of w is at the head
of v). If we rotate this triangle by angle θ, the result is again a triangle, now with sides rθpvq, rθpwq, and
rθpv � wq.
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But recall that rθpvq � rθpwq is by definition the third side in a triangle whose first two sides are rθpvq
and rθpwq (with the latter’s foot at the head of the former).

The argument that rθpcvq � crθpvq is similar: cv is the vector parallel to v, which is |c| times as long, and
points in the same direction if c ¡ 0 and in the opposite direction if c   0. Because rotation takes parallel
vectors to parallel vectors, preserves length, and preserves whether or not two vectors on the same line point
in the same direction or not, rotθpcvq is also parallel to rotθpvq, |c| times as long, and points in the same
direction (or opposite) as is appropriate.

On your homework, you will find a formula for this linear transformation using little more than basic
linear algebra facts and the definition that cospθq, sinpθq are the px, yq-coordinates of a point θ radians
counterclockwise from p1, 0q on the unit circle. ♢

One example of a linear map between more complicated vector spaces (which you have seen before!) is
the derivative.

Example 51. Recall that I write C0pRq for the set of continuous functions f : R Ñ R, and C1pRq for the
set of differentiable functions f : R Ñ R whose derivative is continuous. These are both vector spaces with
addition defined by taking the sum of two functions f � g to be the function pf � gqpxq � fpxq � gpxq, and
the scalar multiple cf of a function f to be pcfqpxq � c � fpxq. The vector space C1pRq is a subspace of
C0pRq (a differentiable function is continuous).

Let d
dt : C

1pRq Ñ C0pRq be the operation sending a function f : R Ñ R to its derivative d
dtf : R Ñ R,

sometimes written f 1. By definition, a function f P C1pRq is differentiable (so f 1 exists) and its derivative is
continuous (so f 1 P C0pRq), so this does indeed define a function C1pRq Ñ C0pRq.

That d
dt is a linear map amounts to the claims (L1)

d

dt
pf � gq � d

dt
f � d

dt
g

(the “addition rule”) and (L2)
d

dt
pcfq � c

d

dt
f

(the “product rule” where one of the functions is a constant function c, for which c1 � 0).
Note that this does not mean that I’m claiming the derivative of a linear map is a linear map (whatever

that means). For instance, the function f : RÑ R defined by fpxq � 2x is linear, but its derivative f 1pxq � 2
is not. What I’m asserting is that the differentiation operator is a linear map, where “linear” just means:



5.1. LINEAR MAPS 87

you can add and scale either before or after applying the operation; whether you do so before or afterwards
won’t change the result. ♢

Here are some rather tautological examples.

Example 52. Let V be any vector space. The identity map 1V : V Ñ V is the map which sends 1V pvq � v
for all v P V ; that is, it sends any v to itself. It changes nothing. This is a linear map because 1V pv � wq �
v � w � 1V pvq � 1V pwq and 1V pcvq � cv � c1V pvq.

On the other hand, let V and W be any vector spaces. Then the map 0V,W : V Ñ W which has

0V,W pvq � 0⃗ for all v P V , is also linear, because 0V,W pv�wq � 0⃗ � 0⃗� 0⃗ � 0V,W pvq�0V,W pwq, and similarly
with scaling. ♢

The next example will later let us analyze the relations of spans and linear independence in the language
of linear transformations.

Example 53. Let V be a vector space, and pv1, � � � , vnq a list of vectors in V . Then there is a linear map
A : Fn Ñ V defined by

A

�
�a1
� � �
an

�

� a1v1 � � � � � anvn.

This is linear because

A

�
�a1 � b1

� � �
an � bn

�

� pa1 � b1qv1 � � � � � pan � bnqvn
� pa1v1 � � � � � anvnq � pb1v1 � � � � � bnvnq

� A

�
�a1
� � �
an

�

�A

�
� b1
� � �
bn

�

,

while

A

�
�ca1� � �
can

�

� pca1qv1 � � � � � pcanqvn � cpa1v1 � � � � � anvnq.

Notice, in particular, that Aei � vi. ♢

I think the main thing that is interesting in this example is that I can tell you the entire map A just
by telling you what happens to the vectors e1, � � � , en (that is, I specified the outputs Aei � vi, and this

automatically gave me the linear map A

�
�a1
� � �
an

�

� a1v1 � � � � � anvn.

The theorem below says that this is true for general linear transformations: know what they do on a
basis, and you know what they do everywhere.

Theorem 45 (Linear maps are determined by their values on a basis). Suppose V and W are vector spaces,
and that tv1, � � � , vnu is a basis for V . For any list of n vectors pw1, � � � , wnq in W , there exists a unique
linear map A : V ÑW for which Avi � wi for all 1 ¤ i ¤ n.

Proof. Let’s start with uniqueness. Suppose A : V Ñ W and B : V Ñ W are linear maps with Avi �
wi � Bvi for all 1 ¤ i ¤ n. Let’s prove that Av � Bv for all v P V , so that A � B. To see this,
recall that tv1, � � � , vnu spans V (by definition of a basis); for any v P V , there exist a1, � � � , an P F so that
v � a1v1 � � � � � anvn. Then

Apvq � Apa1v1 � � � � � anvnq � a1Apv1q � � � � � anApvnq
� a1Bpv1q � � � � � anBpvnq � Bpa1v1 � � � � � anvnq � Bpvq.

Thus for any v P V we have Apvq � Bpvq, so these functions are equal.
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As for existence, recall that in fact for all v P V there is a unique way to write v � a1v1 � � � � � anvn,
by Lemma 35. Define the map A : V ÑW by

Apa1v1 � � � � � anvnq � a1w1 � � � � � anwn.
Because every vector in V can be written uniquely as a linear combination of v1, � � � , vn, this gives an
unambiguous definition of A on every element of V . Further, it’s linear (by the same argument as in
Example 53 above). Because Avi � wi by definition, this proves the existence of such a map.

Remark 33. One small upshot of this is that if you’re trying to show A,B : V Ñ W are the same map,
it suffices to check they have the same values on some basis of V ; you don’t need to check them on every
vector. ♢

Example 54. One example that I think is somewhat nice to think of in terms of the way it acts on a basis
— though admittedly infinite-dimensional — is the derivative operator on polynomials. Let F � R, and
let V � Rrts, the set of polynomials with real-valued coefficients. This vector space has the infinite basis
t1, t, t2, t3, � � � u, in the sense that every polynomial may be written as a0 � � � � � antn for a unique sequence
of coefficients a0, � � � , an.

The derivative map d
dt : Rrts Ñ Rrts sends polynomials to polynomials, and on this basis we have

d
dt ptnq � ntn�1 for all n ¥ 0 (where in particular d

dt t � 1 and d
dt1 � 0), by the power rule. Knowing this

computation is enough to tell us the value of the derivative on every polynomial by the scaling and addition
rules:

d

dt
pa0 � � � � � antnq � a0

d

dt
p1q � � � � � an d

dt
ptnq � a1 � � � � � nan�1t

n�1.

For instance,
d

dt
p2� 3t� 4t2 � 7t3q � 3� 8t� 21t2;

you implicitly use that the derivative is a linear operator when expanding this, and you just needed to know
what it did to each tn to determine the whole result. ♢

5.2 Subspaces from linear maps: image and kernel

We’ve spent a long time discussing vector spaces and their subspaces, and I want to use these to help us get
access to linear maps.

Definition 26. Let A : V ÑW be a linear map. Its kernel is the subspace kerpAq � V defined by

kerpAq � tv P V | Av � 0⃗u.
Its image is the subspace impAq �W defined by

impAq � tAv | v P V u � tw PW | DvPVAv � wu.
♢

That is, the kernel1 is the set of all vectors A crushes to nothing (the set of all vectors A sends to zero).
If I think a vector v P V carries some sort of “information”, then the elements of the kernel of A are those
vectors whose information is lost as we pass to W (they are sent to the zero vector, which surely contains
no information. I cannot recover anything about vectors in kerpAq from the behavior of Av, because they
are all sent to zero. In terms of inverse images, kerpAq � A�1p⃗0q; it is the set of all vectors which A sends
to the zero vector.

The image is precisely the same as the set-theoretic notion of image from Chapter 2: it’s the set of all
vectors a linear transformation spits out.

Before moving on, I should verify my claim that these are linear subspaces.

1Kernel is perhaps an unexpected word here, familiar to most as kernels of corn. The word ‘kernel’ refers to a seed of certain
plants (think the center of a chestnut) or more broadly the core or central idea of something. It is difficult to find a good
motivated history of the use of the term in linear algebra, but it’s not hard to make up something that sounds plausible: we
will see later that the kernel governs the set of solutions to equations like Ax � b, so the behavior of the kernel is the core part
of understanding how to solve general systems of linear equations. Whether or not this is what was meant when the word was
invented is a different question, harder to answer.
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Lemma 46. If A : V Ñ W is linear, then kerpAq and impAq are indeed both subspaces (of V and W ,
respectively).

Proof. (S1) If v1, v2 P kerpAq, then by (L1) we have Apv1 � v2q � Av1 � Av2 � 0⃗ � 0⃗ � 0⃗, so that
v1 � v2 P kerpAq as well. If w1, w2 P impAq, then by definition of image there exist v1, v2 P V so that
Avi � wi. Then by (L1) Apv1 � v2q � Av1 �Av2 � w1 � w2, so w1 � w2 P impAq as well.

(S2) Fix c P F. If v P kerpAq by (L2) we have Apcvq � cpAvq � c � 0⃗ � 0⃗, so cv P kerpAq as well. If w P impAq,
then w � Av for some v; by (L2) we have Apcvq � cpAvq � cw, so cw P impAq.

(S3) By Lemma 44 we have Ap⃗0q � 0⃗, which proves both 0⃗ P kerpAq and 0⃗ P impAq.

To get a sense for these subspaces, let’s see them in the examples we went through before.

Example 55. For a linear function f : Fn Ñ F, given by f

�
�x1
� � �
xn

�

� a1x1 � � � � � anxn, by definition

kerA �
$&
%
�
�x1
� � �
xn

�

 ���� a1x1 � � � � � anxn � 0

,.
- .

This represents a line in F2, or a plane in F3, and the proof above very concisely explains why this is a
subspace. More complicated subspaces of a similar form, such as

V �

$''&
''%

�
���
x1
x2
x3
x4

�
��


���� 4x1 � 3x2 � x4 � 0, x1 � 3x3 � 4x4 � 0

,//.
//-

are also automatically seen to be subspaces, because V is the kernel of the linear transformation A : F4 Ñ F2

defined by

A

�
���
x1
x2
x3
x4

�
��
�

�
4x1 � 3x2 � x4
x1 � 3x3 � 4x4



.

The image of f in the example above is very simple. If a1 � � � � � an � 0, so that fpxq � 0 for all x,
then kerpfq � Fn is everything and impfq � t0u consists only of zero. On the other hand, if ai is nonzero for
some i, then kerpfq is a proper subspace of Fn and impfq � F is everything. To see that F � impfq, observe
that

f

�
c

ai
ei



� c

ai
� ai � c

for any c P F (where here I used that ai � 0 to divide by it). ♢

Example 56. Consider the rotation operator rotθ : R2 Ñ R2 by angle θ. We have kerprotθq � t⃗0u because
rotation preserves the length of vectors; if rotθpvq � 0⃗, then v must have had length zero, so v must have
been the zero vector. On the other hand, improtθvq � F2: every vector w P F2 can be written as rotθv for
some v P F2 (meaning that w is the vector v rotated θ degrees around the origin). To see this, observe that I
can take v to be rot�θw: if I rotate w clockwise θ degrees, then rotating that counterclockwise by θ degrees
gets me back to w. ♢

Example 57. The derivative map d
dt : C

1pRq Ñ C0pRq is an interesting example. Exercise: Compute ker d
dt

and im d
dt .
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Did you complete the exercise? I’m going to answer it below, but it’s useful as practice in understanding
the definitions of im , ker, and d

dt .

I claim that ker d
dt � R � C1pRq consists of the constant functions. This is because ker d

dt is the set of
functions f : RÑ R whose derivative is zero. Suppose fpxq is such a function. By the fundamental theorem
of calculus, we have fpxq � fp0q � ³x

0
f 1ptqdt, so because f 1ptq � 0 for all t, the right-hand side is zero for all

x; thus fp0q � fpxq for all x P R, and f is a constant function.

Next, I claim that im d
dt � C0pRq is all of C0pRq. Once again, this is the fundamental theorem of calculus.

If f P C0pRq is a continuous function, set F ptq � ³t
0
fpxqdx to be its definite integral (with F p0q � 0). Then

the fundamental theorem of calculus asserts fptq � F 1ptq � d
dt

³t
0
fpxqdx.

Exercise. Show that the map
³
: C0pRq Ñ C1pRq defined by p³ fqptq � ³t

0
fpxqdt is a linear map, has

ker
³ � t0u and

im

»
� tF P C1pRq | F p0q � 0u.

♢

Example 58. If 1V : V Ñ V is the identity map, then ker 1V � t⃗0u and im 1V � V . On the other hand, if
0V,W : V ÑW is the zero map, we have ker 0V,W � V and im 0V,W � t⃗0u. ♢

Example 59. Suppose V is a vector space and pv1, � � � , vnq a list of n vectors in W . We defined in Example
53 a linear map A : Fn Ñ V defined by

A

�
�a1
� � �
an

�

� a1v1 � � � � � anvn.

Then im A � spanpv1, � � � , vnq, because

tAx | x P Fnu �
$&
%A

�
�a1
� � �
an

�

 ���� a1, � � � , an P F

,.
- � ta1v1 � � � � � anvn | a1, � � � , an P Fu � spanpv1, � � � , vnq.

On the other hand, kerA � Relpv1, � � � , vnq is the set of linear relations between this list of vectors.
Precisely, we have

kerA � tx P Fn | Ax � 0⃗u �
$&
%
�
�a1
� � �
an

�

P Fn ���� A

�
�a1
� � �
an

�

� 0⃗

,.
- �

$&
%
�
�a1
� � �
an

�

P Fn ���� a1v1 � � � � � anvn � 0⃗

,.
- � Relpv1, � � � , vnq.

The two fundamental notions associated to a list of vectors pv1, � � � , vnq can be phrased in the language
of linear maps and their associated subspaces. ♢

If A : V Ñ W is a linear map, then A is surjective if and only if im A � W (this is the definition of
surjectivity). An analogous statement is true for kerA (and we saw an avatar of this when proving that
there is a unique way to write a given vector as a linear combination of basis vectors).

Lemma 47. If A : V ÑW is a linear map, then A is injective if and only if kerA � t⃗0u.
Proof. Recall that Ap⃗0q � 0⃗ by Lemma 44. If A is injective (so Ax � Ay implies x � y) then if Av � 0⃗ � Ap⃗0q,
this implies v � 0⃗. Thus kerA � tv P V | Av � 0⃗u � t⃗0u.

Conversely, suppose kerA � t⃗0u; let’s show A is injective. If v1, v2 P V have Av1 � Av2, then we also
have Av1 �Av2 � 0⃗. By linearity (and the fact that �Av � p�1q �Av) we have Av1 �Av2 � Apv1 � v2q, so
that Apv1 � v2q � 0⃗. Because kerA � t⃗0u, this implies v1 � v2 � 0⃗, so that v1 � v2 as claimed.
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Thus the kernel measures precisely why and how a linear map A fails to be injective. In fact, if A : V ÑW
is any linear map and Av1 � Av2, then there exists a w P kerA so that v2 � v1�w; any two elements which
map to the same thing differ by an element of kerA. (The proof is the same; here w � v2 � v1.)

Maybe it deserves convincing you that “a linear map is injective” is something worth knowing in terms
of the objects we’ve studied so far.

Lemma 48. If A : V ÑW is injective, and tv1, � � � , vnu is linearly independent in V , then tAv1, � � � , Avnu
is linearly independent in W .

Proof. Suppose a1Av1 � � � � � anAvn � 0. Then by linearity we have

Apa1v1 � � � � � anvnq � 0⃗.

Because A is injective, it in particular has kerA � t⃗0u, so a1v1 � � � � � anvn � 0⃗. Now we can apply linear
independence of tv1, � � � , vnu to see that a1 � � � � � an � 0.

We conclude by extracting numberical information out of the image and kernel.

Definition 27. If A : V Ñ W is a linear transformation, its rank is rankpAq � dim impAq the dimension of
its image, while its nullity is nullpAq � dimkerpAq, the dimension of its kernel. ♢

Example 60. The map A : F3 Ñ F given by A

�
�xy
z

�

� x � y � z has kerA of dimension 2 (find a basis), so

nullpAq � 2, whereas im A � F is 1-dimensional, so rankpAq � 1.
The zero map A : F3 Ñ F, given by Av � 0⃗, has kerA � F3 and im A � t⃗0u, so that nullpAq � 3 and

rankpAq � 0. ♢

These quantities figure into the most powerful theorem in finite-dimensional linear algebra. (Stated
appropriately, the theorem and proof go through just as well for infinite-dimensional vector spaces, but it is
much more powerful in finite dimensions.)

Theorem 49 (Rank-nullity theorem). If A : V Ñ W is a linear map between finite-dimensional vector
spaces, we have rankpAq � nullpAq � dimV .

The idea here is relatively simple. When I follow a linear map A from V to W , I kill off a chunk of
vectors in V (the vectors in kerpAq), and what survives lives on in W as impAq. The statement above says,
in some sense, that V itself can be thought of as put together out of the vectors that die and vectors that
survive. This strikes me as reasonable, and the abstract proof below tries to make it precise.

I strongly encourage you to try to not just understand each step below, but how I came up
with it. This style of argument is quite useful, and at the end of the term, you may well look back on this
proof and think “This is the only reasonable way one could have written that argument.”

Abstract proof. Choose a basis tw1, � � � , wmu for impAq, so that rankpAq � m. Because these vectors are all
in the image of A, there exist vectors v1, � � � , vm P V so that Avi � wi for all 1 ¤ i ¤ m.

Next, choose a basis tu1, � � � , uku for kerpAq, so that nullpAq � k. I claim that tv1, � � � , vm, u1, � � � , uku
is a basis for V , so that dimV � m� k � rankpAq � nullpAq; this will complete the proof. (The idea is that
tu1, � � � , uku spans “the part of V which is sent to zero”, whereas tv1, � � � , vmu spans “a part of V which
maps identically onto impAq”.

First let’s show that this forms a linearly independent set. Suppose a1v1�� � ��amvm�b1u1�� � ��bkuk � 0⃗.
Our goal is to show ai � bj � 0 for all i, j. Then

0⃗ � Ap⃗0q � Apa1v1 � � � � � bkukq � a1Apv1q � � � � � amApvmq � b1Apu1q � � � � � bkApukq.

By definition of the vi, we have Avi � wi for all 1 ¤ i ¤ m. Further, because ui P kerpAq by definition,
we have Apuiq � 0⃗ for all 1 ¤ i ¤ k. Therefore the above expression simplifies to

0⃗ � a1w1 � � � � � amwm.
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Now tw1, � � � , wmu was a basis for impAq, so in particular linearly independent; this implies a1 � � � � � am �
0.

Thus our original expression reduces to b1u1 � � � � � bkuk � 0⃗. Because tu1, � � � , uku formed a basis for
kerpAq, they were in particular linearly independent, so that b1 � � � � � bk � 0. We have now shown that
tv1, � � � , vm, u1, � � � , uku is a linearly independent set.

What remains is to verify that these vectors span V , which we will also do in two steps. Pick an
arbitrary v P V . First, observe that Av P impAq � spanpw1, � � � , wmq, so that Av � a1w1 � � � � � amwm.
Write v1 � v � a1v1 � � � � � amvm. By linearity, we have

Av1 � Av � a1w1 � � � � � amwm � 0⃗.

Therefore, v1 P kerpAq. Now because tu1, � � � , uku is a basis for kerA, we have v1 � b1u1 � � � � � bkuk for
some b1, � � � , bk. Altogether, this establishes that

v � v1 � a1v1 � � � � � amvm � a1v1 � � � � � amvm � b1u1 � � � � � bkuk,
so that v is in the span of our list of vectors. As v P V was an arbitrary element, this shows that tv1, � � � , uku
spans V , and completes the proof that it is a basis for V .

On the other hand, most linear algebra texts give a more concrete and computational argument. The
details are more irritating, I feel, but it also has some insight to offer, so I will include a summary of the
idea.

Sketch of the concrete proof. Give V the basis tv1, � � � , vnu. The proof you will usually see in most linear al-
gebra texts gives an algorithm to determine the redundant vectors among the list pAv1, � � � , Avnq (ultimately
reducing to “Gauss–Jordan elimination”, which we will talk about next week). They prove (essentially using
the HW4 bonus, usually spelled out explicitly) that the redundant vectors in this list give rise to an explicit
basis for kerpAq. This explicit argument is what takes the most time, and uses the Gauss–Jordan elimination
algorithm in an essential way.

Removing redundant vectors gives a basis for spanpAv1, � � � , Avnq � impAq. Thus rankpAq is the number
of non-redundant vectors in this list, while nullpAq is the number of redundant vectors in this list. It follows
that dimV � n � rankpAq � nullpAq.
Remark 34. In fact, the conclusion in the concrete argument follows from the abstract argument, too. If
pv1, � � � , vnq is a list of vectors in V , we can define the map A : Fn Ñ V by sending Aei � vi and extending
linearly to all of Fn. For this linear map, impAq � spanpv1, � � � , vnq, and the dimension of this set is precisely
n � #redundant vectors. On the other hand, kerpAq � Relpv1, � � � , vnq is the space of all linear relations
among v1, � � � , vn. Then the rank-nullity theorem asserts that Relpv1, � � � , vnq has dimension equal to the
number of redundant vectors among v1, � � � , vn; in fact, you can use those redundant vectors to form a basis
for this space of relations, using each “redundancy relation”

a1v1 � � � � � ai�1vi�1 � p�1qvi � 0vi�1 � � � � � 0vn � 0⃗

as one of the basis vectors. ♢

Corollary 50. If A : V ÑW is a linear map, then

� If A is injective, we have dimV ¤ dimW .

� If A is surjective, we have dimV ¥ dimW .

� If A is bijective, we have dimV � dimW .

Proof. These all follow from the rank-nullity theorem. If A is injective, then kerA � t⃗0u, so nullpAq � 0 and
by the rank-nullity theorem dimV � rankpAq � dim impAq. Because impAq �W is a subspace, Theorem 41
implies dimV � rankpAq ¤ dimW .

If A : V Ñ W is surjective, now we have rankpAq � dim impAq � dimW . By the rank-nullity theorem,
this gives nullpAq � dimW � dimV . Because nullpAq ¥ 0, this implies dimW ¤ dimV .

The final claim follows by combining the previous two.
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5.3 Compositions and invertibility

We can string together linear maps, doing one and then the next. That is, we can take composites of linear
maps (where the codomain of the first is the domain of the second), and the result is again a linear map.

Lemma 51. If A : V ÑW and B :W Ñ U are linear maps, then the composite pBAq : V Ñ U , defined by
pBAqpvq � BpAvq, is also linear.

Proof. For all v P V , we have

pBAqpv � wq � BpApv � wqq � BpAv �Awq � BpAvq �BpAwq � pBAqv � pBAqw.
In the first and last step we used the definition of the map BA; in the second step we used that A is linear,
and in the third step that B is linear. Similarly, for all c P F and all v P V , we have

pBAqpcvq � BpApcvqq � BpcpAvqq � cpBpAvqq � cpBAqv,
by the exact same steps.

Composition of linear maps has some reasonable arithmetic properties.

Lemma 52. Composition of linear maps has the following properties.

(i) If A : V Ñ W,B : W Ñ U , and C : U Ñ X are linear maps between vector spaces, then CpBAq �
pCBqA.

(ii) If A : V ÑW is a linear map, then A1V � A � 1WA.

(iii) If A : V ÑW is a linear map and U is any other vector space, then 0W,UA � 0V,U and A0U,V � 0U,W .

Proof. For (i), spell out the definitions:

CpBAqv � CppBAqvq � CpBpApvqq � pCBqpApvqq � ppCBqAqv.
For (ii), we have

pA1V qv � Ap1V vq � Av � 1W pAvq � p1WAqv.
For (iii), the only subtlety is making sure the domains and codomains match up. A : V Ñ W and 0W,U :
W Ñ U compose to a map 0W,UA : V Ñ U , for which

p0W,UAqv � 0W,U pAvq � 0⃗

for all v P V ; it is thus the zero map from V to U , denoted 0V,U . The same argument applies for A0U,V �
0U,W .

Remark 35. When it is clear what the vector spaces V and W are from context, I will later start dropping
the subscripts from 0V,W , and call it the “zero map”. ♢

Example 61. If rotθ : R2 Ñ R2 and rotψ : R2 Ñ R2 are rotations of the plane counterclockwise about the
origin by angles θ and ψ, respectively, then the composite rotθrotψ is the map which first rotates by ψ, and
then rotates by θ, for a total rotation of θ � ψ radians counterclockwise. That is, we have

rotθrotψ � rotθ�ψ.

♢

Example 62. The map
�
d
dt

�2
: Frts Ñ Frts which takes the second derivative of a polynomial is linear, because

it is the composite of the linear map d
dt with itself. (Since this map has the same domain and codomain, the

composite is defined.)
On basis vectors, we have�

d

dt


2

tn �
�
d

dt



pntn�1 � n

�
d

dt



tn�1 � npn� 1qtn�2,
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where this should be interpreted as zero for n � 0, 1. That this map is linear tells us that we can write down

the value of
�
d
dt

�2
on any polynomial:

�
d

dt


2

pa0 � � � � � antnq � 2a2 � 6a3t� � � � � npn� 1qtn�2.

♢

Example 63. If A : V ÑW and B :W Ñ U are linear maps, the only composite that makes sense in general
is BA; to define the map AB I would need to demand that U � V (so B goes where A starts from).

Even when this is the case, it is usually not true that AB � BA. Composition of linear maps is not
remotely commutative, even though it was in the exampe of rotθ above. If I hand you two generic linear
maps V Ñ V , it is unlikely that they commute. For instance, take A,B : F2 Ñ F2 defined by

A

�
x
y



�

�
x� y
y




and

B

�
x
y



�

��y
x



.

Then

AB

�
x
y



�

�
x� y
x



, BA

�
x
y



�

� �y
x� y



.

These are simply not the same map. For instance, pABqe2 � �e1 whereas pBAqe2 � �e1 � e2, and these
are different outputs. ♢

Suppose you have a linear map A : V ÑW and you want to ‘undo it’. To do so, you would need to find
a linear map B :W Ñ V which ‘reverses the original process’, but there are a few things you could mean.

Definition 28. If A : V ÑW is a linear map, we say that

� A is right invertible if there exists a linear map B :W Ñ V so that AB � 1W .

� A is left invertible if there exists a linear map B :W Ñ V so that BA � 1V .

� A is invertible if there exists a linear map B :W Ñ V so that AB � 1W and BA � 1V . In this case,
we write B � A�1.

♢

Remark 36. If A is right invertible and also left invertible, possibly with different inverses AB � 1W and
CA � 1V , then in fact B � C and A is invertible. To see this, write C � C1W � CpABq � pCAqB �
1VB � B.

Further, if A is invertible, it has only one inverse by the same argument. ♢

Let’s go back to two earlier examples to get a sense for these conditions.

Example 64. The rotation maps rotθ : R2 Ñ R2 are invertible, with inverse rot�θ, as

rotθrot�θ � rotθ�θ � rot0 � 1R2 � rot0 � rot�θ�θ � rot�θrotθ.

Less symbolically, if I rotate counterclockwise by θ radians and then clockwise by θ radians, ultimately I’ve
moved zero radians, so I’ve done nothing; similarly if I first rotate clockwise by θ radians and afterwards
counterclockwise by θ radians. ♢

Example 65. Consider the differentiation map d
dt : C1pRq Ñ C0pRq. I defined another linear map

³
:

C0pRq Ñ C1pRq going the other way. By the fundamental theorem of calculus, we have�
d

dt

»
f



pxq � d

dt

» x
0

fptqdt � fpxq,
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so that d
dt

³
f � f . That is,

³
is a right inverse to d

dt (and d
dt is a left inverse to

³
). If I integrate and then

take the derivative, I end up back where we started!
However, integration is not actually an inverse. We have

p
»
d

dt
fqpxq �

» x
0

f 1ptqdt � fpxq � fp0q,

so
³
d
dt sends f to the same function minus fp0q. That is, if I take the derivative and then the integral, it

doesn’t quite get me back where I started (the new function always has p³ gqp0q � 0, whereas fp0q could
have been anything). ♢

Let me remind you of some set-theoretic consequences of the existence of the various types of inverses.

Proposition 53. Suppose A : V ÑW is a linear map.

� If A is right invertible, then A is surjective.

� If A is left invertible, then A is injective.

� If A is invertible, then A is bijective.

Proof. If AB � 1W then for all w P W we have w � ApBwq, so A is surjective. If BA � 1V then if
Av1 � Av2, we have

v1 � 1V v1 � pBAqv1 � BpAv1q � BpAv2q � pBAqv2 � 1V v2 � v2,

so A is injective. If A is invertible then it is both left and right invertible, so A is both injective and surjective,
hence bijective.

Remark 37. Correspondingly, differentiation is surjective (every continuous function is the derivative of its
integral) and integration is injective (if a function has integral zero everywhere, it must be zero). On the other
hand, differentiation is not injective (constant functions get sent to zero) and integration is not surjective

(since p³ gqp0q � ³0
0
gpxqdx � 0 by definition,

³
g can never be a nonzero constant function, or any function

with gp0q � 0). ♢

What is more remarkable is that these are biconditionals. That a bijective linear map is invertible is a
definition push:

Proposition 54. If A : V ÑW is a linear map which is also a bijection, then A is invertible.

Proof. Define B :W Ñ V by

Bw � the unique v P V such that Av � w.

More briefly, Bw P V is the unique vector with the property that ApBwq � w.
This is defined (and unambiguous) for all w P W by the assumption that A is bijective: there always

exists a unique such v. By definition, we have ApBwq � w, as Bw P V is the unique vecctor with ApBwq � w.
On the other hand, we have BpAvq � v, because BpAvq is the unique vector u so that Au � Av. Because
there is a unique such vector, and u � v is such a vector, we may conclude BpAvq � v.

Thus B is indeed an inverse to A. (This is the usual definition of an inverse function to a bijection; this
discussion has nothing to do with linearity. It is the definition we use to define

?
x or lnx, for instance: the

latter is the unique real number for which eln x � x.)
The only novelty is proving that B is linear. To see this, observe that Bpv � wq is characterized by the

property that ApBpv � wqq � v � w. Now

ApBv �Bwq � ApBvq �ApBwq � pABqv � pABqw � v � w

by linearity of A, so that Bpv�wq � Bv�Bw. Similarly, Bpcvq is the unique vector for which ApBpcvqq � cv.
But ApcBvq � cApBvq � cv by linearity of A, so that cBv is such a vector, and hence Bpcvq � cBpvq.
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Whereas the other two require we do a little work. The first is easier, as it amounts to understanding
that we can define linear maps in terms of a basis.

Proposition 55. If A : V ÑW is a surjective linear map, then A is right invertible.

Proof. Choose a basis tw1, � � � , wmu for W . By definition of surjectivity, there exist vectors vi P V so that
Avi � wi. (There may be many such vectors; pick one for each wi.) By Theorem 45, I can define a linear
map B : W Ñ V by saying what it does to each basis vector in a given basis. So let’s define B to be the
unique linear map for which Bwi � vi. Then

pABqwi � ApBwiq � Avi � wi

for all basis vectors wi. By Remark 33, this implies AB � 1W is the identity map.

The second is the first place you really see the power of our recent tools, in particular the basis extension
lemma.

Proposition 56. If A : V ÑW is an injective linear map, then A is left invertible.

Proof. The idea is: split W up into impAq and another subspace which complements it. Define the map
backwards to undo A on impAq, and “crush the rest to zero”; it doesn’t really matter what happens away
from impAq.

Let tv1, � � � , vnu be a basis for V ; it is in particular a linearly independent set. Because A is injective,
Lemma 48 guarantees that tAv1, � � � , Avnu is a linearly independent set in W . By Lemma 38 (the basis
extension lemma) we may extend this to a basis tAv1, � � � , Avn, w1, � � � , wmu of W . By Theorem 45, I can
define a linear map B : W Ñ V by saying what it does to each basis vector in a given basis. So let’s define
B to be the unique linear map for which

BpAviq � vi for all 1 ¤ i ¤ n, while Bwi � 0⃗.

Because pBAqvi � vi for all basis vectors vi, we have BA � 1V by Remark 33: since every vector v is a
linear combination of the vi, that pBAqv � v for all v follows from linearity of pBAq.

These are perhaps somewhat convenient (I mainly list them to exhibit the idea of using basis extension),
but nowhere near as powerful as the following much-vaunted and mysticized fact which represents the
conclusion of the first part of an elementary course in linear algebra, the following characterization of linear
maps between vector spaces of the same dimension (in a traditional linear algebra course, this would be
phrased as a characterization of invertible matrices). This is a finite-dimensional phenomenon which is
completely and totally false in infinite dimensions.

Corollary 57 (Invertible matrix theorem). Let A : V ÑW be a linear map between two finite-dimensional
vector spaces of the same dimension. Then all of the following are equivalent:

(i) A is invertible.

(ii) A is injective, aka kerA � t⃗0u.
(iii) A is surjective.

Proof. If A is invertible, it is bijective, so both injective and surjective. We will show that if A is injective it
is also surjective (whence bijective, whence invertible), and that if A is surjective it is also injective (whence
bijective, whence invertible).

Suppose A is injective. Then nullpAq � dimkerpAq � dimt⃗0u � 0. By the rank-nullity theorem, we have
dimV � rankpAq � dim impAq. Thus impAq � W is a subspace of dimension dim impAq � dimV � dimW .
By Theorem 41 (a theorem which only applied to finite-dimensional vector spaces!), any subspace of W of
the same dimension is all of W , so this implies impAq �W , so that A is in fact surjective.

Suppose now that A is surjective. Then rankpAq � dim impAq � dimW . The rank-nullity theorem implies
that nullpAq� rankpAq � dimV , so that nullpAq � dimV �dimW � 0. Thus kerA is a 0-dimensional vector
space. The only 0-dimensional vector space is t⃗0u, so that kerA � t⃗0u and A is injective.
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5.4 Matrices

So far, we’ve studied the abstract theory of linear maps. We had a few examples (some from calculus, some
from geometry, some from algebra) and we found some useful general principles:

� A linear map A : V ÑW is injective if and only if kerpAq � t⃗0u, and when this is true dimV ¤ dimW ;

� A linear map A : V ÑW is surjective if and only if impAq �W , and when this is true dimV ¥ dimW ;

� We have rankpAq � nullpAq � dim impAq � dimkerpAq � dimV ;

� Knowing what A does to a particular basis for V uniquely determines A; we can define a linear map
by delclaring where it sends each element of this basis, and we can check two linear maps are equal by
checking they agree on all the basis elements.

� The most powerful result of all is that if dimV � dimW , then A : V Ñ W is invertible if and only if
kerpAq � t⃗0u if and only if impAq � W . (The version I use most often is the first biconditional, since
in many cases one can compute whether or not the kernel is zero by hand without too much trouble.)

Which is all well and good, except that

� I only have a small handful of examples and no way to quickly produce examples to play around with.

� Because of this lack of examples, we don’t have a good visual sense for what a linear map ‘is’. We
might have an algebraic sense, because we’ve been working with the algebra of linear maps — but with
very few pictures.

� It seems very difficult in practice to take a list of many vectors (say, ten vectors in F12) and determine
whether one of the later entries in that list is redundant, so it seems hard to compute dimensions of
the relevant subspaces. Similarly, while in many cases kerpAq is not too hard to compute, it would be
nice to have an algorithmic way to do so.

In the next section, we will use the language of matrices to see a huge number of examples, and use this
to help us vizualize linear maps better than we have been able to thusfar. Next week, we will cover the
Gauss–Jordan algorithm which allows one to efficiently compute kernels and images.

Before then, I ought to tell you what a matrix is.

Definition 29. We say that an m�n matrix over the field F is an array M of elements of F with m rows
and n columns, whose entries are elements of F. We depict this as

M �
�
�a11 � � � a1n
� � � � � � � � �
am1 � � � amn

�

,

where aij P F is the entry in row i, column j of the matrix. If we want to write M in a compact way while
emphasizing the names of its entries, we will write M � paijq1¤i¤m

1¤j¤n
, or when m and n are also clear from

context, merely M � paijq. Occasionally we will simply write Mij for the entry in row i and column j. If
m � n we say that M is a square matrix. We say two matrices M,M 1 are equal if they have the same
shape/size (m� n) and all of the entries are equal Mij �M 1

ij for all i, j. ♢

Example 66.

M �
�
1 2 4 11
3 2 �1 π



is a 2� 4 matrix over R, with a14 � 11 and a23 � �1.

M �

�
���

1 3 4
1{3 �4{5 3{11
2 2 2
1 0 �1{13

�
��


is a 4� 3 matrix over Q, where a21 � 1{3 and a42 � 0. ♢
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Remark 38. To remember which is m and which is n, always think: “Rows before columns.” Similarly, when
remembering how to write the subscripts on aij , the first term is the row aij is in, and the second term is
the column aij is in. This mnemonic will come up multiple times. This is one of the few things I think one
should memorize. ♢

Definition 30. Suppose

M �
�
�a11 � � � a1n
� � � � � � � � �
am1 � � � amn

�



is an m� n matrix over F. There is an associated linear map AM : Fn Ñ Fm defined by

AM

�
�x1
� � �
xn

�

�

�
� a11x1 � � � � � a1nxn

� � �
am1x1 � � � � � amnxn

�

.

♢

Example 67.

M �
�
1 2 4 11
3 2 �1 π




corresponds to the linear map AM : R4 Ñ R2 given by

AM

�
���
x
y
z
w

�
��
�

�
x� 2y � 4z � 11w
3x� 2y � z � πw



.

M �

�
���

1 3 4
1{3 �4{5 3{11
2 2 2
1 0 �1{13

�
��


corresponds to the linear map AM : Q3 Ñ Q4 defined by

AM

�
�xy
z

�

�

�
���

x� 3y � 4z
x{3� 4y{5� 3z{11

2x� 2y � 2z
x� z{13

�
��
. ♢

It is an elementary computation that AM is a linear map. I choose to denote M and AM by different
names to distinguish between two concepts which are distinct (but ultimately turn out to be equivalent):
one is a box with numbers in it; the other is a function which takes elements of Fn to elements of Fm. These
are simply not the same thing, even if I can use one to obtain the other. This is comparable to the fact that
a function is not the same concept as its graph, even though I can recover the function from the graph and
vice versa.

Remark 39. Notice that an m� n matrix corresponds to a linear map Fn Ñ Fm (m and n seem to “flip”).
Watch out for this! It is a persistent source of confusion. As we will see, the columns correspond to certain
vectors in the codomain, so if the columns have length m (that is, if there are m rows) then the codomain
ought to be Fm. Similarly, the rows correspond to components of the output, so if there are m rows the
output lands in Fm. ♢

Let me try to give a sense of what these linear maps AM actuallymean. There are three useful perspectives
(the third being a computation of the previous two).
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5.4.1 The column perspective

This perspective is most like what we have discussed so far. We know from Theorem 45 that a linear map
is uniquely determined by knowing what it does to a basis. Because Fn comes with a canonical / standard
basis, this suggests to me that to get a sense for what AM does, we should compute AMej for the different
basis vectors ej .

Lemma 58. Let M be the m � n matrix M �
�
�a11 � � � a1n
� � � � � � � � �
am1 � � � amn

�

. Then AMej is the j’th column of the

matrix M . That is,

AMej �
�
�a1j
� � �
amj

�

.

Proof. This is a direct computation using the definition of AM . If I write a vector x as x �
�
�x1
� � �
xn

�

, then ej

is the vector for which xj � 1 and xi � 0 for i � j. Because

AM

�
�x1
� � �
xn

�

�

�
� a11x1 � � � � � a1nxn

� � �
am1x1 � � � � � amnxn

�

,

substituting xj � 1 and xi � 0 otherwise, this expression simplifies to

AMej �
�
�a1j
� � �
amj

�

,

as claimed: this is the j’th column of M .

So for the matrix M �

�
���

1 3 4
1{3 �4{5 3{11
2 2 2
1 0 �1{13

�
��
, we have

Me1 �

�
���

1
1{3
2
1

�
��
, Me2 �

�
���

3
�4{5
2
0

�
��
, Me3 �

�
���

4
3{11
2

�1{13

�
��
.

Here’s how this suggests I think about the map AM : Fn Ñ Fm. Let us write vj � AMei. Some authors
will draw the picture

M �
�
� | � � � |
v1 � � � vn
| � � � |

�

,

where the vertical bars | are meant to indicate that the term v1 (and so on) constitutes the whole column.

If x �
�
�x1
� � �
xn

�

 is a general vector, then

AMx � AM px1e1 � � � � � xnenq � x1AMe1 � � � � � xnAMen � x1v1 � � � � � xnvn.
That is, AMx is a linear combination of the columns of A, where the ‘weights’ in the linear combination are
provided by the entries of the vector x. (Thus AM is an instance of Example 53, applied to V � Fm; the
columns of M are the vectors used in that construction.) This gives us a few upshots; the first is immediate
from the discussion of Example 59.
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Corollary 59. If M is an m� n matrix with columns v1, � � � , vn, the associated linear map AM : Fn Ñ Fm
has impAM q � spanpv1, � � � , vnq equal to the span of the columns and kerpAM q � Relpv1, � � � , vnq is the set
of linear relations between the columns of M .

As for the second, it will be a quick application of Theorem 45.

Corollary 60. If A : Fn Ñ Fm is any linear map, then there exists a unique m � n matrix M so that
A � AM .

Proof. Uniqueness is easy. If AM � A � AN , then in particular AMej � ANej for all 1 ¤ j ¤ n. It follows
that the columns of M and the columns of N are precisely the same, and hence that M and N are equal
(they have the same shape and the same entries); so if A � AM for some matrix M , then there is a unique
such matrix M .

If I claim there exists such a matrix M , first I have to give you a matrix, then I have to prove A � AM .
Given A, define the matrix M to be the matrix whose j’th column is Aej. That is, let

M �
�
� | � � � |
Ae1 � � � Aen
| � � � |

�

.

Because AMej is the j’th column ofM , and the j’th column ofM is Aej by definition, we have AMej � Aej
for all 1 ¤ j ¤ m. Because te1, � � � , enu is a basis for Fn, by Theorem 45 we have Av � AMv for all v P Fn;
that is, A � AM .

Example 68. The identity map 1Fn : Fn Ñ Fn corresponds to the n� n matrix

In �

�
���

1 0 � � � 0
0 1 � � � 0
� � � � � � � � � � � �
0 0 � � � 1

�
��
,

with 1’s down the diagonal and 0’s elsewhere. This is because 1Fnei � ei for all i, so the corresponding
matrix has i’th column equal to ei. This means in the i’th column, the only nonzero entry is in the i’th row,
so aii � 1 for all i and aij � 0 for i � j. This matrix is called the “identity matrix of size n”, or when n is
clear from context, “the identity matrix”. You can check by direct computation using the definition of AM
that AInv � v is the identity for all v P V , if you want. ♢

Example 69. The zero map 0FnÑFm : Fn Ñ Fm has 0FnÑFmv � 0⃗ for all v P Fn. In particular, 0FnÑFmej � 0⃗
for all 1 ¤ j ¤ m. It follows that the corresponding matrix is

0m�n �
�
� 0 � � � 0
� � � � � � � � �
0 � � � 0

�



the all-zeroes matrix, because each column should be the zero vector. ♢

Exercise. If you have finished HW5 #3, write down the 2 � 2 matrix corresponding to the linear map
rotθ : R2 Ñ R2.

5.4.2 The row perspective

Let’s focus first on the case of 1� n matrices, sometimes called row vectors. If M is a 1� n matrix,

M � �
a1 � � � an

�
,

then the corresponding linear map AM : Fn Ñ F is defined by

AM

�
�x1
� � �
xn

�

� a1x1 � � � � � anxn,
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and we often abbreviate this to

�
a1 � � � an

���x1
� � �
xn

�

� a1x1 � � � � � anxn.

This is pure notation — I have an array M , I have a corresponding linear map AM , and if I literally
write the matrix M in place of AM I see what I’ve depicted above: a row vector, placed next to a column
vector of the same length, and wrote that the “result” was “equal to” a1x1 � � � � � anxn.

However, inspired by this notation, I’ll define an actual “product-like” operation between rows and
columns: a way to ‘pair’ a row vector and a column vector to get a number, by pairing up terms, multiplying
them together, and adding them all up.

Definition 31. Suppose
�
a1 � � � an

�
is a row vector corresponding to the linear function f : Fn Ñ F, and�

�x1
� � �
xn

�

 is a column vector corresponding to the vector v P Fn. We say that the output fpvq, explicitly given

by

�
a1 � � � an

���x1
� � �
xn

�

� a1x1 � � � � � anxn,

is the pairing of the row vector and the column vector. ♢

Remark 40. People often visualize this operation by thinking of rotating the vector
�
a1 � � � an

�
to be

vertical, multiplying the matching entries ai and xi, and adding the result up. Try visualizing this by
standing up the row vector in the following formula, and then doing the multiplications and adding them
up:

�
1 3 �2�

�
� 3

5
33

�

� 1 � 3� 3 � 5� p�2q � 33 � 3� 15� 66 � �48.

♢

Philosophy: A column vector is just a vector in Fn in the usual sense. A row vector, however, is a linear
function f : Fn Ñ F. Its entries are the outputs fpejq for each j. This is a fundamentally different creature
than a column vector. Because functions eat vectors and spit out numbers, you can “multiply” a row vector
by a column vector and get a number. ROW BEFORE COLUMN: just as fpvq makes sense but vpfq
does not, when we talk abou this pairing operation, the first vector is a row vector, the second is a column
vector. The other order will mean something completely different.

We can move on from this to an understanding of matrices in general. Before that, let me point out that
just as there are special vectors e1, � � � , en P Fn, there are also special linear functions p1, � � � , pn : Fn Ñ F.
Precisely, define

pi

�
�x1
� � �
xn

�

� xi.

The map pi is called projection to the i’th coordinate; it forgets about all information except for the infor-
mation contained in the i’th coordinate itself. If I write it as a row vector, we have

pi �
�
0 � � � 1 � � � 0

�
, where ai � 1 but aj � 0 for j � i.

As a matrix, pi is like the basis vector ei but ‘laid flat on the ground’. But it should not be confused for
ei. The column vector ei P Fn is honestly a vector. The column vector pi does not represent a vector. It
represents a function pi : Fn Ñ F, the function which gives the i’th entry of a vector.

Lemma 61. Suppose AM : Fn Ñ Fm is the linear map associated to an m � n matrix M . Then for
1 ¤ i ¤ m, the i’th row of M is the row vector corresponding to the linear map piAM : Fn Ñ F.
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Proof. Explicitly, we have

piAM

�
�x1
� � �
xn

�

� pi

�
� a11x1 � � � � � a1nxn

� � �
am1x1 � � � � � amnxn

�

� ai1x1 � � � � � ainxn.

But this is precisely the linear function Fn Ñ F with row vector�
ai1 � � � ain

�
,

the i’th row of M .

If the rows of M represent linear functions f1, � � � , fm : Fn Ñ F, it will occasionally be useful to write

M �
�
�— f1 —
� � � � � � � � �
— fm —

�

.

When this is the case, the i’th component of AMv is precisely fipvq; that is to say, fipvq � piAMv.

5.4.3 The entry perspective

We have a perspective on matrices in terms of their columns, and a perspective on matrices in terms of their
rows. Combining these, we can explain the meaning of the particular entries in a matrix.

Lemma 62. If M � paijq is an m� n matrix and AM : Fn Ñ Fm is the associated linear map, the entries
aij are equal to piAMej P F; that is, the entry aij is the i’th component of AMej.

Proof. Because AMej is the j’th column of M , and piv is the i’th component of the vector v, we see that
pipAMejq is the i’th component of AMej .

Example 70. As an example, take M �
�
1 2 4 11
3 2 �1 π



with corresponding linear map AM : R4 Ñ R2

given by

AM

�
���
x
y
z
w

�
��
�

�
x� 2y � 4z � 11w
3x� 2y � z � πw



.

Then a23 � �1 and indeed AMe3 �
�

4
�1



, whose second component is �1, so p2AMe3 � �1 � a23. ♢

This perspective is, in my opinion, usually not very helpful (it’s hard to see any useful information from
such little data as a particular entry of a particular vector); most of the time I think about matrices, I’m
thinking in either the row or column perspective (whichever is more useful at the moment). However, I have
one specific application in mind.

5.4.4 Composition and matrix multiplication

Suppose I have an pm�nqmatrixN and an pℓ�mqmatrixM . These correspond to linear mapsAN : Fn Ñ Fm
and AM : Fm Ñ Fℓ. We know the composite of linear maps is also a linear map, so their composite defines
a linear map

AMAN : Fn Ñ Fℓ.

We know every linear map Fn Ñ Fℓ is associated to some ℓ � n matrix — what matrix is associated to
the composition AMAN? Can I understand it entirely in terms of the matrices themselves?

Yes.
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Definition 32. Suppose M and N are ℓ�m and m� n matrices

M �
�
�a11 � � � a1m
� � � � � � � � �
aℓ1 � � � aℓm

�

, N �

�
� b11 � � � b1n
� � � � � � � � �
bm1 � � � bmn

�

.

Their matrix product M �N is the ℓ� n matrix whose entries pM �Nqij are obtained by pairing the i’th
row of M to the j’th column of N . That is,

pM �Nqij �
�
ai1 � � � aim

��� b1j
� � �
bmj

�

� ai1b1j � � � � � aimbmj .

♢

Example 71. Let M �
�
1 3 1
2 1 0



and let N �

�
�1 5
2 4
3 7

�

. Their matrix product is

M �N �

�
���������

�
1 3 1

���1
2
3

�

 �

1 3 1
���5

4
7

�



�
2 1 0

���1
2
3

�

 �

2 1 0
���5

4
7

�



�
��������


�
�
1 � 1� 3 � 2� 1 � 3 1 � 5� 3 � 4� 1 � 7
2 � 1� 1 � 2� 0 � 3 2 � 5� 1 � 4� 0 � 7



�

�
10 24
4 14



.

For instance, the entry in row 2, column 1 of M � N is equal to the result of pairing row 2 of M with
column 1 of N .

Notice that whileM �N is a 2�2 matrix, on the other hand N �M is a 3�3 matrix! Matrix multiplication
is not commutative. In fact, even if M �N makes sense, there is no reason for N �M to: if M is 2� 4 and
N is 4� 3, then M �N is a 2� 3 matrix, but N �M is not defined. ♢

Remark 41. If

M �
�
�— f1 —
� � � � � � � � �
— fℓ —

�

, and N �

�
� | � � � |
v1 � � � vn
| � � � |

�

,

then

M �N �
�
�f1v1 � � � f1vn
� � � � � � � � �
fℓv1 � � � fℓvn

�

.

If fi �
�
ai1 � � � aim

�
and vj �

�
� b1j
� � �
bmj

�

, then this is just restating the definition

fivj �
�
ai1 � � � aim

��� b1j
� � �
bmj

�

� ai1b1j � � � � � aimbmj � pM �Nqij .

♢

This is relevant because, as might be clear from context, the matrix product is the matrix representing
the composite of two linear maps.

Theorem 63 (Matrix multiplication is composition). If M is an ℓ�m matrix and N is an m� n matrix,
then we have AM�N � AMAN . That is, the matrix associated to the composite of AM and AN is precisely
the matrix product M �N .
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Exercise. Verify this theorem for the matrices given in the preceding example. That is, compute the
composite of AMAN , and check that it is indeed AM�N for the matrix M �N we computed in the example.

Proof of Theorem 63. We have an excuse to think about the entry perspective. We want to understand the
entries in the matrix associated to AMAN . By Lemma 62, the entry in row i and column j of the associated
matrix is piAMANej P F. Now piAM : Fm Ñ F is the function represented by row i of M , so piAM has
associated matrix

�
ai1 � � � aim

�
. On the other hand, ANej is the vector given by the j’th column of N ,

explicitly

ANej �
�
� b1j
� � �
bmj

�

.

The quantity ppiAM qpANejq is the result of plugging in the vector ANej into the function piAM , but this
gives precisely

ppiAM qpANejq �
�
ai1 � � � aim

��� b1j
� � �
bmj

�

� ai1b1j � � � � � aimbmj � pM �Nqij .

It follows that if you’re interested in studying linear maps and their compositions, you can largely get
away with studying matrices and their matrix products instead. So far we have discussed how to associate
matrices to linear maps Fn Ñ Fm. Next week we will explain how linear maps V ÑW together with a choice
of basis for each of V and W give rise to matrices, too; this will allow us to go back and forth between the
language of linear maps and bases, and the language of matrices.

All this said and done, in the future if I have an m�n matrix M � paijq and a vector v P Fn, I will often
write AMv as �

�a11 � � � a1n
� � � � � � � � �
am1 � � � amn

�


�
�x1
� � �
xn

�

�

�
� a11x1 � � � � � a1nxN

� � �
am1x1 � � � � � amnxn

�

,

writing everything in matrix notation; notice that this is precisely the matrix product of the m� n matrix
M and the n� 1 matrix v. If matrix notation is convenient, I will work entirely in matrix notation. If it is
important to emphasize the distinction between M and the associated linear map (and this will be relevant
when we move on to linear maps between vector spaces other than Fn,Fm), I will do so, referring to the
matrix as M and the associated linear map as AM .

5.5 Examples of linear maps and their matrix representatives

In this section I’m going to focus on linear maps A : R2 Ñ R2. We can identify such maps with 2 � 2

matrices with real entries M �
�
a b
c d



, and I claim that these are very visualizable. Before getting into

the visualizations, let me point out that you already determined in your homework when these matrices are
invertible:

Lemma 64. If M �
�
a b
c d



, then AM is invertible if and only if ad� bc � 0.

Proof. You checked in your homework that

"�
a
c



,

�
b
d


*
is a basis for R2 if and only if ad� cb � 0. Thus

the columns of M are a basis for R2 if and only if ad� bc � 0.
Now kerpAM q can be identified with the set of linear relations between the columns of M , so AM is

injective if and only if the columns of M are linearly independent. Similarly, impAM q can be identified with
the span of the columns of M , so AM is surjective if and only if the columns of M span R2. It follows that
the columns of M form a basis for R2 if and only if AM is bijective, hence invertible.
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In the next few sections, I’m going to give some examples of 2�2 matrices, discuss how to visualize them,
and discuss how this generalizes to higher dimensions. Here I will not make a big effort to distinguish between
matrices and the corresponding linear maps; the conceptual difference will only become very important next
week.

5.5.1 Scaling maps: diagonal matrices

The simplest linear map R2 Ñ R2 is the identity map 1R2pvq � v for all v P R2. The matrix representing

this linear map is I �
�
1 0
0 1



.

The next simplest notion is that of an diagonal matrix. Write

Dλ1,λ2
�

�
λ1 0
0 λ2



.

The associated linear map is

Dλ1,λ2

�
x
y



�

�
λ1x
λ2y



.

This map stretches the two coordinate axes; we have

Dλ1,λ2e1 �
�
λ1 0
0 λ2


�
1
0



�

�
λ1
0



� λ1e1,

Dλ1,λ2e2 �
�
λ1 0
0 λ2


�
0
1



�

�
0
λ2



� λ2e2.

Visualization exercise. Click here. This applet displays a before-and-after picture of applying the linear
transformation Dl1,l2 ; it shows a “before” grid in grey, as well as an “after” grid in green. It also depicts
Ae1, Ae2 as blue and red line segments.

Play around with it.

� Do you see that l1, l2 correspond to how much the axes are stretched (or, if you like, how much a square
is stretched in each direction)?

� What happens as you change l1 and l2? What happens to the image when you set one (or both) of
these quantities equal to zero? What happens when l1 changes from positive to negative?

� What is this map doing to the x-axis when l1 is negative?

This notion makes sense in any dimension (and over any field). If λ1, � � � , λn P F, the diagonal matrix
with entries λ1, � � � , λn is the n� n matrix

D �

�
���
λ1 0 � � � 0
0 λ2 � � � 0
� � � � � � � � � � � �
0 0 � � � λn

�
��
,

which is only nonzero along the diagonal, where its entries are λ1, � � � , λn. This matrix is determined by the
property that Dei � λiei for all 1 ¤ i ¤ n.

Note that nullpDq is the number of λ’s which are equal to zero, as kerpDq is spanned by those ei for
which λi � 0. Correspondingly, rankpDq is the number of nonzero λ’s. The map D : Fn Ñ Fn is invertible
if and only if all the diagonal entries are nonzero, in which case its inverse is

D�1 �

�
���
1{λ1 0 � � � 0
0 1{λ2 � � � 0
� � � � � � � � � � � �
0 0 � � � 1{λn

�
��
.

Just as I vizualize a 2 � 2 diagonal matrix as stretching the two axes in R2, sending the unit square to
an appropriate rectangle, I can visualize a 3� 3 diagonal matrix as stretching the three different axes in R3

by different amounts, sending a unit cube to some box with side-lengths λ1, λ2, λ3.

https://www.desmos.com/calculator/pzfqju5xgh
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5.5.2 Shearing maps: strictly upper-triangular matrices

The next special class of transformations I would like to introduce are called shearing maps. In 2D, these are
especially simple (and a shearing transformation in n dimensions can, in a sense, be built out of 2D shearing
maps).

Before going into a visual discussion of the special case, let me do a bit of analysis in general.

Definition 33. A upper-triangular n� n matrix is a matrix of the form

T �

�
���
a11 a12 � � � a1n
0 a22 � � � a2n
� � � � � � � � � � � �
0 0 � � � ann

�
��
,

which has zeroes below the main diagonal.
We say that T is strictly upper-triangular if a11 � a22 � � � � � ann � 0, whereas we say that M is

upper unitriangular if a11 � � � � � ann � 1. ♢

Remark 42. At the level of linear maps, an upper-triangular matrix is one so that for all i, the associated
linear map has AMei P spanpe1, � � � , eiq. ♢

You will prove the following on your homework.

Lemma 65. An upper-triangular matrix is invertible if and only if the diagonal entries a11, � � � , ann are all
nonzero.

In general, the formula for the inverse is not very clean, but it is very easy to compute algorithmically. I
will ask you to do this in some simple cases.

We will focus on the unitriangular matrices, because a general invertible upper-triangular matrix can be
obtained from these by scaling:

Lemma 66. Let T be an invertible upper-triangular matrix. Then there exists a unique diagonal matrix D
and upper unitriangular matrix U so that T � DU .

Proof. If U �

�
���

1 b12 � � � b1n
0 1 � � � b2n
� � � � � � � � � � � �
0 0 � � � 1

�
��
and D �

�
���
λ1 0 � � � 0
0 λ2 � � � 0
� � � � � � � � � � � �
0 0 � � � λn

�
��
, then their matrix product is

DU �

�
���
λ1 λ1b12 � � � λ1b1n
0 λ2 � � � λ2b2n
� � � � � � � � � � � �
0 0 � � � λn

�
��
.

If T �

�
���
a11 a12 � � � a1n
0 a22 � � � a2n
� � � � � � � � � � � �
0 0 � � � ann

�
��
 is an upper-triangular matrix which can be written as T � DU for some

diagonal matrix D and some upper unitriangular matrix U , it follows by comparing the definition of T to
the formula above the entries of D are λi � aii. By assumption that T is invertible and Lemma 65, we see
that λi are all nonzero, hence invertible in F. Because the entries of T are related to the entries of U by
λibij � aij , we must have bij � aij{λi.

Thus T determines D and U . Conversely, for the matrices D and U determined above, we have T � DU .
This proves existence and uniqueness of the claimed decomposition:�

���
a11 a12 � � � a1n
0 a22 � � � a2n
� � � � � � � � � � � �
0 0 � � � ann

�
��
�

�
���
a11 0 � � � 0
0 a22 � � � 0
� � � � � � � � � � � �
0 0 � � � ann

�
��

�
���

1 a12{λ1 � � � a1n{λ1
0 1 � � � a2n{λ2
� � � � � � � � � � � �
0 0 � � � 1

�
��
.



5.5. EXAMPLES OF LINEAR MAPS AND THEIR MATRIX REPRESENTATIVES 107

Now let’s try to understand what these transformations do. In the simplest non-trivial case of 2 � 2

matrices, an upper unitriangular matrix takes the form St �
�
1 t
0 1



for some t P F. The associated linear

map has

Ste1 �
�
1 t
0 1


�
1
0



�

�
1
0



� e1,

while

Ste2 �
�
1 t
0 1


�
0
1



�

�
t
1



� te1 � e2.

If I draw a picture of this for F � R2, I see that when applying St, the x-axis is left unchanged but the
y-axis ‘tilts’, with the slope of the tilted line being 1{t (the line x � 0 is sent to the line x � ty).

Here is a before-and-after picture for the transformation S1{2. The grey lines are the ‘before’ lines. Notice
that the horizontal lines are still sent to horizontal lines (though they’re shifted right or left, depending on
the height of the horizontal line). However, the vertical lines are all tilted down. This is called an shearing
transformation, for the following reason. Imagine that the plane consists of flexible material, like fabric. Put
one of your hands above the x-axis, and one below the x-axis. Move your upper hand to the right, and your
bottom hand to the left. Then the top part of the plane will get pushed right, and the bottom left, like in
the picture above.

In engineering, one way to bend objects is to exert force on them in two different directions; this process
is called shearing, whence the name of the linear transformation above.

Visualization exercise. Click here. This applet displays a before-and-after picture of applying the linear
transformation St (though here t is denoted as a); it shows a “before” grid in grey, as well as an “after” grid
in green. It also depicts Ae1, Ae2 as blue and red line segments.

Play around with it. Notice, in particular, that the map is always invertible.

If I want to understand shearing in higher dimensions, I have to work harder. I like to think of these
transformations as happening step-by-step. For instance,�

�1 a12 a13
0 1 a23
0 0 1

�

�

�
�1 0 a13
0 1 0
0 0 1

�


�
�1 0 0
0 1 a23
0 0 1

�


�
�1 a12 0
0 1 0
0 0 1

�



Notice that the three matrices on the right behave in a simpler way. For instance, for the last of these
matrices (the first to get applied to a vector), we have�

�1 a12 0
0 1 0
0 0 1

�


�
�xy
z

�

�

�
�x� a12yy

z

�

.

https://www.desmos.com/calculator/6wdzivlhvt
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This means that the z coordinate is totally untouched! This transformation only affects the x and y coordi-
nates. For the other two transformations, one affects the x and z coordinates, and the last affects the y and
z coordinates.
Visualization exercise. Click here. This applet shows a before-and-after picture of applying a 3D matrix.
The image of e1 is depicted as a red vector; the image of e2 is depicted as a green vector; the image of e3 is
depicted as a blue vector. You can move the camera around 3D space by clicking and dragging the screen.

Adjust the entries a12, a13, a23, one at a time and a small amount at a time (I suggest small numbers like
a12 � 0.3 and seeing what changes as you change these by small amounts).

� Do you see what happens as you make just a slight change to one of these three entries?

� What happens, in particular, as you change a12? How about a13 and a23?

5.5.3 Rotations and reflections

The final piece of today’s puzzle is different than the previous parts.

� This discussion is special to R. One can make sense of some of the relevant algebraic properties more
generally, but they are most useful for R, and most geometrically meaningful there.

� While you can make sense of the discussion in higher dimensions — and I hope to towards the end
of the term — it is necessarily much more intricate. In particular, it is much harder to write down
an explicit description of the general case of a ‘rotation’ or a ‘reflection’ than it is to write down the
general notion of a shearing map (a unitriangular matrix).

In your homework, you will find the formula rotθ

�
x
y



�

�
x cospθq � y sinpθq
x sinpθq � y cospθq



. This means that rotθ

corresponds to the matrix Rθ �
�
cos θ � sin θ
sin θ cos θ



.

Visualization exercise. Click here. This applet displays a before-and-after picture of applying the linear
transformation Rθ (though here θ is denoted as b); it shows a “before” grid in grey, as well as an “after”
grid in green. It also depicts Ae1, Ae2 as blue and red line segments.

Play around with θ; watch what happens to the picture as you increase or decrease it, and what happens
to the picture as you increase θ from 0 to 2π.

Another interesting family of matrices is instead the reflection matrices. Given a line L � R2 passing
through the origin, write 0 ¤ ψ   π for the angle it makes with the positive x-axis. Reflection across this
line is a linear transformation, and one can compute that the corresponding matrix is

refψ �
�
cosp2ψq sinp2ψq
sinp2ψq � cosp2ψq



.

Visualization exercise. Click here. This applet displays a before-and-after picture of applying the linear
transformation refψ (though here ψ is denoted as b); it shows a “before” grid in grey, as well as an “after”
grid in green. It also depicts Ae1, Ae2 as blue and red line segments.

� What happens as you increase ψ?

� The maps rotθ and refθ{2 are not the same, but the output of the ‘grids’ looks the same. To tell the
difference, pull both apps up and compare them (with b � 1 in the first app and b � 1{2 in the second).
You should notice that Ae1 is the same in both cases, but Ae2 is its opposite.

� Observe that the red axis Ae2 is always counter-clockwise from Ae1 in the first picture, but always
clockwise from Ae2 in the second picture. Later this will be relevant to our notion of orientation and
our analysis of the idea of determinants.

https://harry7557558.github.io/tools/matrixv.html
https://www.desmos.com/calculator/w6niek8fjb
https://www.desmos.com/calculator/p9g9cd89hq
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5.5.4 Invertible 2� 2 matrices

We have now defined three families of 2� 2 matrices.

� There are the diagonal matrices Dλ1,λ2
�

�
λ1 0
0 λ2



, which correspond to the linear map R2 Ñ R2

which scales the first coordinate by λ1 and the second coordinate by λ2. These are invertible if and
only if λ1, λ2 are both nonzero.

� There are the shearing matrices St �
�
1 t
0 1



, which shear the plane by a factor of t (so the vertical

line x � 0 is sent to the line x � ty). These are invertible regardless of what t is.

� There are the rotation matrices

Rθ �
�
cos θ � sin θ
sin θ cos θ



,

corresponding to the linear map which rotates the plane θ radians counter-clockwise around the origin.

It turns out that every linear map R2 Ñ R2 can be made out of these, and (so long as you state this
carefully) in an essentially unique way. I will prove this for the invertible matrices; you will handle rank-1
matrices on your homework.

Proposition 67. Suppose A : R2 Ñ R2 is an invertible linear map. There is a unique choice of

θ P r0, 2πq, λ1 P p0,8q � R, λ2 P Rzt0u, t P R
so that A � RθDλ1,λ2St.

The expression λ2 P Rzt0u denotes that λ2 is an element of the real numbers other than zero; so λ2 P R
and λ2 � 0.

Exercise. If refψ is the map which reflects along the line of angle ψ, for 0 ¤ ψ   π{2, determine how to
decompose refψ as in the statement of the Proposition.

Proof of Proposition 67. Here is the essential idea. We’re going to determine what some of these values
θ, λ1, λ2, t would have to be for A � RθDλ1,λ2

St to be true. Then we’ll multiply by an appropriate inverse to
‘cancel them out’ and move on to the remaining values, until we’ve determined what all of the values have
to be. Because A determines what the values have to be, this proves uniqueness. Then we’ll verify that A
actually is what we say it is. Our first step is to figure out what θ and λ1 must be.

Let’s see what the transformation RθDλ1,λ2St does to the basis vector e1, to start. (This seems easier
than e2, because Ste1 is simpler than Ste2.) We’ll compute it by applying each transformation one-by-one.
We have

RθDλ1,λ2Ste1 �
�
cos θ � sin θ
sin θ cos θ


�
λ1 0
0 λ2


�
1 t
0 1


�
1
0




�
�
cos θ � sin θ
sin θ cos θ


�
λ1 0
0 λ2


�
1
0




�
�
cos θ � sin θ
sin θ cos θ


�
λ1
0



�

�
λ1 cos θ
λ1 sin θ



.

If RθDλ1,λ2St � A, then our calculation implies

Ae1 �
�
λ1 cos θ
λ1 sin θ



.

Because we assumed A is invertible, in particular kerpAq � t⃗0u, so Ae1 � 0⃗. I claim that if v P R2 is a

nonzero vector, there exists a unique λ1 ¡ 0 and θ P r0, 2πq so that v �
�
λ1 cos θ
λ1 sin θ



.

This follows from two facts:
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� For a point

�
x
y



on the unit circle — so x2 � y2 � 1 — there is a unique θ P r0, 2πq so that�

x
y



�

�
cos θ
sin θ



. This is the most common definition of these trigonometric functions: they are

the x and y coordinates of the point on the unit circle which lies θ radians around the unit circle,
starting from e1.

� For a nonzero vector v �
�
a
b



, we have a2 � b2 ¡ 0, and

v1 �
�
a{?a2 � b2
b{?a2 � b2




has unit length.

So if Ae1 �
�
a
b



, then λ1 �

?
a2 � b2 and θ is the angle Ae1 lies around the unit circle (how many

radians Ae1 is counter-clockwise from the positive x-axis).

It seems hard to apply a similar analysis to Ae2, because in the very first step I shear Ae2, and then it
goes through more complicated transformations like scaling and rotation. Instead of studying A, I will study
a new linear transformation in which we ‘undo the last steps’.

Consider a new transformation, B � D�1
λ1,1

R�1
θ A. Because Ae1 � RθDλ1,1e1, we have

Be1 � D�1
λ1,1

R�1
θ RθDλ1,1e1 � D�1

λ1,1
Dλ1,1e1 � e1.

Therefore the matrix form of B is B �
�
1 c1

0 d1



for some scalars c1, d1 P R. If we take λ2 � d1 and t � c1

then we can explicitly see

D1,2St �
�
1 0
0 d1


�
1 t
0 1



�

�
1 c1

0 d1



� B.

Because A is invertible, so is B, as B is a composition of invertible matrices. Therefore λ2 � d1 � 0 —
otherwise the image of this matrix would be one-dimensional (it would be the x-axis).

Let me summarize what we have done so far. We started with an arbitrary linear transformation, A. We
showed that if we take λ1 to be the length of Ae1 and θ to be the number of radians it lies counterclockwise
around the positive x-axis, then the linear transformation B � D�1

λ1,1
R�1
θ A satisfies Be1 � 1. Further, we

have B � D1,λ2St, where t is the first component of Be2 and λ2 is its second component. Therefore

A � RθDλ1,1B � RθDλ1,1D1,λ2
St � RθDλ1,λ2

St,

proving existence. Because we could recover θ, λ1, λ2, t starting from information about A, this proves
uniqueness.

While this proof was long and complicated, I think the idea can be made completely visual.

Visualization exercise. Click here. This is a link to a visualization tool which demonstrates the output of
the linear map A � RbDl1,l2Sa; that is, l1, l2 denote the stretch factors we called λ1, λ2 above; a denotes the
shearing factor we called t above; b denotes the rotation angle we called θ above. While the applet allows
you to make l1 zero or negative, for the sake of this discussion, keep it positive.

If you choose l1, l2, a, b, the applet shows the output of A applied to a green “grid” of vectors and in
particular to the vectors e1 and e2 (their outputs Ae1 and Ae2 are indicated by a blue line segment ending
at a blue dot and a red line segment ending at a red dot, respectively).

By default, the matrix this app displays is the identity matrix. What happens as you move the different
sliders? Play around with the sliders in this applet. Try to observe the following.

https://www.desmos.com/calculator/uh04pv6wge
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� No matter what l1, l2, a are, the angle b is always how far around the unit circle the blue dot Ae1 is.
This was used in the argument above (it is how we recovered θ). In particular, if you keep the last
slider the same but you change the first three sliders (with l1 ¡ 0!), the blue dot doesn’t change its
angle around the circle.

� No matter what l2, a, b are, the number l1 is always how far the blue dot is from the circle; if you
change the last three sliders, this length doesn’t change, even if the blue dot moves. This was used in
the argument above to recover λ1 as the length of the vector Ae1.

� When you change l1 or l2 from positive to negative or vice versa the linear transformation becomes
non-invertible on the way (you “shrink everything down to zero” before reversing and expanding things
in the negative direction).

� If l1 � 1 and b � 0 — this is the situation we were in when we passed to B — the terms l2 and a just
tell you the coordinates of the red dot.

� In general, however, changing any of the four coordinates will change the position of the red dot (not
just changes to l2 or a). Contrast this with the first two bullet points above, where changing l2 or a
didn’t change the position of the blue dot whatsoever.

� Try to get a visual sense of what each slider governs. If you start at some complicated choice of
pl1, l2, a, bq, what happens to the picture as you change each of those? Can you get a sense for what
each of these factors “means”?

There is, in fact, a unique way to decompose any invertible map A : Rn Ñ Rn into a product RDS of
three matrices, where R is an n� n rotation matrix, D is a diagonal matrix with all entries positive except
possibly one negative entry, and S is a strictly upper-triangular matrix, so every invertible transformation
of Rn can be thought of as shearing, scaling, and rotation.

We cannot prove such a claim right now, because I cannot tell you rigorously what a “rotation matrix”
is in dimensions larger than 2. I hope to return to this topic towards the end of the term.

5.6 Algorithmically solving systems of equations

Now, half-way through the term, I’m going to talk about the topic usually mentioned at the very beginning
of a course on linear algebra.

Thusfar, we have frequently had occasion to wonder two questions:

� Suppose I have v1, � � � , vn P V , and another vector v P V . Is it the case that v P spanpv1, � � � , vnq,
or not? (We think about this question when determining if vectors are redundant, and — applied to
v � e1, � � � , en — this can be used to determine if a set spans V .)

� Suppose I have a linear map A : V Ñ W . Is A injective? Alternatively, are there non-zero vectors
v P kerpAq? (We think about this when determining if a set of vectors is linearly independent or not.)

These questions are usually written at the start of most linear algebra books, in the following form.
Suppose

M �
�
�a11 a12 � � � a1n
� � � � � � � � � � � �
am1 am2 � � � amn

�



is an m� n matrix, and consider the associated linear map AM : Fn Ñ Fm, given by

AM

�
�x1
� � �
xn

�

�

�
� a11x1 � � � � � a1nxn

� � �
am1x1 � � � � � amnxn

�

.

Question. For a fixed vector b P Fm, find the set of vectors x P Fn for which AMx � b. That is, determine
the set A�1

M ptbuq. This includes the questions of whether or not this equation has any solutions, and also
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whether or not this equation has unique solutions, or if there is more than one solution.

If I spell out what this question is asking, writing b �
�
� b1
� � �
bm

�

, we are looking to find the set of solutions

px1, � � � , xnq to the system of equations

a11x1 � � � � a1nxn � b1

� � �
am1x1 � � � � � amnxn � bm.

This is what you would call in algebra a system of m equations in n unknowns. We’re going to develop an
algorithm (a process that a computer can run, which always follows the same steps, with no external input)
for solving such systems of equations.

Example 72. The system of equations

2x2 � x3 � 5x5 � 3

x1 � 4x4 � x5 � 1

x1 � 2x2 � 3x3 � x5 � 3

corresponds to the equation AMx � b, where M �
�
�0 2 1 0 �5
1 0 0 �4 1
1 �2 3 0 �5

�

and b � �

3 1 3
�
. One can

rewrite the equations above as

�
�0 2 1 0 �5
1 0 0 �4 1
1 �2 3 0 �5

�


�
�����
x1
x2
x3
x4
x5

�
����
�

�
�3
1
3

�

.

(Do the matrix multiplication to see that the product on the left-hand side gives precisely the left-hand-side
of the equations above.) ♢

5.6.1 Echelon forms

Before developing the algorithm, let me present two kinds of matrices for which it is easy to solve this
equation (in two different senses).

Definition 34. An m� n matrix M is said to be in reduced row echelon form if the following conditions
hold:

� The first nonzero entry in each row of M (if there is one) is equal to 1. This is usually called a ‘leading
1’ or ‘pivot entry’. If row i has a leading 1, I will say the leading 1 is in position jpiq, so ai,jpiq � 1 and
ai,k � 0 for k   jpiq.

� If row i has a leading 1, the other entries in the column jpiq are all zero. That is, ak,jpiq � 0 for k � i.

� If row i is zero, all later rows are zero.

� If there is a leading 1 in row i and row i � 1, then jpiq   jpi � 1q. That is, leading 1’s move right as
we go down the rows.

♢

“Echelon form” means the leading 1’s (sometimes called “pivot elements”) move down and to the right
as you move down the matrix (look up the definition of the word ‘echelon’ and its relevance to military
formations to get a good picture; you will see it matches with the examples below).
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Example 73.

�
�����
1 0 3 0 1
0 1 2 0 3
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

�
����
 is an example of a matrix in reduced row echelon form. Notice that the first

nonzero entry in each row is a 1; all other entries are zero in columns with a leading 1; all the rows with no
leading 1’s are at the end, and the leading 1’s move to the right. Another example is�

0 0 1 3 4 5 0
0 0 0 0 0 0 1



.

The following matrices are not in reduced row echelon form. Why not?

�
�1 2 0 0 1
0 1 0 1 0
0 0 1 0 0

�

,

�
���
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

�
��
,

�
�0 1
1 0
0 0

�

,

�
�0 1 3 0 0
0 0 0 2 1
0 0 0 0 0

�

.

♢

Reduced row echelon form is nice because when M is in reduced row echelon form, it is straightforward
to find the solutions to the system AMx � b. First, let me show an example; then let me state the general
process.

Example 74. Let M �

�
�����
1 0 3 0 1
0 1 2 0 3
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

�
����
. Then AMx � b translates to the five equations

x1 � 3x3 � x5 � b1

x2 � 2x3 � 3x5 � b2

x4 � b3

0 � b4

0 � b5.

The final two equations hold if and only if b4 � b5 � 0. So this sytem has no solutions if one of b4, b5
are nonzero. On the other hand, the first three equations can be rewritten as

x1 � b1 � 3x3 � x5
x2 � b2 � 2x3 � 3x5

x4 � b3.

Therefore this system has solutions if and only if b4 � b5 � 0. It has many solutions: we are allowed to
choose the values of x3, x5 however we want (these are called ‘independent variables’), while x1, x2, x4 are
determined by the b’s and the choices of x3, x5. We can write the solutions as those vectors x of the form

x �

�
�����
b1 � 3x3 � x5
b2 � 2x3 � 3x5

x3
b3
x5

�
����
.

♢

The same thought process allows us to easily write the solutions to AMx � b whenever M is in reduced
row echelon form.
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Proposition 68. Suppose M is an m � n matrix in reduced row echelon form. Suppose rows 1 through k
have leading 1’s, with jpiq being the position of the leading 1 in row i. We say the variables xjp1q, � � � , xjpkq
are “dependent variables”, while all other xr’s are “independent variables”.

The equations AMx � b have a solution if and only if bk�1 � � � � � bm � 0 (that is, bi � 0 if row i is zero
/ has no leading 1); when this is the case, we may freely choose all x1, � � � , xn other than xjp1q, � � � , xjpkq.
After having chosen those values of x, there is a unique solution to this equation, with xjpiq given by

xjpiq � bi � ai,jpiq�1xjpiq�1 � � � � � ai,nxn.

Notice that in the expression bi � ai,jpiq�1xjpiq�1 � � � � � ai,nxn, no dependent variable appears, only the
independent variables (which we chose to be whatever they wanted to be).

Remark 43. Applying this to the vector b � 0, this shows us a basis for kerpAM q: I have one basis vector
for each independent variable xr, corresponding to setting xr � 1 and all other independent variables equal

to zero. For example, in the case of M �

�
�����
1 0 3 0 1
0 1 2 0 3
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

�
����
, a basis for kerpAM q is given by looking at the

solution to our system of equations AMx � 0⃗ given by

x1 � �3x3 � x5
x2 � �2x3 � 3x5

x4 � 0 :

setting x3 � 1 and x5 � 0 (and then setting x3 � 0 and x5 � 1) we see that the following two vectors
form a basis for kerpAM q: �

�����
�3
�2
1
0
0

�
����
,

�
�����
�1
�3
0
0
1

�
����
.

In particular, if M is in reduced row echelon form, nullpAM q is the number of independent variables
(while rankpAM q is the number of dependent variables). ♢

Thus a matrix M in reduced row echelon form allows us to easily compute its kernel, or even better, the
set of solutions AMx � b for any vector b P Fm. There is a comparable notion which plays well with images,
as well.

Definition 35. An n � m matrix M is said to be in reduced column echelon form if the following
conditions hold:

� The first nonzero entry in each column of M (if there is one) is equal to 1. This is usually called a
‘leading 1’ or ‘pivot entry’. If column j has a leading 1, I will say the leading 1 is in position ipjq, so
aipjq,j � 1 and ak,j � 0 for k   ipjq.

� If column j has a leading 1, the other entries in the row ipjq are all zero. That is, aipjq,k � 0 for k � j.

� If column j is zero, all later columns are zero.

� If there is a leading 1 in column j and column j � 1, then ipjq   ipj � 1q. That is, leading 1’s move
down as we go right along the columns.

♢
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Example 75. Here are two matrices in reduced column echelon form:�
�����
1 0 0
2 0 0
0 1 0
3 1 0
0 0 1

�
����
,

�
�����
0 0 0 0
1 0 0 0
3 0 0 0
0 1 0 0
0 0 1 0

�
����
.

The matrix

�
�����
1 0 3 0 1
0 1 2 0 3
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

�
����
 is in reduced row echelon form, but it is not in reduced column echelon

form (it fails almost every criterion). The two conditions of ‘reduced row echelon form’ and ‘reduced column
echelon form’ are nearly opposites. ♢

This is almost (but not quite) the exact same set of conditions as I described in the Bonus exercise on
HW4: if I hand you a matrix in reduced column echelon form, you automatically have a basis for its image!

Example 76. Consider the rcef matrix M �

�
�����
1 0 0
0 1 0
3 2 0
0 0 1
5 3 2

�
����
. For the associated linear map AM : F3 Ñ F5, the

output of

�
�x1x2
x3

�

 is given by

AMx �

�
�����

x1
x2

3x1 � 2x2
x3

5x1 � 3x2 � 2x3

�
����
.

The nonzero columns of M provide a basis for the image, and it is now easy to check if a given vector b is
in the image of AM : set x1 � b1, x2 � b2, x3 � b4, and see if b3 � 3x1 � 2x2 and b5 � 5x1 � 3x2 � 2x3. For

instance, b �

�
�����

1
3
8
�4
6

�
����
 is in the image, because if we set x1 � 1, x2 � 3, x3 � �4, then we have

�
�����

x1
x2

3x1 � 2x2
x3

5x1 � 3x2 � 2x3

�
����
�

�
�����

1
3

3p1q � 2p3q
�4

5p1q � 3p3q � 2p�4q

�
����
�

�
�����

1
3
9
�4
6

�
����
� b,

so b is in the image of AM .

On the other hand, b �

�
�����
0
2
0
3
0

�
����
 is not in the image of AM , because if AMx � b, we must have x1 � 0, x2 �

2, x3 � 3; but

AM

�
�0
2
3

�

�

�
�����

0
2

3p0q � 2p2q
3

5p0q � 3p2q � 2p3q

�
����
�

�
�����

0
2
4
3
12

�
����
� b.
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♢

The example above, stated generally, is given as follows.

Proposition 69. SupposeM is an m�n matrix in reduced column echelon form, and that columns 1 ¤ j ¤ k
are nonzero. Write ipjq for the position of the leading 1 in each column. Then

b P impAM q ðñ AM

�
�������

bip1q
� � �
bipkq
0
� � �
0

�
������

� b.

Remark 44. Suppose M is a matrix in both reduced row echelon form and reduced column echelon form.
ThenM takes a very simple form, which is most easily expressed in the language of ‘block matrices’ (writing
matrices in terms of smaller matrices). For instance,

M �

�
���
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

�
��


is both rref and rcef. In general, an m� n matrix of rank r which is both rref and rcef is necessarily of the
form

M �
�

Ir�r 0r�pn�rq
0pm�rq�n 0pm�rq�pn�rq



,

where Ir�r refers to the r� r identity matrix, and 0i�j refers to the zero matrix with i rows and j columns.
(In other words, M has 1’s descending from the top left until eventually stopping, and all other entries are
zero.)

There is exactly one rref and rcef matrix of a given rank. ♢

5.6.2 The Gauss–Jordan algorithm

The previous remarks are all well and good, but if I hand you a matrix M , it is usually not the case that M
is in either rref or rcef. So it is not at all clear that the stuff we just discussed helps!

There are actually two (basically identical) Gauss–Jordan algorithms, one for row operations and one for
column operations. I will go over the first in detail: the second discussion is almost identical. If you want
to test your understanding, you can try to set up the theory of coluimn Gauss–Jordan, and see how the
statements and arguments below change.

If you’ve ever attempted to solve systems of linear equations like

x1 � 2x2 � 3x3 � 0

x1 � 3x3 � 4

x2 � x3 � 5

before, you’ve proceeded in the following fashion:

� You added (a multiple of) one equation to another, which doesn’t change the set of solutions.

� You scaled one equation by a nonzero quantity, which doesn’t change the set of solutions.

� You might have swapped some equations to organize your work more easily, which certainly doesn’t
change the set of solutions.

� If you ever got an equation of the form 0 � 0, it says nothing, so you discard it. If you ever get to
an equation of the form 0 � b for b � 0, then you know your system has no solutions, because this is
impossible.
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You then proceeded until you found equations which were easily solvable. This is called ‘row reduction’,
and the equations you found which were ‘easily solvable’ corresponded precisely to a matrix in reduced row
echelon form.

Definition 36. Let M �
�
�— f1 —

� � �
— fm —

�

be an m � n matrix. Another m � n matrix M 1 is obtained from

M by an elementary row operation if M 1 takes one of the following three forms:

(i) M 1 is obtained by swapping two rows i1, i2 of M . For instance,

M 1 �

�
���
— f1 —
— f4 —
— f3 —
— f2 —

�
��


is obtained by swapping rows 2 and 4 of M .

(ii) M 1 is obtained by scaling some single row of M by a nonzero scalar. For instance,

M 1 �
�
�— f1 —
— 4f2 —
— f3 —

�



is obtained by scaling the second row of M by 4 � 0.

(iii) M 1 is obtained by adding a multiple of some row i1 of M to some row i2 of M . For instance,

M 1 �

�
���
— f1 —
— f2 —
— f3 � 17f4 —
— f4 —

�
��


is obtained by adding �17 times row 4 to row 3.

Notice that these same operations can be applied to vectors (m� 1 matrices). For instance, applying a

row operation of type (ii) to

�
�3
1
2

�

might give

�
�3
4
2

�

 (here we scaled the second row by 4). ♢

The discussion in my itemized list above (how solutions to the equations don’t change when you perform
these operations) is formalized as the following statement.

Proposition 70. Suppose M is an m � n matrix and b P Fm is a vector (an m � 1 matrix). Suppose M 1

and b1 are obtained by performing the same row operation on M and b. Then

AMx � b ðñ AM 1x � b1.

For example, we have

�
�3 1 4 4 0
2 1 0 3 0
1 5 15 5 1

�


�
�����
x1
x2
x3
x4
x5

�
����
�

�
�1
2
3

�

 ðñ

�
�1 0 4 1 0
2 1 0 3 0
1 5 15 5 1

�


�
�����
x1
x2
x3
x4
x5

�
����
�

�
��12

3

�

.

Here I subtracted the second row from the first in both M and b.
Now let me show in example how to use row operations to algorithmically reduce a system of equations

to one in reduced row echelon form, and thus extract all of its solutions easily. I will then state the Gauss–
Jordan algorithm.
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Example 77. Let’s explicitly solve the system from before over R using row operations.

�
�3 1 4 4 0
2 1 0 3 0
1 5 15 5 1

�


�
�����
x1
x2
x3
x4
x5

�
����
�

�
�1
2
3

�

 ðñ

�
�1 1{3 4{3 4{3 0
2 1 0 3 0
1 5 15 5 1

�


�
�����
x1
x2
x3
x4
x5

�
����
�

�
�1{3

2
3

�



Subtract twice row 1 from row 2 ðñ
�
�1 1{3 4{3 4{3 0
0 1{3 �8{3 1{3 0
1 5 15 5 1

�


�
�����
x1
x2
x3
x4
x5

�
����
�

�
�1{3
4{3
3

�



Subtract row 1 from row 3 ðñ
�
�1 1{3 4{3 4{3 0
0 1{3 �8{3 1{3 0
0 14{3 41{3 11{3 1

�


�
�����
x1
x2
x3
x4
x5

�
����
�

�
�1{3
4{3
8{3

�



Scale row 2 by 3 ðñ
�
�1 1{3 4{3 4{3 0
0 1 �8 1 0
0 14{3 41{3 11{3 1

�


�
�����
x1
x2
x3
x4
x5

�
����
�

�
�1{3

4
8{3

�



Subtract one-third row 2 from row 1 ðñ
�
�1 0 4 1 0
0 1 �8 1 0
0 14{3 41{3 11{3 1

�


�
�����
x1
x2
x3
x4
x5

�
����
�

�
��14
8{3

�



Subtract fourteen-thirds row 2 from row 3 ðñ
�
�1 0 4 1 0
0 1 �8 1 0
0 0 51 �1 1

�


�
�����
x1
x2
x3
x4
x5

�
����
�

�
� �1

4
�16

�



Scale row 3 by 1{51 ðñ
�
�1 0 4 1 0
0 1 �8 1 0
0 0 1 �1{51 1{51

�


�
�����
x1
x2
x3
x4
x5

�
����
�

�
� �1

4
�16{51

�



Subtract four times row 3 from row 1 ðñ
�
�1 0 0 55{51 �4{51
0 1 �8 1 0
0 0 1 �1{51 1{51

�


�
�����
x1
x2
x3
x4
x5

�
����
�

�
� 13{51

4
�16{51

�



Add eight times row 3 to row 2 ðñ
�
�1 0 0 55{51 �4{51
0 1 0 43{51 8{51
0 0 1 �1{51 1{51

�


�
�����
x1
x2
x3
x4
x5

�
����
�

�
� 13{51

76{51
�16{51

�

.

In the first step, I scaled the first row by 1
3 . In the next two steps, I subtracted off multiples of the first

row from the next two (so there’s only the single 1 in the first column). I then moved on to the next column,
ignoring the first row, and scaling the first leading entry in the second row to be 1, then subtracting it off
the correct multiple from the next row. I did the same thing in the last column.
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In the end, we obtain a matrix in reduced-row-echelon form, with no all-zero rows. Therefore there is
always a solution to the equations; in fact, there is a 2-dimensional family of solutions, with independent
variables x4, x5 and dependent variables x1, x2, x3. The equations now read

x1 � 55

51
x4 � �4

51
x5 � 13

51

x2 � 43

51
x4 � 8

51
x5 � 76

51

x3 � �1
51
x4 � 1

51
x5 � �16

51
,

which can be rewritten as

x1 � 13� 55x4 � 4x5
51

x2 � 76� 43x4 � 8x5
51

x3 � �16� x4 � x5
51

.

Therefore, the solutions to this equation take precisely the form

1

51

�
�����
13� 55x4 � 4x5
76� 43x4 � 8x5
�16� x4 � x5

51x4
51x5

�
����
.

(I pulled out a scalar factor of 1{51 to make this expression cleaner.) As a sanity check, let’s plug in some
values and see if the original equation actually is satisfied. Taking x4 � x5 � 0, I find

�
�3 1 4 4 0
2 1 0 3 0
1 5 15 5 1

�


�
�����

13{51
76{51
�16{51

0
0

�
����
�

1

51

�
� 3 � 13� 1 � 76� 4 � p�16q

2 � 13� 1 � 76� 0 � p�16q
1 � 13� 5 � 76� 15 � p�16q

�

� 1

51

�
� 39� 76� 64

26� 76
13� 380� 240

�

� 1

51

�
� 51
102
153

�

�

�
�1
2
3

�

,

as claimed.
(This sanity check is very valuable. I noticed a mistake in my original computation by carrying it out,

and it’s much much faster to check your work than it was to carry out the original computation.)
The only thing missing from the general algorithm in this example is the fact that when I moved onto

the second column, there was no guarantee the first nonzero term was already in row 2. I might have had to
swap some rows to guarantee this (notice we never used the row-swapping operation). This will be included
in the phrasing in terms of the formal Guass–Jordan algorithm. ♢

Statement of the Guass–Jordan algorithm. Start with an m � n matrix M and a vector b P Fm.
Apply the following operations (determined by the structure of M) to reduce it to a rref matrix, changing b
with each operation as you go. The steps below are phrased as n steps for the n columns, with m sub-steps
for each column.

� Step C1. Search to see if there exists a nonzero entry in column 1. If not, move on to step C2. If
there is one, continue through the sub-steps below.

– Substep (swap). If the first row with a nonzero entry in column 1 is row i ¡ 1, swap row 1 with
row i.

– Substep (scale). Having done so, scale the first row by 1{a11, so that the first row starts with
a leading 1.
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– Substep (subtract). Having done so, subtract a21 times the first row from the second row.
Then subtract a31 times the first row from the third row, and so on, through subtracting am1

times the first row from the m’th row. Having done so, move on to Step C2.

� � � � (continue down the columns...)

� Step Cj. Suppose rows 1 through i all have leading 1’s, at this point. Search column j to see if there
is a nonzero entry in a row lower than row i. If there is not, move on to Step C(j+1). If there is one,
continue through the sub-steps below.

– Substep (swap). If the first row after row i with a nonzero entry in column j is row k ¡ i� 1,
swap row k with row i� 1.

– Substep (scale). Having done so, scale the i� 1’th row by 1{ai�1,j , so that the row i� 1 has a
leading 1.

– Substep (subtract). Having done so, subtract a1,j times the i � 1’th row from the first row.
Then subtract a2,j times the i � 1’th row from the second row, and so on, skipping row i � 1.
After subtracting am,j times the i� 1’th row from the m’th row, move on to Step C(j+1).

� � � � (continue down the columns...)

� After completing Step Cn, the resulting matrix is in reduced row echelon form, and the algorithm is
complete.

Each step requires no thought: you (or better, a computer) just follows the instruction. After each step
C1, C2, ... we have made the first, second, etc column have the same behavior as the columns in an rref
matrix. Ultimately, the matrix is actually rref, and we can read off the list of solutions. I suggest trying to
see how the work we did in the previous example is the same as the work promised by this algorithm.

5.7 Bases and matrices

We have now developed a rather extensive understanding of matrices and how to work with them, as well
as an algorithm for computing the kernel and image of a linear map Fn Ñ Fm. But most vector spaces are
not of this form: for instance

V �
$&
%
�
�xy
z

�

P R3

��� 3x� 2y � 5z � 0

,.
-

is 2-dimensional, but it is not literally R2, and I do not know how I would encode a linear map V Ñ V as a
matrix, much less compute its kernel or image.

In this section, I’ll describe how to translate linear maps between general vector spaces into matrices.
This depends on a choice of basis, and different choices will lead us to different matrices. (This is why I
emphasized the distinction between linear maps and matrices!)

I want to warn that students often find this material very difficult. (I did when I learned it for the first
time.) If you find the discussion here either hard to understand, or insufficient to develop understanding, I
want to recommend some alternate references.

� I think that the discussion in Bretscher’s book “Linear algebra with applications” in Section 3.4 is
helpful, though the notation is rather heavy, and different from mine; I will try to explain the compar-
ison. What he calls rxsβ is what I would call C�1

β x below. If T : V Ñ V is a linear transformation and
β is a basis for V , he says something along the lines of: “Let B be the matrix with Brxsβ � rTxsβ ; we
call this the matrix for T with respect for β.” This is the matrix I would call rT sβÑβ below.

� The discussion in Treil’s “Linear Algebra Done Wrong”, chapter 2.8, is also nice. His notation is closer
to mine. Below I will refer to bases β and β1, which he would call A and B respectively. The matrix
I call rT sβÑβ1 is what he would call rT sBA. Notice the swapped order: he does this to remedy an
irritation I will point out below.
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In the end, you should learn to understand my notation and how to use it (since that’s how I’m going to
refer to this notion!) But for confusing topics, it’s often useful to read other sources and see if one resonates
with you. If you’re only going to look at one of the above, I recommend Treil, since he does things closer to
how I do them below.

5.7.1 Bases and coordinates

The first key ingredient is a map I have discussed in examples a number of times.

Definition 37. Let V be a finite-dimensional vector space, and let β � pv1, � � � , vnq be a basis for V . The
coordinate map Cβ : Fn Ñ V is the linear map

Cβ

�
�a1
� � �
an

�

� a1v1 � � � � � anvn.

♢

Let me record as a lemma something I’ve mentioned in examples before.

Lemma 71. The map Cβ defined above is invertible if and only if β is indeed a basis for V .

Proof. The image of Cβ is the set of vectors of the form a1v1 � � � � � anvn; that is, impCβq � spanpβq. So
Cβ is surjective if and only if β spans V .

The kernel of Cβ is the set of vectors

�
�a1
� � �
an

�

 so that a1v1 � � � � � anvn � 0⃗. That is, it is the set of linear

relations between the vectors of β. Because a linear map is injective if and only if its kernel is trivial, we see
that Cβ is injective if and only if β is linearly independent.

Combining these, we have proved the desired claim.

From now on, if I ever write Cβ, it is implicit that β is a basis. In particular, Cβ is invertible.
What is the map C�1

β : V Ñ Fn?

Remember that this should undo the map Cβ . Because Cβ

�
�a1
� � �
an

�

� a1v1 � � � � � anvn, the fact that

C�1
β Cβ � I is the identity map means that

C�1
β Cβ

�
�a1
� � �
an

�

�

�
�a1
� � �
an

�

 ùñ C�1

β pa1v1 � � � � � anvnq �
�
�a1
� � �
an

�

.

In particular, Cβpeiq � vi and C
�1
β pviq � ei.

I think of this as follows. Every vector v P V can be written in a unique way as a1v1�� � ��anvn, because
β is a basis. The map C�1

β takes a vector v, finds out the unique way to write it as v � a1v1 � � � � � anvn,
and outputs

C�1
β pvq �

�
�a1
� � �
an

�

.

I might call these the ‘β-coordinates’ of v, just as I might say that if x⃗ �
�
�x1
� � �
xn

�

P Fn is a vector, then the

xi are the coordinates of x⃗.
The map Cβ sends an element of Fn (a list of numbers) to the vector with those coordinates. On the

other hand, the map C�1
β takes a vector and extracts its β-coordinates.

Let me try to give some intuition with an example.
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Example 78. Consider the subspace

V �
$&
%
�
�xy
z

�

P R3

��� 3x� 2y � 5z � 0

,.
- � R3.

I’m going to choose some silly basis of this space; let’s say

β �
$&
%
�
� 1
�1
�1

�

,

�
�2
3
0

�


,.
- .

Then the map Cβ : F2 Ñ V is defined by

Cβ

�
x
y



� x

�
� 1
�1
�1

�

� y

�
�2
3
0

�

�

�
� x� 2y
�x� 3y
�x

�

.

On the other hand, the map C�1
β finds how to write a vector in β-coordinates and it sends it to those

coordinates.

For instance, let’s take the vector

�
� 7

8
�1

�

. Because 3 � 7 � 2 � 8 � 5 � 21 � 16 � 5 � 0, this is indeed a

vector in V . How do I write it as a linear combination of the basis vectors? If you want, you can run the
Gauss–Jordan algorithm to solve this (good practice); I’ll just tell you that�

� 7
8
�1

�

� 1

�
� 1
�1
�1

�

� 3

�
�2
3
0

�

.

It follows that

C�1
β

�
� 7

8
�1

�

� �

1
3



;

I send our vector to the coefficients in its representation as a linear combination of the basis vectors.
You might ask me for a formula for the linear map C�1

β , but every answer I’m going to give you will be
frustrating, I think. Part of the problem is that to give a formula for this map, you should first give me a
formula for an arbitrary element of V . One of those is in terms of the basis β! For instance, a general form

for a vector in V is

�
� x� 2y
�x� 3y
�x

�

, and indeed because

�
� x� 2y
�x� 3y
�x

�

� x

�
� 1
�1
�1

�

� y

�
�2
3
0

�

,

we have C�1
β

�
� x� 2y
�x� 3y
�x

�

� �

x
y



. But all I’ve really told you here is that C�1

β is the inverse of Cβ .

♢

Remark 45. For a more trivial example, suppose V � Fn and β � pe1, e2, � � � , enq. Then the map Cβ : Fn Ñ

Fn is the identity map. It sends a vector

�
�x1
� � �
xn

�

 in Fn to the coefficients in the expression

�
�x1
� � �
xn

�

� x1e1 � � � � � xnen;
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that is, it sends

�
�x1
� � �
xn

�

 to itself!

On the other hand, if I choose a different basis β � pv1, � � � , vnq for Fn, then the map Cβ will not be the
identity; it will send Cβej � vj . For instance,

V � F2, β �
� �

2
1



,

�
1
1


 

then Cβ �

�
2 1
1 1



.

In this case one can actually compute C�1
β , though usually it’s not trivial to do so. In your homework, I

present the fastest algorithm to do so in practice, as well as a fast formula for 2 � 2 matrices which in this
case gives

C�1
β �

�
1 �1
�1 2



.

There is a ‘general formula’ for an n � n matrix called Cramer’s rule which I will present in an upcoming
Curio, but this formula is useless in practice past the 3� 3 case (and even that is stretching it). It does have
some theoretical use. ♢

This is all well and good. The map Cβ lets me trace out space, taking a sequence of numbers (the
coordinates) to a particular point in V , and the map C�1

β lets me take a point in V to the unique sequence
of numbers which determines it (its coordinates). But it’s not terribly interesting by itself.

5.7.2 The matrix associated to a pair of bases

We’re going to use the language of the previous section to go from linear maps to matrices. Here is the
crucial principle: an m � n matrix comes from / corresponds to a map Fn Ñ Fm. If V is a vector
space and β is a basis for V of size n, we now have a way to go back and forth between Fn and V : sending
a list of coordinates to the corresponding vector in V , and recovering the coordinates of a point on V :

Cβ : Fn Ø V : C�1
β

Fn V
Cβ

C�1
β

If I follow one arrow and then the other (going back where I started), I get the identity map: these two
maps are inverse.

Construction. Suppose A : V Ñ W is a linear map. Choose a basis β � pv1, � � � , vnq for V and a basis
β1 � pw1, � � � , wmq for W . Consider the diagram of composable linear maps

V W

Fn Fm

Cβ

A

C�1

β1

The composite C�1
β1 ACβ defines a map Fn Ñ Fm, and corresponds to an m� n matrix.

Definition 38. Let A : V Ñ W be a linear map, and choose a basis β � pv1, � � � , vnq for V , and a basis
β1 � pw1, � � � , wmq for W . Write rAsβÑβ1 for the m � n matrix which represents the linear map C�1

β1 ACβ :
Fn Ñ Fm. ♢

To simplify notation, I will often simply write rAsβÑβ1 for either the m � n matrix or the linear map
C�1
β1 ACβ : Fn Ñ Fm it represents.
I want to try and explain what this means in a few ways. First off, let’s try to understand rAsβÑβ1 by

understanding what this composite does step-by-step:
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� Given x⃗ �
�
�x1
� � �
xn

�

 P Fn, the output Cβx⃗ sends it to Cβx⃗ � x1v1 � � � � � xnvn, the vector in V with

those coordinates.

� The map A : V Ñ W takes vectors in V and produces vectors in W . At this stage, we plug Cβx⃗ into
the map A, and ACβx⃗ is a vector in W . Explicitly,

ApCβx⃗q � Apx1v1 � � � � � xnvnq � x1Av1 � � � � � xnAvn.

� Now this vector can be expressed somehow as a linear combination of the β1-basis vectors w1, � � � , wm;
we have

w � px1Av1 � � � � � xnAvnq � y1w1 � � � � � ymwm
for some y1, � � � , ym, where y1, � � � , ym are what we call the β1-coordinates of this vector. Then we say

C�1
β w �

�
� y1
� � �
ym

�

.

More briefly: We send the list of numbers x⃗ to the vector in V with those β-coordinates. Then we plug
that point in V to A, which produces a vector in W . Then we extract the β1-coordinates of this output. In
the end, we have taken the list of n numbers x⃗ P Fn to a list of m numbers rAsβÑβ1 x⃗ P Fm.

I can also describe the columns of this matrix explicitly. The j’th column of rAsβÑβ1 is given by
C�1
β1 ACβej � C�1

β1 pAvjq. Explicitly, C�1
β1 takes a vector in W , writes w � b1w1 � � � � � bmwm as a lin-

ear combination of the vectors in β1, and C�1
β1 w �

�
� b1
� � �
bm

�

 extracts the coefficients of this linear combi-

nation (what we call the β1-coordinates of w). So the j’th column of rAsβÑβ1 is given by

�
� b1j
� � �
bmj

�

, where

Avj � b1jw1 � � � � � bmjwm.
Then

rAsβÑβ1

�
�x1
� � �
xn

�

�

�
� b11x1 � � � � � b1nxn

� � �
bm1x1 � � � � � bmnxn

�



means that

x1Av1 � � � � � xnAvn �
�
b11x1 � � � � � b1nxn

�
w1 � � � � �

�
bm1x1 � � � � � bmnxn

�
wm.

To a large degree, this will be mostly useful for theoretical reasons, and in this class you will not need
to compute the explicit matrices rAsβÑβ1 . I still want to give an example or two as a way to get a sense for
‘what is going on’.

Example 79. Let me take the space

V �
$&
%
�
�xy
z

�

P R3

��� 3x� 2y � 5z � 0

,.
- � R3

from the preceding example, and the basis

β �
�
�v1 �

�
� 1
�1
�1

�

, v2 �

�
�2
3
0

�


�

.
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Now consider the map A : F3 Ñ V given by

A

�
�xy
z

�

�

�
� 2x� z
3x� 5y � z

2y � z

�

;

you may check that the output is indeed an element of V . Do not write A as a 3� 3 matrix! It is not a
map from F3 to F3, but rather to a subspace of F3. It will be represented as a 3� 2 matrix which depends
on the basis we chose above!

Write std for the standard basis pe1, e2, e3q of F3. Let’s compute the matrix rAsstdÑβ . This means
we should compute C�1

β Aej , for j � 1, 2, 3. Even more explicitly, we should write each Aej as a linear
combination of v1 and v2, and extract their coordinates.

We have

Ae1 � A

�
�1
0
0

�

�

�
�2
3
0

�

� 0

�
� 1
�1
�1

�

� 1

�
�2
3
0

�

� 0v1 � 1v2

Ae2 � A

�
�0
1
0

�

�

�
�0
5
2

�

� �2

�
� 1
�1
�1

�

� 1

�
�2
3
0

�

� p�2qv1 � 1v2

Ae3 � A

�
�0
0
1

�

�

�
� 1
�1
�1

�

� 1

�
� 1
�1
�1

�

� 0

�
�2
3
0

�

� 1v1 � 0v2.

From this we may read off the columns of

rAsstdÑβ �
�
0 �2 1
1 1 0



.

♢

Remark 46. Choose a basis β for V . The identity map 1V : V Ñ V always has r1V sβÑβ � I equal to the
identity matrix. Proof: r1V sβÑβ � C�1

β 1V Cβ � C�1
β Cβ � I. An exercise for you is to understand this

explicitly in terms of the more concrete description outlined above. ♢

Remark 47. The matrix rAsβÑβ1 depends dramatically on the choice of bases β and β1, and we will discuss
the way it depends on them later. This is not a bad thing. In fact, even if we were only interested in
studying concrete things in Fn (like in a concrete linear algebra class), it is still often useful to choose an
nonstandard basis, which is better-adapted to understanding the object at hand. We’ll see this in practice
when we discuss diagonalization and the spectral theorem. ♢

Remark 48. Suppose A : Fn Ñ Fm is a linear map. Then what I have previously called ‘the matrix
representation for A’ in this fancy language is the matrix rAsstdÑstd: it is the linear map A when represented
as a matrix in terms of the standard bases. ♢

It is sometimes also helpful to represent this diagramatically.

V W

Fn Fm

Cβ

A

C�1

β1

rAsβÑβ1

In this picture, there are two ways to get from Fn to Fm. The short path has a name written above
it, rAsβÑβ1 . This is just meant to indicate that it is what we get when we go around the ‘long path’:
rAsβÑβ1 � C�1

β1 ACβ . This is just a visual encoding of the definition of rAsβÑβ1 , not a theorem.
A picture like this, where there are sometimes multiple ways to get from one point to another, is sometimes

called a ‘commutative diagram’. Using the fact that the vertical arrows used above are invertible, there’s a
slightly fancier way to write this diagram which contains more information:
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V W

Fn Fm

Cβ

A

C�1

β1

rAsβÑβ1

C�1
β

Cβ1

Here the two adjacent vertical arrows are meant to indicate you can go up or down, and going up and
then down the same arrow undoes that arrow. To say that this diagram ‘commutes’ means that any way I
have from going from one point to another by following the arrows gives me the same answer. For instance,
going from bottom-left to top-right, we see that

ACβ � Cβ1rAsβÑβ1 ,

or going from top-left to top-right, we see that

A � Cβ1rAsβÑβ1C
�1
β .

Again, this is not a theorem, just a visual way to repackage the definition rAsβÑβ1 � C�1
β1 ACβ (and use facts

like CβC
�1
β � 1V ).

I’ll conclude this discussion by showing that this representation of linear maps as matrices with respect
to chosen bases plays well with composition / matrix multiplication — so long as you use the same basis on
the vector space in the middle.

Proposition 72. Suppose B : V Ñ W is a linear map, and A : W Ñ U is a linear map. Suppose we have
chosen bases βV , βW , βU for V,W,U , respectively. Then we have

rABsβV ÑβU
� rAsβWÑβU

rBsβV ÑβW
.

The weird ordering on the β’s is not a mistake. It has to do with the fact that when you write composition

in terms of arrows V
BÝÑW

AÝÑ U , the composite seems to ‘flip order’ to AB : V Ñ U , and this relates to the
fact that we write function application on the left: pABqv � ApBvq means we apply B first, even though it
comes second in the string “AB”.

Proof. Let me first give a pure symbol-pushing formula argument, and then let me show a diagram which
might help explain what’s going on. By definition, we have

rAsβWÑβU
rBsβV ÑβW

�
�
C�1
βU
ACβW

	�
C�1
βW
BCβV

	
� C�1

βU
ACβW

C�1
βW
BCβV

� C�1
βU
A1WBCβV

� C�1
βU
ABCβV

� rABsβV ÑβU
.

All I used here is the definition of the expressions involved and the fact that C�1
βW
CβW

is the identity map
(these two maps undo each other). But I think a diagram might make this more clear.

V W U

Fn Fm Fℓ

CβV

B

C�1
βW

rBsβV ÑβW

CβW

A

rAsβWÑβU

C�1
βU

rABsβV ÑβU

AB
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The map rAsβWÑβU
rBsβV ÑβW

is what you get when you start at the bottom left, go up, right, down, up
again, right, and down. When we went down and up again in the middle there, those two steps undo each
other. This is indistinguishable from having gone up, right, right, and down — that is, apply CβV

, then B,
then A, then C�1

βU
. But “apply B, then A” is what “apply AB2 means. So this reads: “Apply CβV

, then

AB, then C�1
βU

.”

To a large degree, this tells us that so long as you carefully keep track of bases, you can go back and
forth between the language of vector spaces, linear maps, and composition and the language of matrices and
matrix multiplication.

Remark 49. If I chose different bases on W for the two different maps, I get nothing useful. There is no
useful formula for the expression rAsβ1WÑβU

rBsβV ÑβW
. (Using some discussion from the next section, you

can write an expression for this, but it’s not something you will ever want to think about; it’s basically
useless.) ♢

5.7.3 Change of basis

When we have a linear map A : V ÑW and chosen bases βV and βW for V and W , we get an associated
matrix rAsβV ÑβW

. I had to make a choice in this construction! It’s worth understanding how this choice
affects the result: in principle (and in practice), we get many different matrices associated to the same linear
map!

To understand this, let’s go back to the earlier discussion of coordinates. Suppose I have two bases β
and β1 for V . We have two coordinate maps from Fn to V : how do they compare? In the diagram below, I
write Fnβ to indicate that this is the home for the β-coordinates (it’s still the same Fn as usual, the subscript
is just to help keep track of what’s going on).

Fnβ V

Fnβ1

Cβ

C�1
β

Cβ1 C�1

β1

Proposition 73. Suppose V has two bases β and β1. There is a unique invertible linear map ϕβÑβ1 : Fn Ñ
Fn which ‘transitions’ from one set of coordinates to another, in the sense that

Cβ1ϕβÑβ1 � Cβ .

This is depicted diagramatically below.

Fnβ V

Fnβ1

Cβ

C�1
β

Cβ1 C�1

β1

ϕβÑβ1

Proof. The map is simply given by the composite ϕβÑβ1 � C�1
β1 Cβ . Notice that this does indeed satisfy

Cβ1ϕβÑβ1 � Cβ1C
�1
β1 Cβ � 1WCβ � Cβ ,

as claimed.
This is the only such map because if Cβ1ϕβÑβ1 � Cβ , then left-multiplying both sides by C�1

β1 we see that

ϕβÑβ1 � pC�1
β1 Cβ1qϕβÑβ1 � C�1

β1 pCβ1ϕβÑβ1q � C�1
β1 Cβ .
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Remark 50. In fact, ϕβÑβ1 is the matrix representative of the identity map 1V : V Ñ V in terms of the
bases β, β1; that is, ϕβÑβ1 � r1V sβÑβ1 . This is the perspective preferred in Treil’s book. ♢

These ‘transition maps’ behave as expected: the transition from coordinate system β to the same coor-
dinate system is the identity; the transition from β1 to β amounts to undoing the transition from β to β1;
and the composite of the transition from β to β1 with the transition from β1 to β2 is precisely the transition
from β to β2.

Lemma 74. The transition maps described in Proposition 73 satisfy the following properties.

a) For any basis β of V , we have ϕβÑβ � I is the identity map Fn Ñ Fn.

b) For any two bases β, β1 of V , we have ϕ�1
βÑβ1 � ϕβ1Ñβ.

c) For any three bases β, β1, β2 we have ϕβ1Ñβ2ϕβÑβ1 � ϕβÑβ2 .

Proof. These are all definition-pushes using the fact that ϕβÑβ1 � C�1
β1 Cβ . For instance, the first follows

because C�1
β Cβ � I.

Now I can put this together to say how the matrices rAsβÑβ1 change as we chanage the basis on domain
and codomain.

Proposition 75. Suppose A : V Ñ W is a linear map. Suppose that we have chosen two bases βV , β
1
V for

V and two bases βW , β
1
W for W . Then the matrix representation of A with respect to these two bases are

related by
rAsβ1V Ñβ1W

� ϕβWÑβ1W
rAsβV ÑβW

ϕβ1V ÑβV
.

The diagram below encodes the situation.

V W

Fnβ1V FnβV
FmβW

Fmβ1W

A

CβV
C�1

βW

rAsβV ÑβW

Cβ1
V

C�1

β1
W

ϕβ1
V
ÑβV

ϕβWÑβ1
W

rAsβ1
V
Ñβ1

W

Proof. This is a symbol-pushing argument. We have

ϕβWÑβ1W
rAsβV ÑβW

ϕβ1V ÑβV
�

�
C�1
β1W
CβW

	�
C�1
βW
ACβV

	�
C�1
βV
Cβ1V

	
� C�1

β1W

�
CβW

C�1
βW

	
A
�
CβV

C�1
βV

	
Cβ1V

� C�1
β1W
ACβ1V � rAsβ1V Ñβ1W

.

Try saying in words what this is supposed to mean, and try understanding this in terms of the diagram
above (and what each map is supposed to ‘do’).

Allow me to summarize the results of this section.
If I have chosen a basis βV � pv1, � � � , vnq for V and a basis βW � pw1, � � � , wnq for W , I get a matrix

rAsβV ÑβW
�M . If I change the basis βV to another basis β1V , then I change this matrix by left-multiplication

by an invertible matrix: rAsβ1V ÑβW
� rAsβV ÑβW

ϕβ1V ÑβV
, or simplyM 1 �MT for the appropriate invertibile

matrix T . This is called ‘right-equivalence’ on your homework, and you will show that two matrices are
related this way (‘changing perspective on the domain’ / ‘changing basis in the domain’) if and only if the
have the same image.
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On the other hand, if I change the basis βW to another basis β1W (while leaving βV as it is), I get a
matrix rAsβV Ñβ1W

� ϕβWÑβ1W
rAsβV ÑβW

. That is, M 1 � SM for an appropriate invertible matrix S; this is
what I call left-equivalence on HW6#2, and you will show that two matrices are left-equivalent if and only
if they have the same kernel.

Finally, if I change both bases, the matrix changes by replacing M with M 1 � SMT , for appropriate
invertible matrices S, T . You will show on your homework that so long as M and M 1 have the same rank,
it is always possible to find such invertible matrices S and T .

Exercise. Explain why this statement — HW6#2(c) — is equivalent to the statement ‘For any map
A : V ÑW of rank k, there exists a basis pv1, � � � , vnq of V and a basis pw1, � � � , wmq of W so that

Avi �
#
wi 1 ¤ i ¤ k

0⃗ k   i ¤ n

If you can explain this clearly, and you can show how to construct such bases, you’re well on your way
to giving a proof for HW6#2(c).
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Chapter 6

Determinants and diagonalization

In this chapter, all vector spaces are finite-dimensional.

6.1 Determinants

In this section we’ll explore the notion of determinant of an n� n matrix, a numerical quantity detpMq P F
which determines whether or not the matrix is invertible. These notions were studied long, long before
matrices or ‘linear algebra’ (more than two millenia ago by Chinese mathematicians, and rediscovered inde-
pendently in Europe every century or so starting in the 1500s) because they determine whether or not the
system of equations Mx � b has a unique solution for any b.

The study of determinants is by necessity heavily algebraic, but the idea itself can be justified geomet-
rically. I would like to give you a sense for how I think about determinants before I give you a sense for
how I work with determinants: while I’d like some of my geometric thinking to translate into the algebraic
manipulations I do, I have to admit there’s less connection between them than I’d like.

6.1.1 Motivation

Suppose A : Rn Ñ Rn is a linear transformation. For instance, here’s a picture of the linear transformation

A

�
x
y



�

�
2 1
�1 1



associated to the matrix M �

�
2 1
�1 1



:

Thihs shows the before-and-after of applying the transformation A to the grid of squares depicted in
grey, with the output of each grey square now being depicted as a green parallelogram. The first key point I
want you to notice is that all of the little unit squares are transformed in the same way : they are all sent to
different translates of a given parallelogram. If I look at the rectangle formed by two adjacent gray squares,
the output is sent to the parallelogram formed by gluing two adjacent parallelograms.
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The ‘main green parallelogram’ that everything is made out of is the parallelogram with sides

Ae1, Ae2 �
�

2
�1



,

�
1
1



.

I happen to know that this parallelogram has area equal to 3, so all the area-one squares are sent to objects
of area three. (I know this because I happen to know that the ‘determinant’ ad � bc of a 2 � 2 matrix
computes that area.) But when I glued two of these squares together to form an area-two rectangle, it was
sent to the union of two area-three parallelograms: to something of area six.

What we’re seeing is that A scales area in a uniform way. If I feed A a shape of area 3, it outputs a
shape of area 3AreapSq.

This fact is something we can formally prove as soon as we formally develop the notion of ‘volume’ —
which we will not do in this course. For now, this fact will simply serve as motivation:

If S � Rn is any shape, and A : Rn Ñ Rn is a linear transformation, then

there is a constant detpAq P R so that volpASq � |detpAq|volpSq.

This quantity has some nice properties. First off, if detpAq is zero, then A must ‘collapse’ all of Rn to a
smaller-dimensional space (we have crushed the cube, of positive volume, to something with no volume —
somehow we must have collapsed all of Rn to something of strictly smaller dimension, as in the following
picture:

On the other hand, if detpAq is nonzero, then the unit cube is sent to something of positive volume,
which must take up a whole region in n-dimensional space, hence must have image of dimension n. Because
A : Rn Ñ Rn is a linear transformation between vector spaces of the same dimension, and dim impAq � n,
we must have that A is surjective and by the invertible map theorem that A is invertible. (Again, this is a
heuristic argument!)

Now let me return to the formula volpASq � |detpAq|volpSq. It is certainly not true that the quantity
ad � bc is always positive, so something is lost when I write that absolute value. What does the sign of

detpAq encode? In the example above where M �
�

2 1
�1 1



, the determinant was 3 ¡ 0. If I had instead

swapped the first and second columns, the picture would almost look the same...



6.1. DETERMINANTS 133

Except: compare this to the first picture I gave. The red and blue vectors have swapped positions! Before,
the red vector was positioned counter-clockwise from the blue vector; in the new picture, the red vector is
positioned clockwise from the blue vector. The blue vector represents Ae1 and the red vector represents
Ae2. Before applying A, the vector e2 lies counter-clockwise to e1. After appyling A, the vector Ae2 lies

counter-clockwise from Ae1 for the transformation associated to

�
2 1
�1 1



, but the opposite is true for the

transformation associated to

�
1 2
1 �1



.

When I swapped the two columns of A, I swapped their roles, and thus negated the effect of A on the way
this arrangement was oriented (for the first, it sends counter-clockwise to counter-clockwise; for the second,
it sends counter-clockwise to clockwise).

In general, the sign of detpAq P Rzt0u determines whether or not a linear transformation preserves or
reverses the ‘orientation’ in Rn. What orientation means is hard to describe in a non-circular fashion, but I
can give some examples. In one dimension, a line is either oriented forward or backwards. In two dimensions,
the plane is oriented either clockwise or counter-clockwise. In three dimensions, space is oriented in either a
‘left-hand’ fashion or a ‘right-hand’ fashion notice that there is no way to rotate your left hand to make it
resemble your right hand: you would have to reflect it in a mirror.

So we expect to find a scalar value detpAq P R with the properties above, and with some pleasant algebraic
properties that make it amenable to calculation. Let me summarize the properties we expect.

Theorem 76. There is a function of n� n matrices called the determinant detpMq P F which satisfies the
following properties.

(i) We have detpMNq � detpMqdetpNq.
(ii) We have detpMq � 0 if and only if M is invertible.

(iii) When F � R, we may understand detpMq as being the constant so that applying M scales volume by
|detpMq|, and preserves or reverses orientation depending on whether detpMq ¡ 0 or detpMq   0.

(iv) There are multiple ways to compute detpMq, some of which are useful for explicit computations, and
some of which are useful for theoretical investigation.

(Three of these claims will be proved below; you should cite the more specific claims, not this theorem.
This statement is merely to help summarize what the ‘point’ of the next two sections are.)

To actually define and investigate this geometric quantity, I’m going to get very, very algebraic.

6.1.2 The defining property

If one thinks of the determinant as encoding signed volume of an n-dimensional box in the n-dimensional
vector space V , in some sense, then one is led to a few expected algebraic properties. First, this quantity
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is encoded algebraically as a function D : V n Ñ F, which takes as input a list of n vectors pv1, � � � , vnq and
produces the volume Dpv1, � � � , vnq of the parallelepiped with these sides.

If you scale one side of a box by c, the area of that box is scaled by c. A legitimate n-dimensional box
with nonzero volume cannot have parallel edges (or else the box would have smaller dimension than n), so
Dpv1, � � � , vnq vanishes if one of its entries is repeated. And lastly, if you shear a box, the volume does not
change (this is called Cavalieri’s principle in geometry; to demonstrate it, take a deck of cards and push it
so that it’s tilted. Certainly you will agree the resulting object contains the same volume of paper.)

Instead of searching for a function with precisely these properties (the shearing invariance one in particular
is kind of irritating to work with), I’m going to investigate functions satisfying a property that appears
stronger at first glance.

Definition 39. Let V be a vector space over F. A multilinear function D : V m Ñ F of m variables
is a function which takes as input a list pv1, � � � , vmq of vectors in V and produces as output an element
Dpv1, � � � , vmq P F, which satisfies the following two additional properties.

(M1) D respects addition in one coordinate at a time:

Dpv1, � � � , vi�1, w�u, vi�1, � � � , vnq � Dpv1, � � � , vi�1, w, vi�1, � � � , vnq�Dpv1, � � � , vi�1, u, vi�1, � � � , vnq.

(M2) D respects scaling in one coordinate at a time:

Dpv1, � � � , vi�1, cvi, vi�1, � � � , vnq � cDpv1, � � � , vi�1, vi, vi�1, � � � , vnq. ♢

Said another way, D : V m Ñ F is multilinear if, for all 1 ¤ i ¤ n and all lists v1, � � � , vi�1, vi�1, � � � , vn,
the function

w ÞÑ Dpv1, � � � , vi�1, w, vi�1, � � � , vnq
is a linear function of w. We say D is ‘linear in each input’.

Example 80. The most famous example of a bilinear function (multilinear function of two variables) is the
dot product � : Fn � Fn Ñ F, defined as�

�x1
� � �
xn

�

�

�
�y1
� � �
yn

�

� x1y1 � � � � � xnyn.

This is linear in each of the two inputs, because for instance�
�x1 � x11

� � �
xn � x1n

�

�
�
�y1
� � �
yn

�

� px1�x11qy1�� � ��pxn�x1nqyn � px1y1�� � ��xnynq�px11y1�� � ��x1nynq �

�
�
�
�x1
� � �
xn

�

�

�
�x11
� � �
x1n

�


�

�
�
�y1
� � �
yn

�

.

This shows pM1q for addition in the first coordinate, but the same argument applies for the second coordinate.
In general, we find that

pv � v1q � w � v � w � v1 � w, pcvq � w � cpv � wq, v � pw � w1q � v � w � v � w1, v � pcwq � cpv � wq.

These facts say that the dot product is linear in each variable separately ; that is, that it is bilinear. ♢

The example of the dot product has v � w � w � v.
Definition 40. Let D : V m Ñ F be a multilinear function of m variables.

� We say D is symmetric if the outputs do not depend on the order of its inputs. That is, D is
symmetric if

Dpv1, � � � , vi, � � � , vj , � � � , vmq � Dpv1, � � � , vj , � � � , vi, � � � , vmq
is unchanged after swapping two of its inputs.

� We say D is alternating if, whenever vi � vj for i � j, we have Dpv1, � � � , vnq � 0. ♢
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Lemma 77. If D : V m Ñ F is alternating and I swap two of its inputs, the output is negated. That is,

Dpv1, � � � , vi, � � � , vj , � � � , vnq � �Dpv1, � � � , vj , � � � , vi, � � � , vnq.
Further, if I add a multiple of one input to another input, the output is unchanged;

Dpv1, � � � , vi, � � � , vj � cvi, � � � , vnq.
Proof. Notice that

Dpv1, � � � , vi � vj , � � � , vi � vj , � � � , vnq � 0

because D is alternating, but using multilinearity we see that

Dpv1, � � � , vi�vj , � � � , vi�vj , � � � , vnq � Dpv1, � � � , vi, � � � , vi�vj , � � � , vnq�Dpv1, � � � , vj , � � � , vi�vj , � � � , vnq,
which simplifies further to

Dpv1, � � � , vi, � � � , vi, � � � , vnq�Dpv1, � � � , vj , � � � , vi, � � � , vnq�Dpv1, � � � , vj , � � � , vi, � � � , vnq�Dpv1, � � � , vj , � � � , vj , � � � , vnq.
Because D is alternating, the first and last terms also vanish Ithey have repeated inputs). Therefore

Dpv1, � � � , vi, � � � , vj , � � � , vnq �Dpv1, � � � , vj , � � � , vi, � � � , vnq � 0,

so that the first is �1 times the second.
Similarly,

Dpv1, � � � , vi, � � � , vj � cvi, � � � , vnq � Dpv1, � � � , vnq � cDpv1, � � � , vi, � � � , vi, � � � , vnq � Dpv1, � � � , vnq;
in the first equality I used multilinearity on the j’th input, and in the second equality I used that D is
alternating and the input vi is repeated.

The first part means that if I reorder the inputs of D, the output changes by �1 depending on how many
times I performed a “swap”. For instance, if D is an alternating function of four variables, we have

Dpv4, v1, v2, v3q � �Dpv1, v4, v2, v3q � p�1q2Dpv1, v2, v4, v3q � p�1q3Dpv1, v2, v3, v4q,
where at each stage I swapped two variables (introducing a minus sign). If you’ve ever heard of the ‘cross
product’, you’ve seen this phenomenon before. If not, the first place it will be really meaningful is for the
determinant.

Let me quickly record this idea of ‘reordering the variables’ as a general definition.

Definition 41. Suppose σ : t1, � � � , nu Ñ t1, � � � , nu is a bijection. Such a bijection is often described by
listing out the elements of t1, � � � , nu in the order pσp1q, � � � , σpnqq; this is a list of the numbers from 1 to n
in some strange order, such as p3, 4, 1, 5, 2q.1

We say the sign of this bijection is

ϵpσq � p�1q# swaps needed to reorder the list to be the standard order. ♢

Such bijections are often called permutations of t1, � � � , nu, and there are n! � npn� 1qpn� 2q � � � 2 � 1
of them.

For instance, we showed above that ϵp4123q � p�1q3 � �1, whereas
ϵp34152q � �ϵp14352q � p�1q2ϵp12354q � p�1q3ϵp12345q � p�1q3.

What this discussion amounts to showing is that if D is an alternating function and you rearrange its
inputs, the output changes by �1, depending on how many swaps it takes to reorder them back to normal.
That is,

Dpvσp1q, � � � , vσpnqq � ϵpσqDpv1, � � � , vnq.
1This notation is not the same as cycle notation for permutations, if you’ve ever heard of that. If not, don’t worry.
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It is not obvious that the number of swaps needed to reorder this list back to standard order is either
always odd or always even, so that this sign is well-defined / doesn’t depend on the choice of swaps, but this
is true. It’s not worth our time to prove it2, so I’m going to move on to the upshot of all of this.

The point is that these properties are almost enough to uniquely define the determinant.

Theorem 78. There exists a unique alternating multilinear function of n variables Dc : pFnqn Ñ F for
which Dcpe1, � � � , enq � c.

That is, there is almost exactly one alternating multilinear function of n variables; we have a 1-parameter
family of them. If we further specify that Dpe1, � � � , enq, then we get a unique such function. Notice that
condition (M2) showed up in our discussion of the idea of determinants above, while condition (M1) is closely
related to the discussion of Cavalieri’s principle and the fact that shearing does not change volume, and the
alternating condition is related to our discussion of orientation.

I’ll give a proof of this theorem at the end of this section. First, I want to identify some upshots. The
first is that only one of these functions actually matters:

Corollary 79. For any c P F, we have Dcpv1, � � � , vnq � cD1pv1, � � � , vnq. In particular, D0pv1, � � � , vnq � 0.

Proof. The function Dpv1, � � � , vnq � cD1pv1, � � � , vnq is an alternating multilinear function because D1 is
and a scalar multiple of a multilinear function is still multilinear, and similarly a scalar multiple of an
alternating function is alternating.

Because Dpe1, � � � , enq � cD1pe1, � � � , enq � c, and there is a unique alternating multilinear function for
which Dcpe1, � � � , enq � c, we must have D � Dc. Therefore

Dcpv1, � � � , vnq � cD1pv1, � � � , vnq

for all v1, � � � , vn.
Definition 42. We call the function D1 : pFnqn Ñ F the determinant, and write it detpv1, � � � , vnq.

Let M �
�
� | |
v1 � � � vn
| |

�

be an n� n matrix. Its determinant is

detpMq � detpv1, � � � , vnq � detpMe1, � � � ,Menq;

that is, take the determinant of the list of the columns of M . ♢

Remark 51. In keeping with the discussion that opened this section, when working over R you should under-
stand the quantity detpv1, � � � , vnq as the n-dimensional signed volume of the n-dimensional parallelepiped
(sheared box) whose sides are v1, � � � , vn. The sign encodes the orientation of this box. Notice that if this
box has two repeated sides, it is necessarily of dimension ¤ pn� 1q, so that this quantity should be zero (the
alternating property).

2If you want to prove it, let Npσq be the number of pairs i   j so that σpiq ¡ σpjq. Then show that if σ1 is obtained from σ
by a swap, then Npσq �Npσ1q is odd. Probably not a good use of your time.
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(The quantity detpv1, v2, v3q will be the signed volume of the box above. In this case, the orientation of
pv1, v2, v3q is positive, so the signed volume is just the volume.)

Then if M is a matrix, detpMq is the constant so that M scales volume by | detpMq| and changes the
orientation by the sign of detpMq. This is encoded into the idea above because the unit box (with sides
e1, � � � , en) has volume 1, and it is sent to the parallelepiped with sides Me1, � � � ,Men, which has volume
detpMe1, � � � ,Menq.

Because M should scale the volume of every quantity by the same constant detpMq, this constant must
be equal to the volume detpMe1, � � � ,Menq.

I will not be able to justify the claim that the algebraic quantity ‘the determinant’ is signed volume in
any rigorous sense until later, if only because I have failed to give a precise definition of volume. ♢

To rephrase our preceding discussion in terms of matrices, the determinant is the unique function on
matrices with the following properties.

� If M 1 is obtained from M by swapping two of its columns, I have detpM 1q � �detpMq. Further, if M
has a repeated column, then detpMq � 0.

� If M 1 is obtained from M by scaling one of its columns by c, then detpM 1q � cdetpMq.
� Suppose

M �
�
� | | |
v1 � � � w � u � � � vn
| | |

�

 while Mw �

�
� | | |
v1 � � � w � � � vn
| | |

�

 and Mu �

�
� | | |
v1 � � � u � � � vn
| | |

�

.

Then detpMq � detpMwq � detpMuq.
� If I is the n� n identity matrix, we have detpIq � 1.

The first condition is the alternating condition, the next two multilinearity, and the last the condition
that D1pe1, � � � , enq � 1.

Before moving on to actually constructing the determinant, let me point out that these properties show
already that the determinant is well-behaved under matrix mutliplication. The following was stated earlier
as Theorem 76(i) and half of (ii).

Theorem 80. If M and N are n� n matrices, we have detpMNq � detpMq detpNq. As a corollary, if M
is invertible, we have detpMq � 0, and in fact detpM�1q � detpMq�1.

Proof. This is kind of a trick using Theorem 78. My intuition is that detpMNq � detpMNe1, � � � ,MNenq
should be how MN scales volume, so it should be “how M scales volume” times “how N scales volume”.
I’ll try to make this intuition into a proof by thinking of the operation ‘determinant of a list I’ve applied M
to’, and showing that this is ‘determinant of that list times determinant of M ’.

Consider the function D : pFnqn Ñ F given by

Dpv1, � � � , vnq � detpMv1, � � � ,Mvnq.
Notice that this is multilinear: it is linear in each coordinate, as

detpMv1, � � � ,Mpaw � buq, � � � ,Mvnq � detpMv1, � � � , aMw � bMu, � � � ,Mvnq
� a detpMv1, � � � ,Mw, � � � ,Mvnq � bdetpMv1, � � � ,Mu, � � � ,Mvnq,

the first equality because multiplication by M is linear and the last equality because determinant is multi-
linear, and notice that D is alternating, as if vi � vj , then Mvi �Mvj and thus detpMv1, � � � ,Mvnq � 0 as
the determinant is alternating.

Thus by the combination of Theorem 78 and Corollary 79 we have

Dpv1, � � � , vnq � cdetpv1, � � � , vnq where c � Dpe1, � � � , enq � detpMe1, � � � ,Menq � detpMq.
This gives a formalization of the idea that “Applying M scales the volume of every parallelepiped by the

same quantity detpMq.” If pv1, � � � , vnq are the sides of a parallelepiped, then pMv1, � � � ,Mvnq are the sides
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of the parallelepiped obtained by applying M to my first parallelepiped, and the formula above shows that
its volume is detpMq times the volume of the original.

To conclude, detpMNq is defined to be detpMNe1, � � � ,MNenq, and we’ve now established that

detpMNe1, � � � ,MNenq � DpNe1, � � � , Nenq � detpMq detpNe1, � � � , Nenq � detpMq detpNq,

where in the last equality I just recalled that detpNe1, � � � , Nenq is the definition of detpNq.
As for the corollary, suppose M is invertible and set N � M�1. Then MN � I is the identity, so

detpMq detpM�1q � detpIq � 1. Thus detpMq and detpNq are both nonzero. Dividing both sides by detpMq
we see that detpM�1q � detpMq�1.

All this said and done, let’s actually prove that the determinant exists and is uniquely determined by
these properties.

6.1.3 Proof of Theorem 78

I will argue first that an alternating multilinear function Dc : pFnqn Ñ F must take a very particular form,
at which point we will see precisely what form it will take (giving a formula for the determinant).

Let’s write the output of some arbitrary list of vectors as

Dc

�
�
�
�a11� � �
an1

�

, � � � ,

�
�a1n� � �
ann

�


�

� Dcpa11e1 � � � � � an1en, � � � , a1ne1 � � � � � annenq.

Notice that using multilinearity once, we can pull out all the scaling and addition from the first coordinate:

Dcpa11e1 � � � � � an1en, � � � , a1ne1 � � � � � annenq �
ņ

i1�1

ai1,1Dcpei1 , � � � , a1ne1 � � � � � annenq.

One may do the same in the second coordinate, and so on through the n’th, so that

Dcpa11e1 � � � � � an1en, � � � , a1ne1 � � � � � annenq �
ņ

i1�1

� � �
ņ

in�1

ai1,1 � � � ain,nDcpei1 , � � � , einq.

That is, we can separate all of these additions and pull all of the scalars out front (so we’re scaling each
Dcpei1 , � � � , einq a total of n times).

Now if pi1, � � � , inq has any repeated entries, we know Dcpei1 , � � � , einq � 0 by the assumption that Dc is
alternating. Otherwise, pi1, � � � , inq � σ is some permutation of t1, � � � , nu, and by the alternating property
we know that

Dcpei1 , � � � , einq � ϵpσqDcpe1, � � � , enq � ϵpσqc,
swapping terms repeatedly until we end up back the usual ordering, where we already know thatDcpe1, � � � , enq �
c by hypothesis. In this case, the big product may be rewritten as

ai1,1 � � � ain,n � aσp1q,1 � � � aσpnq,n.

Altogether, what this shows us is that the function Dc must be

Dcpa11e1 � � � � � an1en, � � � , a1ne1 � � � � � annenq � c
¸

σ a permutation of t1,��� ,nu
ϵpσqaσp1q,1 � � � aσpnq,n.

On the other hand, it’s straightfoward to verify that this function is indeed multilinear, alternating, and has
Dcpe1, � � � , enq � c. This proves both existence and uniqueness, and I’ll record the resulting formula for the
determinant.
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Corollary 81. The function detpMq can be defined explicitly as follows. If M �
�
�a11 � � � a1n
� � � � � � � � �
an1 � � � ann

�

, then

detpMq �
¸

σ a permutation of t1,��� ,nu
ϵpσqaσp1q,1 � � � aσpnq,n.

Visual interpretation. Choosing a permutation σ corresponds to choosing one element aσpjq,j from
each column so that no column has more than one element. For instance,�

�����
�

�
�

�
�

�
����


has dots in entries a21, a42, a33, a14, a55, so corresponds to the permutation σ � p24315q. The sign of this
permutation is

ϵp24315q � �ϵp14325q � p�1q2ϵp12345q � �1.
Whenever we have such an arrangements of dots in our matrix, we take the product of all of those entries,

with a sign (�1 if I can swap rows to get to the usual diagonal arrangement with an even number of swaps,
�1 if it takes an odd number of swaps). Then we add up over all such arrangements of dots.

This definition is very computable for small matrices, but completely intractable for large-dimensional
matrices. (It requires you multiple n things a total of n! times and then add them all up.) But still, let’s
write down what it says in the small cases.

Example 81. Let M be a 2� 2 matrix, M �
�
a11 a12
a21 a22



.

There are two ways to order p12q: there is the ordering p12q itself and there is the reverse ordering p21q,
obtained by a single swap. The determinant of M is

detpMq � ϵp12qa11a22 � ϵp21qa12a21 � a11a22 � a12a21.

If I rename these variables as M �
�
a b
c d



, this expression simplifies to the more familiar detpMq � ad� bc

that you have now worked with many times. ♢

Example 82. Let M �
�
�a11 a12 a13
a21 a22 a23
a31 a32 a33

�

be a 3 � 3 matrix. Now there are six ways to permute p123q: the

ones which require an even number of swaps are p123q, p231q, p312q, corresponding to the dot arrangements�
�� �

�

�

,

�
� �
�
�

�

,

�
� �

�
�

�

,

whereas the ones which require an odd number of swaps are p132q, p213q, p321q, corresponding to dot
arrangements �

�� �
�

�

,

�
� �
�

�

�

,

�
� �

�
�

�

.

Correspondingly, we find

detpMq � a11a22a33 � a12a23a31 � a13a21a32
� a11a23a32 � a12a21a33 � a13a22a31.
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For instance,

det

�
�1 3 8
0 2 4
3 �1 �3

�

� 1 � 2 � p�3q � 3 � 4 � 3� 8 � 0 � p�1q � 1 � 4 � p�1q � 3 � 0 � p�3q � 8 � 2 � 3,

which simplifies to �6� 36� 0� 4� 9� 48 � �5. ♢

Past 3� 3 matrices this very quickly becomes a useless formula. In particular, it’s not super helpful for
computing determinants of arbitrary-dimensional n� n matrices. Our next goal is to find more useful ways
of thinking about and computing this quantity.

Remark 52. It may be helpful to understand the argument in the previous argument in a special case. First,
let me run through all of the details for n � 2; then let me run through some of the details for n � 3.

For n � 2, we are trying to determine what Dcpa11e1 � a21e2, a12e1 � a22e2q is. Expanding using
multilinearity, this simplifies to

Dcpa11e1�a21e2, a12e1 � a22e2q � a11Dcpe1, a12e1 � a22e2q � a21Dcpe2, a12e1 � a22e2q
� a11a12Dcpe1, e1q � a11a22Dcpe1, e2q � a21a12Dcpe2, e1q � a21a22Dcpe2, e2q.

We then observe that because Dc is supposed to be alternating, we have Dcpe1, e1q � Dcpe2, e2q � 0. So
the above expression simplifies to

a11a22Dcpe1, e2q � a12a21Dcpe2, e1q.
Next, we use the alternating property again to swap e2 and e1 to obtain Dcpe2, e1q � �Dcpe1, e2q, so that the
whole expression simplifies to pa11a22 � a12a21qDcpe1, e2q, which we can now simplify to cpa11a22 � a12a21q.
The quantiy in parentheses is precisely the determinant

det

�
a11 a12
a21 a22



� a11a22 � a12a21.

Now in the 3 � 3 case, suppose we’ve already gone through the steps of expanding using multilinearity
repeatedly, so we’ve seen that

Dc

�
�
�
�a11a21
a31

�

,

�
�a12a22
a32

�

,

�
�a13a23
a33

�


�

� 3̧

i1�1

3̧

i2�1

3̧

i3�1

ai1,1ai2,2ai3,3Dcpei1 , ei2 , ei3q.

This is a sum over 27 � 33 terms. But most of them vanish; for instance, Dpe1, e1, e3q � 0, as it has a
repeated term. The only possible choices of pi1, i2, i3q for which Dcpei1 , ei2 , ei3q is nonzero is when pi1, i2, i3q
are all distinct. There are only six such options:

pi1, i2, i3q is one of p1, 2, 3q, p1, 3, 2q, p2, 1, 3q, p2, 3, 1q, p3, 1, 2q, p3, 2, 1q.
Since we can throw out all of the other terms, our expression simplfies to

a11a22a33Dcpe1, e2, e3q � a11a32a22Dcpe1, e3, e2q
�a21a32a13Dcpe2, e3, e1q � a21a12a33Dcpe2, e1, e3q
�a31a12a23Dcpe3, e1, e2q � a31a22a13Dcpe3, e2, e1q.

Now notice that

Dcpe1, e3, e2q and Dcpe3, e2, e1q and Dcpe2, e1, e3q are all equal to �Dcpe1, e2, e3q � �c,
because I can swap two of their entries to get the standard list. On the other hand,

Dcpe2, e3, e1q and Dcpe3, e1, e2q are both equal to p�1q2Dcpe1, e2, e3q � �c,
as it takes two swaps to reorder this list to the standard order. Try visualizing the dot-diagrams I mentioned
above and seeing that this is true in that picture, as well.

This finally gives (with some rearranging) that our sum is equal to

cpa11a22a33 � a12a23a31 � a13a32a21 � a11a23a32 � a12a21a33 � a13a22a31q.
Setting c � 1, this gives the formula for the determinant of a 3� 3 matrix. ♢
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6.2 Computing with determinants

In the previous section, we investigated a notion called the ‘determinant’. This is a function inspired
by geometry: if v1, � � � , vn P Fn, then detpv1, � � � , vnq is meant to measure the ‘oriented volume’ of the
parallelepiped with sides v1, � � � , vn. If M is an n � n matrix, we defined detpMq � detpMe1, � � � ,Menq to
be the volume of the parallelepiped spanned by its columns (equivalently, detpMq is the quantity so that
applying M scales volume of some object by detpMq.)

We saw that this notion can be axiomatized: it is linear in each variable (multilinear) and alternating (if an
input repeats, the output is zero; if one swaps two inputs, the output negates), and satisfies detpe1, � � � , enq �
1, or in terms of matrices, detpIq � 1: the determinant of the identity matrix is 1.

We saw that it’s multiplicative, in the sence that detpMNq � detpMq detpNq. I concluded by giving a
formula for this, but one that is awful to use in practice:

detpMq �
¸
σ

ϵpσqaσp1q,1 � � � aσpnq,n,

where the sum is over all rearrangements pσp1q, � � � , σpnqq of the string p1, 2, � � � , nq, and

ϵpσq � p�1q# swaps needed to change to the original order.

Visually, this corresponds to summing over all ways to write a dot in every row of M so that no column has
more than one dot, multipling all the entries, and either adding or subtracting (depending on whether or
not it takes an even number of row/column swaps to move this dot arrangement to the usual one, with dots
down the main diagonal).

In this section I want to introduce two more ways to actually compute determinants in practice, which
are often just as (if not more) effective than the definition in terms of a sum over permutations.

6.2.1 Laplace expansion: an inductive definition

The next interpretation of the determinant allows for some much simpler computations. It’s not much more
than a rephrasing of the definition above, but one that’s usually a lot easier to think about. It involves
reducing an n� n determinant to a sum of pn� 1q � pn� 1q determinants.

Definition 43. Let M be an n� n matrix. The “pi, jq’th minor of M” Mi,j for the pn� 1q � pn� 1q matrix
obtained by removing the i’th row and j’th column from M :

Mi,j �

�
�������

a11 � � � a1,j�1 a1,j�1 � � � a1n
� � � � � � � � � � � � � � � � � �
ai�1,1 � � � ai�1,j�1 ai�1,j�1 � � � ai�1,n

ai�1,1 � � � ai�1,j�1 ai�1,j�1 � � � ai�1,n

� � � � � � � � � � � � � � � � � �
an1 � � � an,j�1 an,j�1 � � � ann

�
������

.

♢

Sometimes the pi, jq’th minor is visualized as

Mi,j �

�
�����

a11 � � � a1j � � � a1n
� � � � � � � � � � � � � � �
ai1 � � � aij � � � ain
� � � � � � � � � � � � � � �
an1 � � � anj � � � ann

�
����
.
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For instance, if M �

�
���
4 3 7 1
3 1 2 3
2 2 2 103
0 3 0 4

�
��
, its minor M2,4 is given by

M2,4 �

�
���

4 3 7 1
3 1 2 3
2 2 2 103
0 3 0 4

�
��
 �

�
�4 3 7
2 2 2
0 3 0

�

.

Here is an observation. The determinant detpMq � °
σ ϵpσqaσp1q,1 � � � aσpnq,n is obtained as a sum over all

permutations pσp1q, � � � , σpnqq of p1, � � � , nq (or equivalently, is a sum over all ways of putting a dot in each
column of M so that no two dots are in the same row). Let’s focus on a single column. There are exactly n
possibilities for where we put the dot in the j’th column (we place it in row σpjq).

For instance, there are exactly four spots we could place a dot in the final column of

M �

�
���
4 3 7 1
3 1 2 3
2 2 2 103
0 3 0 4

�
��
.

I can break up the big sum defining detpMq into smaller sums, depending on what integer 1 ¤ i ¤ n the
value of σpjq is:

detpMq �
¸

permutations σ

ϵpσqaσp1q,1 � � � aσpnq,n �
ņ

i�1

aij
¸

permutations σ
for which σpjq�i

ϵpσqaσp1q,1 � � � aσpj�1q,j�1aσpj�1q,j�1 � � � aσpnq,n.

Here I pulled the product term aσpjq,j � aij out to the front of the sum, as it appears in every term there.
Let’s try to understand the smaller sum. In the case of the previous 4 � 4 matrix, the first sum ranges

over 1 ¤ i ¤ n, choosing which entry the dot in the fourth column lies in. If I look at i � 2 (so that the dot
is in row 2, column 4), all remaining dots must be in the region not crossed off in the following picture:�

��� �
�
��
.

That is, the dots must be arranged to have one in each row and column of M2,4. More generally, if we
investigate the dot-arrangements which contain a dot in entry pi, jq (so σpjq � i), the remaining dots lie in
the smaller matrix Mi,j whose entries lie off of row i and column j.

The smaller sum above is almost precisely the same as detpMi,jq! It’s a sum over ways to arrange dots
in each column of Mi,j so that each row has exactly one dot, and the sum is over products of the values at
each of those dots, together with a sign.

There’s only one difference, which is the sign ϵpσq. This is a rather irritating point, but the issue is (to
give an example) in comparing the number of row/column swaps needed to put�

���
�

�
�

�

�
��


into diagonal form (one), and the number of swaps needed to put

M2,3 �

�
���
�

�
�

�

�
��
 �

�
�� �

�

�
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into diagonal form (zero) — the results are not always the same!

As it turns out, the dots in Mi,j can be put into standard form with i� j more swaps than those in the
original matrix; if i � j is even, the sign is the same, whereas if i � j is odd, the sign differs by a factor of
�1. The argument for this fact isn’t important (we will never use the argument again), but I will include it
in the following remark, which I strongly encourage you skip unless you’re exceptionally interested.

Remark 53. Suppose pσp1q, � � � , σpnqq is a permutation of p1, � � � , nq with σpjq � i. There is a corresponding
permutation pσ1p1q, � � � , σ1pn� 1qq of p1, � � � , n� 1q, obtained by ‘deleting σpjq’: we set

σ1ptq �

$'''&
'''%
σptq t   j and σptq   i

σpt� 1q t ¡ j and σptq   i

σptq � 1 t   j and σptq ¡ i

σpt� 1q � 1 t ¡ j and σptq ¡ i

For instance, if σ is the permutation p4, 5, 3, 1, 2q, and we are deleting σp3q � 3, the resulting permutation
σ1 is p3, 4, 1, 2q (every value larger than 3 is shifted down); if σ � p251364q and we are deleting σp4q � 3, the
resulting permutation is σ1 � p24153q: every value larger than 3 gets shifted down.

Now I claim ϵpσ1q � p�1qi�jϵpσq. To see this, swap σpjq � i to the back of the permutation, which
requires a total of n� j swaps (one for each j   t ¤ n): set

σ0 � pσp1q, � � � , σpj � 1q, σpj � 1q, � � � , σpnq, iq, so ϵpσ0q � p�1qn�jϵpσq.

For instance, for σ � p251364q, swapping 3 to the back takes two swaps, and σ0 � p251643q, which has
the same sign.

Now σ1 is obtained from σ0 by deleting the last term and decreasing every value larger than σpjq. If
we perform a swap among all but the last terms in σ0, this corresponds to the same swap for σ1; and if we
perform swaps on σ0 so that the result is ordered correctly (except for the last term), the same will be true
for σ1.

That is, if we write σ1 for the permutation obtained by ordering all but the last term of σ0, we have

ϵpσ1q � # swaps needed to go from σ0 to σ1 � ϵpσ0qϵpσ1q.

For instance, for σ � p251364q where we delete σp4q � 3, the resulting terms are

σ1 � p24153q, σ0 � p251643q, σ1 � p124563q.

The process of going from σ0 to σ1 takes four swaps:

σ0 � p251643q Ñ p152643q Ñ p125643q Ñ p124653q Ñ p124563q � σ1.

This parallels the corresponding process of ordering σ1:

σ1 � p24153q Ñ p14253q Ñ p12453q Ñ p12354q Ñ p12345q.

What remains is to determine ϵpσ1q. Because this is ordered correctly except for the last term σpjq � i,
it takes n � i swaps to move it into its proper place (past all of the terms i � 1 ¤ t ¤ n). For instance, it
takes σ1 � p124563q a total of three swaps:

p124563q Ñ p124536q Ñ p124356q Ñ p123456q.

Therefore ϵpσ1q � p�1qn�i. Combining all of this, we see that

ϵpσ1q � p�1qn�iϵpσ0q � p�1qn�ip�1qn�jϵpσq � p�1qi�jϵpσq. ♢

What we have argued is the following way to reduce an n�n determinant to the calculation of pn� 1q�
pn� 1q determinants. I only went through the analysis for columns, but it holds true for rows as well.
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Theorem 82 (Laplace expansion). Let M be an n� n matrix. Fix a column (say, the j’th column). Then
we have

detpMq �
ņ

i�1

p�1qi�jaij detpMi,jq,

the signed sum of determinants of the pi, jq minors — the minors corresponding to deleting the j’th column
and some other row.

Similarly, if one fixes a row (say, the i’th row), we have

detpMq �
ņ

j�1

p�1qi�jaij detpMi,jq,

Let me apply this in an example.

Example 83. Let’s use this discussion to compute detpMq for M �

�
���
3 0 0 7
0 1 2 3
0 1 0 �1
2 0 0 0

�
��
. I see that the bottom

row has almost all zeroes, so it seems productive for Laplace expansion. The Laplace expansion formula
gives me

detpMq � p�1q4�12 detpM4,1q � p�1q4�20 detpM4,2q � p�1q4�30 detpM4,3q � p�1q4�40 detpM4,4q

� �2 det

�
���

3 0 0 7
0 1 2 3
0 1 0 �1
2 0 0 0

�
��
 � �2 det

�
�0 0 7
1 2 3
1 0 �1

�

.

Now that we’re at a 3� 3 matrix, I could try doing this by hand; there are only six terms in the relevant
sum. But let me try Laplace expansion down the second row (again, almost all zeroes!) to simplify this
expression further. I get

�2 det
�
�0 0 7
1 2 3
1 0 �1

�

� �2�p�1q2�10 detpM1,2q � p�1q2�22 detpM2,2q � p�1q2�30 detpM3,2q

�
,

which simplifies to

�4 det
�
0 7
1 �1



� p�4qp0 � p�1q � 7 � 1q � 28.

♢

Example 84. This lets us quickly recover our previous formula for the determinants of 3 � 3 matrices, in a
way which is maybe easier to remember. We have

det

�
�a11 a12 a13
a21 a22 a23
a31 a32 a33

�

� a11 det

�
a22 a23
a32 a33



� a12 det

�
a21 a23
a31 a33



� a13

�
a21 a22
a31 a32



,

remembering the minus sign that appears in the second term. Expanding this out gives the formula for
detpMq which is a sum over six terms. ♢

In fact, this computation technique can be used to very quickly analyze the determinants of upper-
triangular matrices.

Proposition 83. Let

T �

�
���
a11 a12 � � � a1n
0 a22 � � � a2n
� � � � � � � � � � � �
0 0 � � � ann

�
��


be an upper-triangular matrix. Then detpT q � a11a22 � � � ann is the product of the diagonal entries of T .
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Proof. I will prove the claim by induction on the size n of the matrix. For 1� 1 upper-triangular matrices,
the answer is especially boring: det

�
a11

� � a11, as promised.
Now suppose (as per my inductive hypothesis) that the stated formula gives the determinant of an n�n

upper-triangular matrix. Using the Laplace expansion (Theorem 82), let’s prove that the formula also holds
for pn� 1q� pn� 1q upper-triangular matrices. To do so, let’s expand along the leftmost column (as I notice
the only nonzero term there is the top-left entry): I have

det

�
���
a11 a12 � � � a1,n�1

0 a22 � � � a2,n�1

� � � � � � � � � � � �
0 0 � � � an�1,n�1

�
��
�

n�1̧

i�1

p�1qi�1ai1 detpTi,1q.

Now ai1 is only nonzero for i � 1, where it is a11, so this simplifies to

detpT q � p�1q1�1a11 detpT1,1q � a11 detpT1,1q.
Now

T1,1 �

�
���

a11 a12 � � � a1,n�1

0 a22 � � � a2,n�1

� � � � � � � � � � � �
0 0 � � � an�1,n�1

�
��
, �

�
�a22 � � � a2,n�1

� � � � � � � � �
0 � � � an�1,n�1

�

,

and in particular T1,1 is an n � n upper-triangular matrix. By our inductive hypothesis, we know that
its determinant is the product of its diagonal entries: detpT1,1q � a22 � � � an�1,n�1. Combining this with the
result of Laplace expansion, we see that

detpT q � a11 detpT1,1q � a11a22 � � � an�1,n�1.

Said another way, we recursively use the Laplace expansion down the first column of each successive
matrix. Each time, the determinant is the top-left entry times the determinant of the bottom-right block
(because all but one term is zero).

We can use this to prove a technical result that will be useful momentarily.

Corollary 84. Let A be a matrix in reduced-row echelon form. Then

detA �
#
1 A � I is the identity matrix

0 otherwise
.

Proof. If A is in reduced-row echelon form, the first nonzero entry in row i must occur in column i or further
to the right (prove this by induction, using the fact that leading 1’s move right as we descend down the
rows). Thus the first j for which aij is nonzero has j ¥ i. This means precisely that A vanishes below the
main diagonal, so A is upper-triangular.

Suppose detpAq � 0. This means the entries on the main diagonal of A are all nonzero. As explained
above, the first j for which aij could possibly be nonzero is aii, in which case it’s a leading 1 for that row;
by assumption that aii � 0, we assume aii � 1 is a leading 1 in row i.

Because aii � 0 for all i, there is a leading 1 in every row, in position i. Therefore the i’th column is
equal to ei (if aij is a leading one in row i, column j, then by definition of reduced row echelon form the j’th
column is ei). Therefore A � I and detpAq � 1.

Thus if A is a reduced-row-echelon-form matrix other than the identity, detpAq � 0.

6.2.2 Row and column operations

In the previous section we recast the definition of determinant inductively, ‘expanding along rows and
columns’. In this section I want to explain that it’s also amenable to computation using the Gauss–Jordan
algorithm3, and in fact this is the most efficient way (by far!) to compute determinants.

3Actually, because we have already computed determinants of upper-triangular matrices, it suffices to use a weaker version
of the algorithm where we do not ‘cancel out’ the terms above leading 1s. This gives a computational speedup by a factor of
about 2
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Theorem 85. Suppose M 1 is an n�n matrix obtained from the matrix M by an elementary row or column
operation. Then the determinant changes in the following ways:

(i) If M 1 is obtained by swapping two rows of M or two columns of M , then detpM 1q � �detpMq.
(ii) If M 1 is obtained by scaling a column or row of M by the scalar c, then detpM 1q � cdetpMq.
(iii) If M 1 is obtained by adding a multiple of one column to another, or one row to another, then detpM 1q �

detpMq.
For columns, these are contained in my axiomatization of the determinant: it is the unique alternating

multilinear function with detpe1, � � � , enq � 1. The second fact follows immediately from multilinearity:

detpM 1q � detpv1, � � � , cvi, � � � , vnq � cdetpv1, � � � , vnq � cdetpMq.

The first and third follow from the fact that det is alternating and from Lemma 77.
To get the same results for row operations, there is an algebra trick we can use, which allows us to

interchange thinking about row operations and column operations.

Definition 44. Suppose

M �
�
�a11 a12 � � � a1n
� � � � � � � � � � � �
am1 am2 � � � amn

�



is an m� n matrix. Its transpose is the n�m matrix given by interchanging the roles of the columns and
rows, or ‘flipping it along the top-left to bottom-right diagonal”. More formally, its transpose is

MT �

�
���
a11 � � � am1

a12 � � � am2

� � � � � � � � �
a1n � � � amn

�
��
.

♢

Notice that a row operation onMT corresponds to a column operation onM , and vice versa, because the
rows of MT correspond to the columns of M . This matrix operation can be understood in terms of linear
maps between vector spaces, but not in an obvious way: see the first part of Curio 4.

Here, the reason MT is relevant is to prove the theorem above for row operations, by using column
operations on the transpose:

Lemma 86. If M is an n� n matrix, we have detpMT q � detpMq.

Proof. Write M �
�
�a11 � � � a1n
� � � � � � � � �
an1 � � � ann

�

. The transpose matrix has MT �

�
�a11 � � � an1
� � � � � � � � �
a1n � � � ann

�

. To clarify

notation in the following computation, it will be convenient to write the entry of MT in row i and column
j by the name bij , so that bij � aji.

We have

detpMq �
¸

permutations σ

ϵpσqaσp1q,1 � � � aσpnq,n,

while

detpMT q �
¸

permutations σ

ϵpσqbσp1q,1 � � � bσpnq,n �
¸

permutations σ

ϵpσqa1,σp1q � � � an,σpnq.

I claim these two sums are equal. If σ is a permutation, there is a unique inverse permutation σ�1 so
that σpjq � i ðñ σ�1piq � j. In particular, if σpjq � i, then

aσpjq,j � ai,j � ai,σ�1piq.
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Because every permutation σ corresponds to exactly one permutation σ�1, I can therefore rewrite the second
sum as

detpMT q �
¸

permutations σ

ϵpσ�1qa1,σ�1p1q � � � an,σ�1pnq �
¸

permutations σ

ϵpσ�1qaσp1q,1 � � � aσpnq,n.

This is almost the same as the sum defining detpMq, except that one has ϵpσq and the other ϵpσ�1q.
This is rather irritating. The easiest way I have to argue this runs as follows. Consider σ as a bijection
t1, � � � , nu Ñ t1, � � � , nu. Then σ�1 is the inverse of this bijection, σ�1σ � σσ�1 � Identity map. The
simplest possible such bijections are swaps σij , defined by σijpiq � j and σijpjq � i and σijpkq � k otherwise.
Notice that σ�1

ij � σij .
When we talk about swapping elements of σ until it’s in the standard order, this amounts to saying ‘write

σ as a composition of swaps σij and record the number of swaps we compose’. Now if σ � σi1,j1 � � �σik,jk is
the composition of k swaps, then

σ�1 � σ�1
ik,jk

� � �σ�1
i1,j1

� σik,jk � � �σi1,j1
is also a composition of k swaps, and thus ϵpσ�1q � p�1qk � ϵpσq. This completes the argument.

Remark 54. The ‘transpose’ operation will return when we discuss inner products later. It is interesting to
observe that pABqT � BTAT . You can either prove this by hand or use the perspective in Curio 4. ♢

This in hand, the theorem follows: a row operation on M is the same as a column operation on MT ; we
know these transform correctly under column operations; apply that detpMq � detpMT q.

Let me explain how to actually compute using these.

Example 85. Take M �

�
���
1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

�
��
. It would be tremendously painful to compute detpMq using either

the definition or using Laplace expansion. However, I can rapidly compute detpMq by performing row
operations and seeing how the determinant changes as I perform them. First I would carry out some row
subtractions, �

���
1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

�
��
Ñ

�
���
1 2 3 4
1 1 1 1
2 2 2 2
3 3 3 3

�
��
Ñ

�
���
1 2 3 4
1 1 1 1
0 0 0 0
0 0 0 0

�
��
.

Adding or subtracting multiples of one row to another will not change the determinant. Because this matrix
has an all-zero row, its determinant must be zero (use Laplace expansion along the bottom row, or use the
fact that determinant is linear in each row, as detpMq � detpMT q and the determinant is already known to
be linear in each column.)

On the other hand, take M �

�
���
1 1 1 1
1 2 3 4
1 4 9 16
1 8 27 256

�
��
. Again, you absolutely do not want to try to compute

this using the definition! Let’s try row-reduction again. A few row-subtractions gives me�
���
1 1 1 1
1 2 3 4
1 4 9 16
1 8 27 256

�
��
Ñ

�
���
1 1 1 1
0 1 2 3
0 3 8 15
0 7 26 255

�
��
Ñ

�
���
1 1 1 1
0 1 2 3
0 0 2 6
0 0 12 234

�
��
Ñ

�
���
1 1 1 1
0 1 2 3
0 0 2 6
0 0 0 198

�
��
.

This list of row-subtractions (which did not change the determinant!) has reduced is to an upper-triangular
matrix, and thus I can immediately read off that its determinant is detpMq � 1�1�2�198 � 396. In particular,
M is not invertible (over, say, R). ♢

This allows us to prove the crucial property of matrices.
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Corollary 87. An n� n matrix M has detpMq � 0 if and only if M is invertible.

Proof. Notice that elementary row operations do not change whether detpMq is zero or not: swap two rows
and you negate detpMq (which doesn’t change whether or not it’s zero); scale a row by c � 0 and the
determinant becomes cdetpMq, which is zero if and only if detpMq is zero; and add or subtract a multiple
of a row, and the determinant does not change (so the property of whether or not it is zero certainly does
not change).

The Gauss–Jordan algorithm shows that I can transformM into a matrix rrefpMq in reduced-row-echelon
form with finitely many row operations, so by the preceding discussion detM � 0 ðñ det rrefpMq � 0.
But we saw in Corollary 84 that det rrefpMq � 0 ðñ rrefpMq � I, so detM � 0 ðñ rrefpMq � I. But
you proved in your homework that rrefpMq � I if and only ifM is invertible, so this completes the proof.

6.3 Diagonal matrices and eigen(things)

It is not infrequent in applications that one has a linear map A : V Ñ V from a vector space back to itself
and one wants to iterate it, so that we can examine the behavior of An : V Ñ V (the n-fold composition
of A with itself) as n gets very large. The most common application of this is where A represents the
way some system evolves over time: for instance, see predator-prey models in biology (where an element of
V � R3 measures the population of three different species in a given month, and Av is meant to encode the
population of these three species after a month has passed). If we study the behavior of An as nÑ8, then
we understand the ‘limiting state’ of these populations: does one go extinct? Do they reach an equilibrium?

Similar applications arise in the study of ‘Markov chains’ (see also the Google PageRank algorithm, or
rather, the publicly available version of this algorithm).

So how do we investigate such a thing? If I choose a basis β � pv1, � � � , vnq for V , you showed on your
homework that the matrix rAsβÑβ has

rAnsβÑβ � rAsnβÑβ .

So the naive answer is: ‘choose a basis for V , then take powers of the corresponding matrix and see what
happens as nÑ8.” But, as a simple example which shows how awful this is in general, set

M �
�
� 3{2 0 �3{2
�1{2 2 9{2
0 �1 �2

�

.

I encourage you to compute M2 � MM and M3 � MpM2q and see that these computations are quite
painful. How are we expected to understand the behavior of Mn when n is large? In fact, I can promise you
that (working over the reals so limits make sense) we in fact have

lim
nÑ8M

n �
�
� 3 3 3
�3 �3 �3
1 1 1

�

,

but how can we possibly see that when the computations are so unpleasant?
The key point is to choose a smart basis. Suppose I can find a basis β in which

rAsβÑβ �

�
���
λ1 0 � � � 0
0 λ2 � � � 0
� � � � � � � � � � � �
0 0 � � � λn

�
��


is diagonal. Finding such a basis is called diagonalizing the linear transformation A : V Ñ V . If we can do
this, then

rAmsβÑβ � rAsmβÑβ �

�
���
λm1 0 � � � 0
0 λm2 � � � 0
� � � � � � � � � � � �
0 0 � � � λmn

�
��
.
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This is much more comprehensible, and very easily computable!

Let’s unpack exactly what it is I’m trying to establish. First, recall how to interpret rAsβÑβ . The j’th

column of this matrix

�
�a1j� � �
anj

�

 is obtained by taking the j’th basis vector vj and writing

Avj � a1jv1 � � � � � anjvn

as a linear combination of the same basis vectors. If rAsβÑβ has j’th column equal to

�
�����

0
� � �
λj
� � �
0

�
����
, this means

precisely that

Avj � 0v1 � � � � � λjvj � � � � � 0vn � λjvj .

That is, A merely scales this vector, by the quantity λj . A vector with this property (and the scalar
quantity it is scaled by) is an important notion, and I want to record it as a definition. Before doing so, let
me point out that A0⃗ � λ0⃗ for any scalar λ whatsoever, so in the following definition I will need to take care
to exclude the zero vector (less this definition have no content).

Definition 45. Let A : V Ñ V be a linear map from a vector space (over F) to itself. Suppose v � 0⃗ is
a nonzero vector and λ P F is a scalar such that Av � λv, then we say v is an eigenvector of A with
eigenvalue λ.

We say the matrix A is diagonalizable if there exists a basis β � pv1, � � � , vnq of eigenvectors Avi � λivi,
in which case we have that

rAsβÑβ �
�
�λ1 � � � 0
� � � � � � � � �
0 � � � λn

�



is a diagonal matrix. ♢

Remark 55. The word ‘eigenvalue’ is a weird mish-mash of German and English. The prefix ‘eigen’ means
“characteristic, own”, as in, a something which belongs to A or is characteristic of A. A popular folk
etymology says that the term is used because Av � λv says that the vector is merely scaled, so it belongs
to its ‘own line’. This is not the original usage of the term. A better word might be ‘characteristic value’
and ‘characteristic vector’, as these values and vectors tell you an immense amount about the behavior of
A. Unfortunately, the Germglish has stuck. ♢

Example 86. If M �
�
3 �1
1 1



, I happen to know that the vector v �

�
1
1



is an eigenvector: we have

AMv �
�
3 �1
1 1


�
1
1



�

�
2
2



� 2v.

Therefore v is an eigenvector of AM (or, by an abuse of notation, I will often say ‘an eigenvector of M ’) with
associated eigenvalue λ � 2.

In fact, it turns out that the only eigenvalue of M is λ � 2, and all eigenvectors are of the form

�
a
a



for

a � 0. It may come as some surprise that there is only one eigenvalue, but in general, there are only finitely
many — and for an n� n matrix, no more than n. ♢

The appearance of the vector v in the preceding example came like magic. It is (presumably!) not at all
clear how I would have found this vector, so for the rest of this section I’d like to explore how to compute
the collection of eigenvalues and eigenvectors of a linear transformation A : V Ñ V .
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6.3.1 Finding eigenvalues and eigenvectors

It is usually not so easy to find a particular eigenvector. But if we recast the problem in terms of finding
the entire space of eigenvectors, then it becomes susceptible to our existing tools.

Definition 46. Let A : V Ñ V be a linear map and λ P F be any scalar whatsoever. The λ-eigenspace is
the set

Eλ � tv P V | Av � λvu.
♢

Exercise. Check that Eλ � V is a linear subspace. Then observe that Eλ is precisely the set of λ-
eigenvectors together with the zero vector.

The reason I think that this subspace is worth focusing on is that it can be quickly rephrased as the
kernel of a certain linear map. Recall that we have the identity map 1V : V Ñ V (which I will henceforth
write as I for convenience of notation); its scalar multiple λI : V Ñ V is defined by

pλIqpvq � λv.

Then the eigenvalue equation can be rewritten and rearranged as

Av � λv ðñ Av � pλIqv ðñ pλI �Aqv � 0⃗.

Here the linear map λI � A is defined by pλI � Aqv � λv � Av (and you can quickly check that this is
indeed linear; in fact, any sum or scalar multiple of linear maps is linear). Further, one may quickly check
that if the corresponding matrix is

rAsβÑβ �M �

�
���
a11 a12 � � � a1n
a21 a22 � � � a2n
� � � � � � � � � � � �
an1 an2 � � � ann

�
��
,

then

rλI �AsβÑβ � λI �M �

�
���
λ� a11 �a12 � � � �a1n
�a21 λ� a22 � � � �a2n
� � � � � � � � � � � �
�an1 �an2 � � � λ� ann

�
��
.

Thus, what we have stated is
Eλ � kerpλI �Aq,

and we have determined the corresponding description at the level of matrices. This is fantastic, for two
reasons!

� Using the Gauss–Jordan algorithm, we can quickly compute Eλ for any fixed scalar λ. However, this
is still not quite good enough: if we’re working over, say, R, there are uncountably many scalars. We
can’t just compute all of these one by one.

� We now have a great way of determining whether or not Eλ is non-trivial. Because λI �A is an n�n
matrix, it has a determinant, and detpλI � Aq � 0 if and only if λI � A is non-invertible. By the
invertible map theorem, the map λI � A is non-invertible if and only if kerpλI � Aq � t⃗0u, so that
detpλI �Aq � 0 if and only if A has an eigenvector with associated eigenvalue λ.

Let’s record the quantity occurring in the second bullet point as a definition; it will be an important
character in what follows.

Definition 47. LetM be an n�n matrix over the field F. Its characteristic polynomial is the polynomial
pM pλq � detpλI �Mq.

More generally, let A : V Ñ V be a linear map. Choose a basis β � pv1, � � � , vnq for V , and let
M � rAsβÑβ be the corresponding n � n matrix. Then the characteristic polynomial of A is the
polynomial

pApλq � detpλI �Mq.
♢
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The discussion in the preceding bullet point amounts to a proof of the following fact.

Proposition 88. Let A : V Ñ V be a linear map. Then λ0 P F is an eigenvalue of A if and only if
pApλ0q � 0, and when this is the case, Eλ0 � kerpλ0I �Aq.

This can shed some light on the particular examples I mentioned before:

Example 87. Let M �
�
3 �1
1 1



. Then λI �M �

�
λ� 3 1
�1 λ� 1



, so that

pM pλq � pλ� 3qpλ� 1q � p�1q � λ2 � 4λ� 4.

I can factor this as pM pλq � pλ� 2q2, so that the only root of pM pλq is λ � 2. It thus follows that the only
eigenvalue of M is 2. Let’s compute the corresponding eigenspace.

We have

E2 � kerp2I �Mq � ker

�
1 �1
1 �1



.

You can either see by inspection that the kernel of this linear map is span

�
1
1



, or you can run the Gauss–

Jordan algorithm to reduce to the rref matrix

�
1 �1
0 0



(which has the same kernel, as row operations

preserve the kernel of a matrix), where you can read off that the relevant equation is x1 � x2 � 0.
This matrix is not diagonalizable. I cannot find a basis of eigenvectors, because there is only one

eigenvalue, and the eigenspace is 1-dimensional. It is therefore impossible to find two linearly independent
eigenvectors. ♢

Now I defined the characteristic polynomial above for general linear maps by making a choice of basis.
When I make a choice, I have to verify that the resulting quantity didn’t depend on that choice — otherwise
it does not depend on A, but rather the pair pA, βq of A and a choice of basis. Fortunately, this is not the
case.

To check this, I want to use the relation between ‘changing basis’ and ‘passing from M to SMS�1’,
which you established on your homework: if we choose two bases β and β1 for V , then rAsβ1Ñβ1 �
ϕβÑβ1rAsβÑβϕ

�1
βÑβ1 , so M 1 � SMS�1 for M 1 the matrix associated to β1, whereas M is the matrix as-

sociated to β, and S is the matrix ϕβÑβ1 .
I will see the latter idea many times. I want to give it a name.

Definition 48. SupposeM andM 1 are two n�nmatrices. We say thatM andM 1 are similar (or conjugate)
if there exists an invertible n� n matrix S so that M 1 � SMS�1. ♢

Lemma 89. Suppose M 1 and M are conjugate matrices. Then detpM 1q � detpMq.
Proof. If M 1 is conjugate to M , then M 1 � SMS�1 for some invertible S. Then

detpM 1q � detpSMS�1q � detpSq detpMqdetpS�1q � detpSqdetpMq detpSq�1 � detpSq detpSq�1 detpMq � detpMq.
The second equality uses that determinants are multiplicative, Theorem 80, while the next uses that

detpS�1q � detpSq�1 (contained in that same argument). Next, I used the fact that the determinant is an
element of F, and unlike matrix multiplication, products in F are commutative; thus I can move detpSq�1

‘past’ detpMq. The two determinants of S and S�1 cancel out, and thus detpM 1q � detpMq.
Proposition 90. The characteristic polynomial pApλq does not depend on the choice of basis β. Equivalently,
if M is an n� n matrix and S is an invertible n� n matrix, we have pM pλq � pSMS�1pλq.
Proof. The fact for matrices follows quickly from the previous discussion. We have

pSMS�1pλq � detpλI � SMS�1q.
The trick is to observe that λI �M and λI � SMS�1 are conjugate. In fact,

SpλI �MqS�1 � SpλIqS�1 � SMS�1 � λSIS�1 � SMS�1 � λSS�1 � SMS�1 � λI � SMS�1.
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Here the crucial point is that SpλIqS�1 is simply λI: scaling by λ commutes with all other linear maps by
the definition of linearity:

rApλIqsv � Apλvq � λAv � rpλIqAsv.
Thus

pSMS�1pλq � detpλI � SMS�1q � detpλI �Mq � pM pλq.

To summarize, associated to a linear map A we have an associated polynomial pApλq. It is defined in
terms of matrices, but it doesn’t depend on the choice of basis used to turn A into a matrix rAsβÑβ . The
roots of this polynomial, the ‘characteristic polynomial’, are precisely the eigenvalues of A. Once we compute
the list of eigenvalues λ1, � � � , λk, we can then use the Gauss–Jordan algorithm to compute the eigenspaces
Eλi

. If we’re lucky, these are large enough to produce a basis of eigenvectors for A, at which point we’ve
finished our work. We are not always so lucky.

I would like to conclude this subsection with a few examples of diagonalizing matrices. For the first, we
will be able to diagonalize the matrix; for the latter two, we will not be able to.

The first example will take a little while, partly because I want to go through at least one somewhat
intricate example in full detail.

Example 88. Let the matrix M �
�
� 3{2 0 �3{2
�1{2 2 9{2
0 �1 �2

�

be the matrix from the beginning of this section. I

claim M is diagonalizable; let’s diagonalize it.
First, let’s compute the characteristic polynomial. I have

λI �M �
�
�λ� 3{2 0 3{2

1{2 λ� 2 �9{2
0 1 λ� 2

�

.

Using Laplace expansion along the bottom row, I find its determinant is

detpλI �Mq � 0 det

�
0 3{2

λ� 2 �9{2


� 1 det

�
λ� 3{2 3{2
1{2 �9{2



� pλ� 2q det

�
λ� 3{2 0
1{2 λ� 2



,

(check the statement of Laplace expansion and confirm I wrote this correctly, including the signs!) which
simplifies to

pλ� 2qpλ� 3{2qpλ� 2q � pλ� 3{2qp�9{2q � p3{2qp1{2q � λ3 � 3

2
λ2 � 1

2
λ.

I can factor this completely as
pM pλq � λpλ� 1qpλ� 1{2q,

so there are three distinct eigenvalues, t0, 1{2, 1u.
Let’s compute the eigenspaces. Using row reduction, I find

E0 � kerp�Mq � kerpMq � ker

�
� 3{2 0 �3{2
�1{2 2 9{2
0 �1 �2

�

� ker

�
� 1 0 �1
�1{2 2 9{2
0 �1 �2

�



� ker

�
�1 0 �1
0 2 4
0 �1 �2

�

� ker

�
�1 0 �1
0 1 2
0 �1 �2

�

� ker

�
�1 0 �1
0 1 2
0 0 0

�

.

This matrix is in reduced row echelon form, and I can quickly read off that

ker

�
�1 0 �1
0 1 2
0 0 0

�

� span

�
� 1
�2
1

�

.

This is a 0-eigenvector.
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Next, I find

E1{2 � kerp1
2
I �Mq � ker

�
��1 0 3{2
1{2 �3{2 �9{2
0 1 5{2

�

� ker

�
� 1 0 �3{2
1{2 �3{2 �9{2
0 1 5{2

�



� ker

�
�1 0 �3{2
0 �3{2 �15{4
0 1 5{2

�

� ker

�
�1 0 �3{2
0 1 5{2
0 1 5{2

�

� ker

�
�1 0 �3{2
0 1 5{2
0 0 0

�

.

I can now read off from this rref matrix that

E1{2 � ker

�
�1 0 �3{2
0 1 5{2
0 0 0

�

� span

�
� 3{2
�5{2
1

�

� span

�
� 3
�5
2

�

.

Lastly, I find

E1 � kerpI �Mq � ker

�
��1{2 0 3{2

1{2 �1 �9{2
0 1 3

�

� ker

�
� 1 0 �3
1{2 �1 �9{2
0 1 3

�



� ker

�
�1 0 �3
0 �1 �3
0 1 3

�

� ker

�
�1 0 �3
0 1 3
0 1 3

�

� ker

�
�1 0 �3
0 1 3
0 0 0

�

.

From here I can read off that

E1 � ker

�
�1 0 �3
0 1 3
0 0 0

�

� span

�
� 3
�3
1

�

.

Now you can check that the list

β �
�
�

�
� 3
�3
1

�

,

�
� 3
�5
2

�

,

�
� 1
�2
1

�


�



is a basis for F3, and these are eigenvectors of M . In the basis β, we have

rM sβÑβ � D �
�
�1 0 0
0 1{2 0
0 0 0

�

,

and D � ϕstdÑβMϕβÑstd. By definition ϕβÑβ1 � C�1
β1 Cβ , so ϕβÑstd � Cβ (as Cstd is the identity map).

Therefore D � S�1MS where S �
�
� 3 3 1
�3 �5 �2
1 2 1

�

, and you compute (using, say, the algorithm on Home-

work 6 #5) that

S�1 �
�
� 1 1 1
�1 �2 �3
1 3 6

�

.

Switching terms around, we find M � SDS�1 for this matrix S, or written out,�
� 3 3 1
�3 �5 �2
1 2 1

�


�
�1 0 0
0 1{2 0
0 0 0

�


�
� 1 1 1
�1 �2 �3
1 3 6

�

.

Earlier I mentioned above that Mn behaves well as n Ñ 8. I can see this from the perspective of this
problem. Notice that

Mn � pSDS�1qn � SDS�1SDS�1 � � �SDS�1;
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all the pairs S�1S cancel out to give the identity, and this reduces to Mn � SDnS�1. (This is the content
of HW6 #7.) Now observe that

Mn �
�
� 3 3 1
�3 �5 �2
1 2 1

�


�
�1 0 0
0 1{2n 0
0 0 0

�


�
� 1 1 1
�1 �2 �3
1 3 6

�



clearly has a limit as nÑ8: it limits to�
� 3 3 1
�3 �5 �2
1 2 1

�


�
�1 0 0
0 0 0
0 0 0

�


�
� 1 1 1
�1 �2 �3
1 3 6

�

�

�
� 3 3 3
�3 �3 �3
1 1 1

�

,

as promised. ♢

Now let me do some much shorter non-examples.

Example 89. Earlier I mentioned that the matrix M �
�
3 �1
1 1



was not diagonalizable. We did find at

least one eigenvector: v1 �
�
1
1



was an eigenvector with eigenvalue 2. I can’t complete this to a basis of

eigenvectors, as discussed earlier. However, let’s see what happens when I choose v2 arbitrarily (let’s say

v2 �
�
0
1



to keep things simple). Then Mv1 � 2v1, whereas we can express Mv2 in terms of this basis as

Mv2 �
��1

1



� �1

�
1
1



� 2

�
0
1



� �v1 � 2v2,

so that if β � pv1, v2q, we have

rM sβÑβ �
�
2 �1
0 2



�

�
1 0
1 1


�1�
3 �1
1 1


�
1 0
1 1



.

This is not a diagonal matrix, but it is at least upper-triangular, and relatively easy to compute powers of.
(If you want, you can compute inductively a formula for Tn, where T is the matrix rM sβÑβ .) Just like in
the previous problem, I determined the matrix on the right as ϕβÑstd � Cβ as the matrix whose columns
are the vectors of β.

We will see later that while not every matrix can be diagonalized, over the complex numbers every
matrix can be made upper-triangular. ♢

Example 90. On the other hand, over the reals, it’s possible that matrices do not even have a single eigenvalue.

Consider, for instance,M �
�
0 �1
1 0



. This matrix represents rotπ{2, rotation of the plane counter-clockwise

by angle π{2.
You should compute that the characteristic polynomial is pM pλq � λ2 � 1, which does not have a single

real root, as for real numbers λ we have λ2 � 1 ¥ 0. This matrix does not have a single real eigenvalue.

This corresponds to the visual fact that if I rotate a nonzero vector, it points in a different direction than
it started. In fact, rotθ never has any real eigenvalues for any 0   θ   π; the argument is similar.

On the other hand, if I consider this a matrix over C, so thatM corresponds to a linear map AM : C2 Ñ
C2, then it is diagonalizable: we have two roots λ � i,�i, for which

kerpiI �Mq � ker

�
i 1
�1 i



� ker

�
1 �i
�1 i



� ker

�
1 �i
0 0



� span

�
i
1



,

whereas

kerp�iI �Mq � ker

��i 1
�1 �i



� ker

�
1 i
�1 �i



� ker

�
1 i
0 0



� span

��i
1



.
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ThereforeM is diagonalizable over the complex numbers in the basis given by the two eigenvectors identified
above; over the complex numbers its diagonalization is given by

D �
�
i 0
0 �i



.

The relationship between this and M is given by

�
0 �1
1 0



�

�
i �i
1 1


�
i 0
0 �i


�
i �i
1 1


�1

.

This is algebraically useful, but geometrically very difficult to parse! This refers to the behavior of
this linear map on C2 (which is too large for our feeble 3-dimensional brains to visualize), whereas the
corresponding linear transformation of R2 has no eigenvalues whatsoever. ♢

6.3.2 Additional properties of the characteristic polynomial

Before concluding this section, I would like to discuss some important but simple facts about the characteristic
polynomial.

Lemma 91. Let A : V Ñ V be a linear map on a vector space of dimV � n. The characteristic polynomial
is a polynomial of degree n, with

pApλq � λn � a1λn�1 � � � � � an.
Proof. Choose an n� n matrix M representing rAsβÑβ with respect to some basis β. We have

pApλq � det

�
���
λ� a11 �a12 � � � �a1n
�a21 λ� a22 � � � �a2n
� � � � � � � � � � � �
�an1 �an2 � � � λ� ann

�
��
,

where the aij are the coefficients in the matrix M .
The determinant is a sum of products of entries of λI �M , where the sum is over ways to choose entries

in each column so that there is exactly one in each row.
Here, we are multiplying n terms which either look like λ � aii or which look like �aij for i � j. The

only way for this product of n terms to produce a power of λn is if all n terms are of the form λ� aii. This

is the product corresponding to the ‘diagonal’ arrangement of dots

�
���
�
�
� � �

�

�
��
, which introduces no

sign; this contributes

pλ� a11q � � � pλ� annq � λn � � � �
to the sum, with exactly one λn term and all terms of lower λ-degree.

One interesting fact is that we can identify the coefficients of the characteristic polynomial. Two are
particularly well-known.

Lemma 92. The coefficient an of the characteristic polynomial of an n�n matrixM is given by p�1qn detpMq.
The coefficient a1 is a quantity called �trpMq, where

tr

�
�a11 � � � a1n
� � � � � � � � �
an1 � � � ann

�

� a11 � � � � � ann

is the sum of the diagonal entries, called the ‘trace’.
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Proof. As pM pλq � λn � � � � � an�1λ� an, we see that pM p0q � an. Now

pM p0q � detp�Mq � det

�
��a11 � � � �a1n
� � � � � � � � �
�an1 � � � �ann

�

.

To compare this to the determinant of M , I want to pull out a scalar of �1 from each column. There are a
total of n columns, and each time I pull out a scalar of �1, the determinant scales by �1; doing so a total
of n times, I find detp�Mq � p�1qn detpMq.

Alternatively, observe that �M � p�IqM , and that detp�Iq � det

�
��1 � � � 0
� � � � � � � � �
0 � � � �1

�

� p�1qn.

As for the statement about the coefficient of λn�1, this is a bit more subtle, and requires going back to
the ‘dot-diagram’ argument above. Let me recall the determinant

det

�
���
λ� a11 �a12 � � � �a1n
�a21 λ� a22 � � � �a2n
� � � � � � � � � � � �
�an1 �an2 � � � λ� ann

�
��


in terms of the sum over certain products of its entries.
Above, I discussed one important input to this:

pλ� a11q � � � pλ� annq � λn � pa11 � � � � � annqλn�1 � � � �

the rest involving terms of the form λn�2 or lower. There’s our trace! What I need to establish is that no
other products contribute to the λn�1 term.

Suppose I take a different dot-diagram, with at least one entry off the diagonal (say one of the terms I
take a product of lies in entry pi, jq with i � j). Then at least two entries are off of the diagonal: for instance,�
�����
�

�
�

�
�

�
����
. Because there is only one entry in row i, there cannot be a dot in entry pi, iq; because

there is only one entry in column j, there cannot be a dot in entry pj, jq. In the example, pi, jq � p2, 3q;
there is no dot in entry p2, 2q or p3, 3q.

Thus such a dot-diagram contributes a product of at most n� 2 terms of the form pλ� aiiq and at least
2 terms of the form �aij . As a result, this can only contribute terms with λ-degree at most n� 2; they do
not contribute to the coefficient of λn�1.

There is a similar formula for the coefficients ak in terms of a sum over ‘determinants of k � k minors’.
It is not used very often and I will not discuss it further.

Remark 56. The trace is a remarkable and very useful quantity. In some sense, it is the derivative of the
determinant. Maybe we will make this precise next term. Maybe not. One interesting fact about the trace
is that for any two n� n matrices M and N , we have trpMNq � trpNMq. (There is no product formula for
the trace of a product of two matrices, so you will not be able to use any such formula to prove this fact.)

This can be proved by writing down explicitly what these two quantities are and verifying that they are
the same. Interestingly, you can use this to show that trpSMS�1q � trpMq, though this is not obvious from
the definition of trace.

As a fun little exercise, you can try using the trace to prove that there over R there are no matrices A
and B for which AB�BA � I is the identity. The argument fails over F2, and it might be fun to find 2� 2
matrices A,B over F2 for which AB �BA � I actually holds. ♢

There is one more thing worth saying. We can usually compute the determinant and trace in terms of
the eigenvalues of a matrix.
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Definition 49. Suppose ppλq � λn � a1λ
n�1 � � � � � an is a polynomial over F. We say ppλq splits into

linear factors if there exist λ1, � � � , λk P F and integers m1, � � � ,mk ¥ 1 for which

ppλq � pλ� λ1qm1 � � � pλ� λkqmk .

Then we say that ppλq has roots λ1, � � � , λk with multiplicity m1, � � � ,mk. ♢

Remark 57. Notice that n � m1 � � � � �mk. ♢

Example 91. For instance, the polynomial ppλq � λ2pλ� 1q2pλ� 2q has three roots, 0, 1, 2. The roots 0 and
1 appear with multiplicy two, while the root 2 appears with multiplicity 1. This polynomial splits into linear
factors.

However, the polynomial ppλq � λ2 � 1, considered as a polynomial over R, has no roots. Therefore,
it does not split into linear factors. On the other hand, it does split into linear factors over the complex
numbers: pptλ � pλ� iqpλ� iq, so ppλq has roots i,�i, each with multiplicity 1. ♢

The following proposition helps me really get a sense for what determinants do in terms of ‘scaling
volume’.

Proposition 93. Suppose M is an n�n matrix over F for which pApλq splits into linear factors λ1, � � � , λk
with multiplicity m1, � � � ,mk. (We say the eigenvalue λi has algebraic multiplicity mi.) Then

detpMq � λm1
1 � � �λmk

k and trpMq � m1λ1 � � � � �mkλk.

Proof. We have
pApλq � pλ� λ1qm1 � � � pλ� λkqmk .

It is perhaps helpful to write this as the product

pλ� c1q � � � pλ� cnq,
where c1, � � � , cm1 are all equal to λ1, while cn�mk�1, � � � , cn are all equal to λk. This can be understood as
a sum over 2n products, where for each term in the sum I either multiple a ‘λ’ factor or a ‘p�ciq’ factor.

To get a term with coefficient λ0, I must take a product over all of the p�ciq terms and no λ terms,
ultimately giving

an � p�1qm1λm1
1 � � � p�1qmkλmk

k � p�1qnλm1
1 � � �λmk

k .

Because the last coefficient of the characteristic polynomial is an � p�1qn detpMq, this gives the claimed
result.

On the other hand, to get a term with coefficient λn�1, I must take a product over all but one λ term
and only one �ci term. This gives me

p�c1 � � � � � cnqλn�1 � p�m1λ1 � � � � �mkλkqλn�1,

as each λi appears mi times among the c’s. Because this coefficient of the characteristic polynomial is
a1 � �trpMq, this gives the claimed result.

Interestingly, all other coefficients ak of the characteristic polynomial can also be described in this way but
by a more careful argument: the coefficient is p�1qk times the ‘kth symmetric polynomial’ of the eigenvalues
λ1, � � � , λ1, � � � , λk, � � � , λk, where I list each eigenvalue λi a total of mi times.

Example 92. For the matrix M �
�
3 �1
1 1



, the characteristic polynomial was pλ� 2q2, so 2 appears as an

eigenvalue with multiplicity two. The preceding formula gives us detpMq � 22 � 4 (correct) and trpMq � 2�2
(correct).

For the matrix M �
�
� 3{2 0 �3{2
�1{2 2 9{2
0 �1 �2

�

, we found that the characteristic polynomial is

pM pλq � λ3 � 3

2
λ2 � 1

2
λ � λpλ� 1qpλ� 1{2q.

The sum of the eigenvalues is 3{2, which is indeed equal to trpMq � 3{2 � 2 � 2 � 3{2; the product of the
eigenvalues is zero, which is indeed the determinant of M (as M is not invertible). ♢
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Suppose M is diagonalizable. Then the corresponding diagonal matrix is

D �

�
�����
λ1 0 � � � 0 0
0 λ1 � � � 0 0
� � � � � � � � � � � � � � �
0 0 � � � λk 0
0 0 � � � 0 λk

�
����
,

where λ1 appears m1 times, and so on, through λk appearing mk times. This matrix scales mi different
coordinates by λi; each of these scales volume by λi. Thus each eigenvalue represents a ‘stretch factor’ of a
different direction. Overall, we have scaled mi different directions by λi, which overall scales volume by the
product λm1

1 � � �λmk

k appearing in the theorem above.
The geometric interpretation of trace is substantially more subtle, so I will not try.

6.4 Diagonalizing a matrix

Let’s recall our big goal. We have a linear map A : V Ñ V from a finite-dimensional vector space (over
F) to itself. We want to find a basis for V consisting entirely of eigenvectors, in which case rAsβÑβ will be
represented by a diagonal matrix, with diagonal entries λi the eigenvalue associated to the i’th basis vector.

So far, we have defined a polynomial pApλq, the characteristic polynomial of A If pApλq is the characteristic
polynomial, the eigenvalues λ1, � � � , λk are its roots. The λi-eigenvectors are precisely the nonzero vectors
in the eigenspace Eλi

� kerpλiI �Aq.
It suffices to determine whether or not the eigenvectors span V , because if so, we can take a spanning

set of eigenvectors and trim it to a basis by the basis reduction lemma. The span of the eigenvectors of V
is precisely

span of all eigenvectors � Eλ1
� � � � � Eλk

�  
v P V | v � a1v1 � � � � � akvk, vi P Eλi

(
.

If Eλ1 � � � � �Eλk
� V , we win! The span is everything; we can trim a spanning set of eigenvectors into

a basis. If Eλ1 � � � � � Eλk
� V is a proper subspace, we lose: the eigenvectors do not even span V , so we

certainly cannot find a basis of eigenvectors.

Goal: If A : V Ñ V is a linear map with eigenvalues λ1, � � � , λk, we want to find a way to compute
dimpEλ1

�� � ��Eλk
q. If this is equal to dimV , then Eλ1

�� � ��Eλk
� V by Theorem 41; if not, they cannot

possibly be equal.

Let me start with some observations about the way the different eigenspaces interact, before discussing
the individual eigenspaces. The eigenspaces satisfy a useful property. (The following property does not have
a standard name in the literature, so I chose one that should feel natural, given the result to follow.)

Definition 50. LetW1, � � � ,Wk � V be linear subspaces of V . We say that these subspaces are independent
if, for all 1   i ¤ k, we have

Wi X
�
W1 � � � � �Wi�1

� � t⃗0u.
♢

I mention these for two reasons. First, the Eλ’s satisfy this property:

Lemma 94. If λ1, � � � , λk are the eigenvalues of A : V Ñ V , then the subspaces Eλ1 , � � � , Eλk
are indepen-

dent. That is, for all 1   i ¤ k, we have

Eλi X
�
Eλ1 � � � � � Eλi�1

� � t⃗0u.
Proof. You’ll verify this on your homework, but try writing a proof right now! It is a good exercise in
understanding the definitions.

Further, this property helps me compute dimensions.
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Lemma 95. If W1, � � � ,Wk are independent subspaces of V , then dimpW1 � � � � �Wkq � dimpW1q � � � � �
dimpWkq. In fact, if pv1,1, � � � , v1,dimW1q, � � � , pvk,1, � � � , vk,dimWk

q are bases for W1, � � � ,Wk, then

pv1,1, � � � , v1,dimW1 , � � � , vk,1, � � � , vk,dimWk
q

is a basis for W1 � � � � �Wk.

Proof. This is proved by induction. The base case k � 2 was #6 on the recent midterm; there, you further
assumed that V � W1 �W2, but that was not necessary to prove dimpW1 �W2q � dimpW1q � dimpW2q.
Inductively, suppose the claim about bases is true for a sum of k independent subspaces; we will prove it
true for k � 1 independent subspaces. But if I abbreviate W �W1 � � � � �Wk, then

W1 � � � � �Wk �Wk�1 �W �Wk�1.

The definition of ‘independent subspaces’ means precisely that Wk�1 XW � t⃗0u. Applying the k � 2 case
once more, we see that

dimpW1 � � � � �Wk�1q � dimpW �Wk�1q � dimpW q � dimpWk�1q � dimpW1q � � � � � dimpWk�1q,

and similarly one can extract the more precise claim about bases.

Therefore
dim

�
Eλ1 � � � � � Eλk

� � dim
�
Eλ1

�� � � � � dim
�
Eλk

�
.

I now need to get an understanding of each one of these terms.
Recall from earlier the notion of algebraic multiplicity of an eigenvalue. Let me restate the definition

slightly more generally than I used it earlier. If λi is a root of pApλq, we say that its algebraic multipicity
is the largest mi so that pApλq can be factored as

pApλq � pλ� λiqmiqpλq,

where qpλq is another polynomial, which necessarily has qpλiq � 0, or else we could pull out one more pλ�λiq
factor.

This definition allows for the possibility that pA cannot be fully split into linear factors. For instance, in
the polynomial pApλq � λ4 � 2λ3 � 2λ2 considered over the reals, we can factor

pApλq � pλ2 � 1qpλ2 � 2λ� 1q � pλ2 � 1qpλ� 1q2,

so that pApλq has one real root (λ1 � 1) with multiplicity m1 � 2. If I work over C, this can be factored
further as

pApλq � pλ� 1q2pλ� iqpλ� iq, so that over C, we have λ1 � 1, λ2 � i, λ3 � �i,

with multiplicities m1 � 2, m2 � 1, m3 � 1.
The following propositions shows that this algebraic multiplicity ‘controls’ the dimension of Eλ (or rather,

bounds it).

Lemma 96. Let A : V Ñ V be a linear map. Suppose λ0 is an eigenvalue of A, with algebraic multiplicity
m. Then 1 ¤ dimEλ0

¤ m.

Proof. The inequality 1 ¤ dimEλ0
is straightforward: to say λ0 is an eigenvector of A means that there

exists some nonzero vector v P Eλ0
, hence tvu is a linearly independent subset of Eλ0

with at least one
element.

Ultimately, I have to refer back to both bases and determinants somehow: the notion of ‘algebraic
multiplicity’ refers to the characteristiic polynomial pApλq, which is defined as detpλI �Mq, where M �
rAsβÑβ is a matrix representation of A in an appropriate basis for A.

Let’s choose our basis so that it knows about the eigenspace Eλ0
. Begin by picking a basis pv1, � � � , vdq

for Eλ0
; by the basis extension lemma, we may extend this to a basis β � pv1, � � � , vnq for V .
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By the assumption that vj P Eλ0 , we know Avj � λ0vj for all 1 ¤ j ¤ d. Thus the j’th column of rAsβÑβ

is given by λ0ej for 1 ¤ j ¤ d. We have absolutely no information about Avj for j ¡ d, and thus the d� 1
column and onward could be absolutely anything.

With respect to the basis β, we can write

rAsβÑβ �

�
�������

λ0 � � � 0 a1,d�1 � � � a1,n
� � � � � � � � � � � � � � � � � �
0 � � � λ0 ad,d�1 � � � ad,n
0 � � � 0 ad�1,d�1 � � � ad�1,n

� � � � � � � � � � � � � � � � � �
0 � � � 0 an,d�1 � � � an,n

�
������

�

�
λ0Id M12

0pn�dq�d M22



,

where M12 is some d�pn� dq matrix, and M22 is some pn� dq� pn� dq matrix, and Id is the d� d identity
matrix.

Thus

λI �M �

�
�������

λ� λ0 � � � 0 �a1,d�1 � � � �a1,n
� � � � � � � � � � � � � � � � � �
0 � � � λ� λ0 �ad,d�1 � � � �ad,n
0 � � � 0 λ� ad�1,d�1 � � � �ad�1,n

� � � � � � � � � � � � � � � � � �
0 � � � 0 �an,d�1 � � � λ� an,n

�
������

�

�
λId � λ0Id �M12

0pn�dq�d λIpn�dq �M22



.

I can take the determinant of this matrix by Laplace expanding down the first d columns one by one;
inductively, I obtain

pApλq � detpλI �Mq � pλ� λ0qd detpλI �M22q � pλ� λ0qdpM22
pλq.

Therefore I can factor at least d � dimEλ0 factors of pλ� λ0q out of this polynomial. Because m is the
largest number of such factors I can extract, we have d ¤ m, as desired.

This is enough to completely determine when a map is diagonalizable.

Theorem 97. A linear map A : V Ñ V is diagonalizable if and only if its characteristic polynomial pApλq
splits into linear factors, and for every eigenvalue λi, we have dimEλi

� algebraic multiplicity of λi.

Proof. Suppose A has eigenvalues λ1, � � � , λk with algebraic multiplicity m1, � � � ,mk. This means that we
may factor

pApλq � pλ� λ1qm1 � � � pλ� λkqmkqpλq,
where qpλq has no roots over F (such as qpλq � λ2 � 1 over F � R). In particular, we have

dimV � degppAq � m1 � � � � �mk � degpqq.

The first equality comes from Lemma 91; the next from the fact that degree of polynomials is additive under
multiplication of polynomials. Notice that dimV � m1 � � � � �mk if and only if q is a constant (that is, if
and only if pA can be fully split into linear factors).

Now we have

dimpEλ1 � � � � � Eλk
q � dimpEλ1q � � � � � dimpEλk

q ¤ m1 � � � � �mk ¤ dimV.

The first equality follows from the combination of Lemmas 94 and 95, while the first inequality is the content
of Lemma 96. Finally, the second inequality is contained in the discussion of the previous paragraph.

The first inequality is an equality if and only if dimpEλi
q � mi for all i. The second inequality is an

equality if and only if pApλq can be fully factored into linear parts.
Now A is diagonalizable if and only if dimpEλ1 � � � � � Eλk

q � dimV , and the previous discussion
establishes that this is true if and only if pApλq can be fully factored (over F) and dimEλi � algmultpλiq for
all i.
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Here is a useful corollary, frequently stated in linear algebra texts as the main result of the diagonalization
theory.

Corollary 98. Suppose A : V Ñ V is a linear map which has n � dimV distinct eigenvalues λ1, � � � , λn P F,
then A is diagonalizable.

Proof. To say that we have n distinct eigenvalues implies pApλq has n roots, hence can be written as
pApλq � pλ� λ1q � � � pλ� λnq. Thus pA can be fully factored.

On the other hand, 1 ¤ dimEλi
¤ algmultpλiq � 1 for all 1 ¤ i ¤ n, so that each dimEλi

is equal to the
algebraic multiplicity of λi. Thus both hypotheses of Theorem 97 are satisfied.

6.4.1 Triangulization

Not every linear map can be diagonalized, for two reasons:

� The characteristic polynomial may not split into linear factors.

� Even if it does, the eigenvalues λi may have dimEλi
  algmultpλiq.

In some algebraic contexts, the first issue goes away entirely.

Definition 51. A field F is called algebraically closed if every polynomial ppλq � λn � a1λ
n�1 � � � � � an

with a1, � � � , an P F splits into linear factors (aka, can be fully factored into linear parts. ♢

Remark 58. Equivalently, a field is algebraically closed if every polynomial has a root. (Proof: induct on
degree; because ppλq has a root, it can be factored as ppλq � pλ� t0qqpλq where qpλq has degree one less.) ♢

You have seen an example of an algebraically closed field before.

Theorem 99 (The fundamental theorem of algebra). The complex numbers C are an algebraically closed
field.

Every proof of this fact is difficult, and requires some amount of analysis (though you may be
able to keep that amount to a minimum). Therefore, the proof is beyond the scope of this Honors Math A.
If we’re lucky, it will be covered after we discuss line integrals in Honors Math B. (Yes, line integrals can be
used to prove this algebraic fact.)

In fact, much as R sits inside the algebraically closed field C, every field F can be extended to a larger
field F which is algebraically closed and is the smallest algebraically closed field containing F. This is called
its algebraic closure, and you might learn about it in the Modern Algebra sequence, depending on the taste
of the instructor.

Corollary 100. Let A : V Ñ V be a linear map from V to itself, where V is a finite-dimensional vector
space over the algebraically closed field F. Then A has an eigenvector: there exists some v � 0⃗ and λ P F
so that Av � λv.

Proof. This is merely the statement that pApλq has a root; if λ0 is such a root, then Eλ0 is nontrivial, and
one may take v to be any nonzero element in this vector space.

Still, even over C (or any other algebraically closed field), the second issue remains. It is simply not true,

for instance, that

�
0 1
0 0



is diagonalizable over any field whatsoever. Its characteristic polynomial is λ2, so

it has only the eigenvalue 0, but E0 � kerM � spanpe1q is 1-dimensional. No dice.
However, we can still get something computationally useful.

Theorem 101. Suppose A : V Ñ V is a linear map from V to itself, where V is a finite-dimensional vector
space over the algebraically closed field F. Then there exists a basis β for V so that the matrix rAsβÑβ is
upper-triangular:

rAsβÑβ �

�
���
λ1 a12 � � � a1n
0 λ2 � � � a2n
� � � � � � � � � � � �
0 0 � � � λn

�
��
.
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Proof. This can be proved by induction on the dimension of V (remember that in this chapter everything is
finite-dimensional; abandon all hope, ye who enter infinite-dimensional vector spaces).

In the base case dimV � 1 this is very nearly tautological. Pick any nonzero vector v P V , which serves
as a basis β � pvq for V . With respect to this basis, A is given by a 1 � 1 matrix M � �

a11
�
, which is

tautologically upper-triangular. This has nothing to do with algebraic closedness; every 1 � 1 matrix is
upper-triangular.

Suppose inductively that the claim holds for every linear map A : W Ñ W where dimW � n. We will
prove the claim for linear maps A : V Ñ V where dimV � n� 1.

Apply Corollary 100 to see that there exists an eigenvector v0 P V for which Av0 � λ0v0. Because v0 is
nonzero (by definition of eigenvector), the list pv0q is linearly independent. It can therefore be extended to
a basis β � pv0, � � � , vnq for V . Unfortunately, with respect to this basis, all we know is that rAsβÑβ takes
the form

rAsβÑβ �

�
���
λ0 a01 � � � a0n
0 a11 � � � a1n
� � � � � � � � � � � �
0 an1 � � � ann

�
��
�

�
λ0 M01

0n�1 M11



,

where M01 is a 1 � n matrix and M11 is an n � n matrix, and these matrices can be absolutely anything
whatsoever.

What I notice is that M11 is an n � n matrix. If I write W � spanpv1, � � � , vnq and βW � pv1, � � � , vnq,
then M11 defines a linear map B :W ÑW , where dimW � n. By the inductive hypothesis, I can rechoose
this basis β1W � pw1, � � � , wnq for W so that with respect to this basis, we have

rBsβ2Ñβ2 �

�
���
λ1 b12 � � � b1n
0 λ2 � � � b2n
� � � � � � � � � � � �
0 0 � � � λn

�
��
.

If I set β1 � pv0, w1, � � � , wnq to be the new basis for V , then we have

rAsβ1Ñβ1 �

�
���
λ0 b01 � � � b0n
0 λ1 � � � b1n
� � � � � � � � � � � �
0 0 � � � λn

�
��
.

This completes the inductive step, and this the result holds for all linear maps A : V Ñ V between finite-
dimensional vector spaces over an algebraically closed field.

This is not the final word in the story. There is a still-better description, called the Jordan normal form
of a linear map. For any linear map A : V Ñ V (where V is defined over an algebraically closed field F) one
may choose a basis β for which rAsβÑβ is a particularly simple upper-triangular matrix, called its Jordan
normal form. Stated correctly, the Jordan normal form actually completely determines the conjugacy class
of two matrices. If M and M 1 are n � n matrices over an algebraically closed field F, then there exists an
invertible n�n matrix S so that SMS�1 �M 1 if and only if M and M 1 have the same Jordan normal form
(where ‘the same’ should be interpreted carefully).

Thus while not every matrix can be diagonalized, there is still something we can say, and it is almost as
good as a diagonalization. This will probably be discussed in Curio 5.



Chapter 7

Inner products, orthogonality, and the
spectral theorem

7.1 Inner product spaces

Before giving a general definition, I want to give you two motivating examples.

Example 93. Let x, y be vectors in Rn. Their dot product is�
�x1
� � �
xn

�

�

�
�y1
� � �
yn

�

� x1y1 � � � � � xnyn.

Notice a few things: first, that this is a bilinear operation (linear on each of the two inputs seperately); second,
that it is symmetric; third, that x � y � y � x because multiplication and addition in R are commutative);
finally, that the operation x � x has the special property that

x � x � x21 � � � � � x2n � }x}2

is the length-squared of x. In particular,

x � x ¥ 0 and x � x � 0 ðñ x � 0⃗.

♢

Example 94. The same idea does not naively work for the complex numbers, because if z � x� iy, there is
no reason to believe z2 � px2 � y2q � ip2xyq is a non-negative real number (and there is no useful notion of
“positive complex number” in general). There is a trick to repair this, however.

Definition 52. If z � x� iy is a complex number, its complex conjugate is z � x� iy. Its absolute value
is |z| �

a
x2 � y2. Its real and imaginary parts are Repzq � x and Impzq � y. ♢

The complex conjugate has some useful properties, which you can verify by simple by-hands computation:

� We have z � w � z � w, and zw � z w.

� We have z � z if and only if z � x� i0 is a real number, whereas z � �z if and only if z � 0� iy is a
purely imaginary number (its real part is zero).

� We have

zz � px� iyqpx� iyq � x2 � y2 � ipyx� xyq � x2 � y2 � |z|2

is a non-negative real number, for any z, and in fact zz � 0 if and only if z � 0.

163
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Now let me define a ‘dot product’ over Cn. If z P Cn and w P Cn, we set their complex dot product
to be �

�z1
� � �
zn

�

�

�
�w1

� � �
wn

�

� z1w1 � � � � � znwn.

As a concrete example,�
1� i
3� i



�
�
2� i
3� i



� p1� iqp2� iq�p3� iqp3� iq � p1� iqp2� iq�p3� iqp3� iq � p1�3iq�p8�6iq � 9�3i.

This new operation satisfies the property that z � z � |z1|2 � � � � � |zn|2 ¥ 0, with equality if and only if
z � 0⃗, mimicking the corresponding property in the real case.

This is additive in both coordinates:

pz � z1q � w � z � w � z1 � w; z � pw � w1q � z � w � z � w1

However, one crucial property is different. While the dot product respects scaling in the first coordinate:

pczq � w �
�
�cz1� � �
czn

�

�

�
�w1

� � �
wn

�

� pcz1qw1 � � � � � pcznqwn � cpz1w1 � � � � � znwnq � cpz � wq.

However, it does not respect scaling in the second coordinate! Rather, we have

z � pcwq � z1pcw1q � � � � � znpcwnq � cpz1w1 � � � � � znwnq � cpz � wq.

When we pull out a scalar c from the second coordinate, it scales the dot product by the complex conjugate
of that scalar.

Similarly, we have
z � w � w � z;

if we swap the terms, the dot product is changed by a complex conjugation.
Because the property z � z ¥ 0 (and the relation of z � z to length) is so important to the theory to come,

we have to just accept these irritating and unexpected difficulties. They will be included in the definition of
inner product space. ♢

In practice, the two examples above are far and away the most important. Even so, we should define the
general notion of inner product space, if only so that we can pass to subspaces as necessary. The infinite-
dimensional generalizations to ‘Hilbert spaces’ are also important, and in that context the more abstract
phrasing is important (where many Hilbert spaces appear in naturte whose inner products do not take the
form above).
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Definition 53. An inner product space over R or C consists of the following data, satisfying the following
properties.

(D1) A vector space V over the field F, which is either R or C.

(D2) A function x�,�y : V �V Ñ F which takes two input vectors and returns an element of the underlying
field.

We demand this data satisfy the following four axioms.

(I1) (Positive.) The quantity xv, vy is a non-negative real number, which we write as xv, vy ¥ 0. This
quantity is called the ‘norm-squared’, and we say that the ‘norm’ of v is the real number }v} �axv, vy.

(I2) (Definite.) The quantity xv, vy is zero if and only if v � 0⃗.

(I3) (Linearity in the first input.)For any a, b P F and any v, w, u P V , we have

xav � bw, uy � axv, uy � bxw, uy.

(I4) (Conjugate symmetry.) For any v, w P V , we have

xw, vy � xv, wy.

If F � R, this should be interpreted as xw, vy � xv, wy, as there is no concept of ‘complex conjugation’
of real numbers.

♢

Notice that in (I3) I have packaged both ‘respects addition’ (set a � b � 1) and ‘respects scaling’ (set
w � 0⃗) into the same formula. Further, notice that (I3) + (I4) imply that we have

xv, aw � buy � xaw � bu, vy � axw, vy � bxu, vy
� axw, vy � bxu, vy
� axv, wy � bxv, uy,

so that xv, wy is ‘conjugate-linear’ (or sometimes ‘antilinear’) in the second input: it is additive, and
scalars pull out as their complex-conjugates.

Example 95. The most important examples of inner products are the dot products on Rn and Cn discussed
above. ♢

Example 96. Suppose V is an inner product space, and W � V is a subspace. Then restricting the inner
product to W gives W the structure of an inner product space as well. ♢

I mentioned above that in the case of the dot product on Rn or Cn, the quantity
?
v � v measures the

length of a vector. (I will discuss this in more detail in the next section.) This is worth writing down in
general.

Definition 54. If V is an inner product space, the norm (sometimes ‘magnitude’) is a function } � } : V Ñ
r0,8q defined by a

xv, vy P r0,8q.
♢
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Lemma 102. The norm on an inner product space satisfies the following properties.

(N1) We have }v} ¥ 0, with }v} � 0 if and only if v � 0⃗.

(N2) We have }cv} � |c|}v}.
(N3) We have

}v � w}2 � }v}2 � }w}2 � 2Re xv, wy.
In particular, we have }v}2 � }w}2 � }v � w}2 if and only if xv, wy has zero real part.

Proof. The first item is a restatement of property (I1) and (I2) of inner product spaces. The next follows
from linearity in the first input and conjugate-linearity in the second input:

}cv}2 � xcv, cvy � cxv, cvy � ccxv, vy � |c|2}v}2.
Taking square roots of these non-negative numbers gives the desired claim. The final claim follows because

}v � w}2 � xv � w, v � wy � xv, v � wy � xw, v � wy
� xv, vy � xv, wy � xw, vy � xw,wy
� }v}2 � }w}2 � xv, wy � xw, vy.

Now if xv, wy is the complex number x� iy, we have xw, vy � xv, wy � x� iy, so
xv, wy � xw, vy � 2x � 2Re xv, wy.

This gives the desired claim.

The statement above looks quite a lot like the Pythagorean theorem. In fact, we use it as inspiration for
the following definition.

Definition 55. Let V be an inner product space. We say that two vectors v, w P V are orthogonal if
xv, wy � 0. ♢

The notion of orthogonality will be crucial in what follows. Notice that no vector (other than the zero
vector) is orthogonal to itself, as xv, vy � }v}2, which is only zero for the zero vector.

As an aside, suppose v, w P Rn. One may form a triangle with sides v, w, v � w, as follows:

The rule of cosines from trigonometry (which I will not prove) asserts a relation between the length of
these three sides, which generalizes the Pythagorean theorem:

}v � w}2 � }v}2 � }w}2 � 2}v}}w} cospθq.
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On the other hand, our inner product formulas imply that

}v � w}2 � xv � w, v � wy � xv, vy � xw, vy � xv, wy � xw,wy � }v}2 � }w}2 � pxv, wy � xw, vyq.

Because we are working over the reals, we have xw, vy � xv, wy, so that we have just proved

}v}2 � }w}2 � 2}v}}w} cospθq � }v}2 � }w}2 � 2xv, wy.

Canceling out like terms and dividing by �2, we have established a geometric formula for an algebraic
quantity, the standard inner product on Rn.

Proposition 103. Let v, w P Rn be vectors with angle 0 ¤ θ   π between them, where Rn is equipped with
the standard inner product (the dot product). Then we have

xv, wy � }v}}w} cospθq.

Note, in particular, that this implies xv, wy is zero if and only if one of the two vectors v, w is zero or the
angle between them is θ � π{2 (so they are perpendicular in the sense you’re used to.) Further, if xv, wy is
positive, the angle between these two vectors is acute; if xv, wy is negative, the angle is obtuse.

7.1.1 Orthogonal complements

In a finite-dimensional inner product space, there is a canonical complementary subspace to a given subspace
W � V , the set of vectors perpendicular to this subspace. Imagine a plane in 3D space; the line perpendicular
through the origin perpendicular to it is complementary. We encode this idea in the following definition.

Definition 56. Let V be an inner product space, and letW � V be a subspace. Its orthogonal complement
is the set WK � V defined by

WK � tv P V | @wPW xv, wy � 0u.
That is, WK consists of those vectors which are orthogonal to every vector in W . ♢

It will take us some work to actually prove this space is complementary. In general, it at least intersects
W trivially.

Proposition 104. The orthogonal complement WK is a subspace of V , and WK XW � t⃗0u.
Proof. For (S1), suppose v, v1 PWK. Then for all w PW , we have

xv � v1, wy � xv, wy � xv1, wy � 0� 0 � 0,

where those inner products vanish because v, v1 P WK. Therefore v � v1 P WK. A similar argument applies
for (S2): for all w PW we have

xcv, wy � cxv, wy � cp0q � 0.

Finally, for (S3), observe that for all w P W , we have x0, wy � 0 because the function v ÞÑ xv, wy is a linear
function, and linear functions send zero to zero. (In fact, x0, vy is zero for all vectors v P V .)

For the last claim, notice that 0 PWKXW as the latter is a subspace. For the reverse inclusion, suppose
w PWKXW . Then by definition w is orthogonal to every vector in W , and in particular w is perpendicular
to itself, so

0 � xw,wy � }w}2.
By axiom (I2), definiteness — rephrased later as Lemma [?] (N1) — we thus have w � 0⃗, as claimed.

In fact, in finite dimensions, we have a better result. (Something comparable is true in infinite dimensions,
but you’ll need to learn something about limits.)

Proposition 105. Suppose V is a finite-dimensional inner product space. If W � V is a subspace, then
WK is a complementary subspace to W : in addition to the property that WK XW � t⃗0u, we also have that
WK �W � V (every vector in V can be written as a sum of a vector in W and a vector in WK).
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I am going to postpone the proof of this result somewhat, because it requires some new ideas (which I
could obscure to give the proof faster, but what’s the fun in that?). To see where we’re going, remember that
the way we discussed complementary subspaces on the last question of the Midterm before we introduced
inner products was to introduce bases. The key point is to incorporate the inner product into our study and
use of bases.

Definition 57. A orthonormal list of vectors in a finite-dimensional inner product space V is a list of
vectors pv1, � � � , vkq for which

}vi}2 � 1 and vi � vj � 0 for all i � j.

That is, it is a list of length-one vectors which are mutually orthogonal. ♢

Lemma 106. If pv1, � � � , vkq is an orthonormal list, it is necessarily linearly independent.

Proof. Suppose a1v1 � � � � � akvk � 0⃗ is a linear relation. Take the inner product with vj : we have

0 � x⃗0, vjy � xa1v1 � � � � � akvk, vjy
� a1xv1, vjy � � � � � akxvk, vjy � aj ,

as xvi, vjy � 0 for i � j and xvj , vjy � 1. It follows that aj � 0 for all j, so the given linear relation is
the trivial linear relation. Thus pv1, � � � , vkq is linearly independent.

Proposition 107. Let V be a finite-dimensional inner product space. Every list of orthonormal vectors
pv1, � � � , vkq in V can be extended to an orthonormal basis for V .

Proof. The algorithm to produce such a basis is called the ‘Gram-Schmidt algorithm’. We will prove that
each list pv1, � � � , vkq of orthonormal vectors which does not span V can be extended to a list pv1, � � � , vk�1q of
orthonormal vectors; inducting on k, we see that eventually we have produced an orthonormal list pv1, � � � , vnq
where n � dimV ; because this list is linearly independent, by Corollary 42 we see that it spans V , hence is
a basis. (Finite-dimensionality is essential here!)

Because pv1, � � � , vkq is a linearly independent list which does not span V , there exists some vector
v R spanpv1, � � � , vkq. Pick any such v. I am going to use v to construct a new vector not in spanpv1, � � � , vkq
which is also perpendicular to all of the previous vectors; then I will scale it to be a unit-length vector. This
will provide the desired extension to an orthonormal list pv1, � � � , vk�1q of length k � 1, and as discussed
above, iterating this procedure leads us to a basis for V .

First, for 1 ¤ i ¤ k, set ai � xv, viy. Then set

v1 � v � a1v1 � � � � � akvk.
If v1 P spanpv1, � � � , vkq, then v is as well; conversely because v is not in spanpv1, � � � , vkq, neither is v1.
Furthermore, observe that

xv1, vjy � xv � a1v1 � � � � � akvk, vjy � xv, vjy � a1xv1, vjy � � � � � akxvk, vjy.

Now because pv1, � � � , vkq is orthonormal, xvi, vjy �
#
0 i � j

1 i � j
, so this expression simplifies to

xv, vjy � aj � xv, vjy � xv, vjy � 0.

Therefore xv1, vjy � 0 for all vj , and v
1 is not in spanpv1, � � � , vkq. Lastly, renormalize: set

vk�1 � 1

}v1}v
1.

By linearity, again vk�1 is orthogonal to all of v1, � � � , vj , and it remains nonzero; but

}vk�1} � 1

}v1}}v
1} � 1,

by Lemma 102 (N3).
Thus we have extended the orthonormal list pv1, � � � , vkq to an orthonormal list pv1, � � � , vk�1q.



7.2. THE TRANSPOSE AND THE DOT PRODUCT 169

Starting from the empty list, we obtain the following.

Corollary 108. Every finite-dimensional inner product space has an orthonormal basis.

We are now ready to prove

Proof of Proposition 105. Let W � V be a subspace. Choose an orthonormal basis pv1, � � � , vkq for this
subspace using Corollary 108, and extend it to an orthonormal basis pv1, � � � , vnq for V using Proposition
107. I claim thatWK � spanpvk�1, � � � , vnq, at which point we see immediately thatWK is complementary to
W . To see the reverse containment, choose v P spanpvk�1, � � � , vnq. Observe that if w � a1v1�� � ��akvk PW ,
then

xv, wy � xak�1vk�1 � � � � � anvn, a1v1 � � � � � akvky �
ķ

i�1

ņ

j�k�1

ajaixvj , viy,

which is zero as xvj , viy � 0 for j � i (and here j ¥ k � 1 while i ¤ k). Therefore xv, wy � 0 for all w P W ,
so that v PWK.

For the forward containment, observe that if w P WK, we may express it as w � a1v1 � � � � � anvn for
some ai P F. But because vj PW for 1 ¤ j ¤ k, by definition of WK see that

0 � xw, vjy � xa1v1 � � � � � anvn, vjy �
ņ

i�1

aixvi, vjy � aj ,

once again by orthonormality of the basis. Therefore aj � 0 for 1 ¤ j ¤ k and so

w � ak�1vk�1 � � � � � anvn P spanpvk�1, � � � , vnq,

as desired.

This gives the following rather intuitive fact: the orthogonal complement to an orthogonal complement
is the original space.

Corollary 109. Let W � V be a subspace of a finite-dimensional inner product space. Then pWKqK �W .

Proof. It is always true that W � pWKqK: if w P W then xw, vy � 0 for all v P WK. Now in the finite-
dimensional case, because W and WK are complementary, we have dimWK � dimV � dimW , so that
dimpWKqK � dimV � pdimV � dimW q � dimW . Thus W � pWKqK is a subspace of a finite-dimensional
vector space of the same dimension (Theorem 41).

Remark 59. The fact that this fails in general is related to the fact that W �WK need not always be the
whole space. Examples are necessarily infinite-dimensional, so perhaps a bit aggravating, but here is the
simplest one I can give, which uses the notion of convergent series. The space denoted ℓ2 consists of (let’s
say real) sequences pa1, a2, � � � q for which

°8
i�1 |ai|2   8. There is an inner product defined by

xpaiq, pbiqy �
8̧

i�1

aibi;

that this sum is convergent follows from the fact that aibi ¤ a2i�b2i
2 (because pai � biq2 ¥ 0). ♢

7.2 The transpose and the dot product

We previously introduced the transpose of a matrix in Definition 44 as a tool to let us pass between row
operations and column operations. The transpose finds its real significance in discussions of the standard
inner product on Rn (though this is not unrelated to passing betwen row and column operations, as perhaps
or perhaps not elucidated by the discussion opening Curio 4). We will see this below; while discussing the
same for Cn, we need a slightly more complicated definition.
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Definition 58. Let M �
�
�a11 a12 � � � a1n
� � � � � � � � � � � �
am1 am2 � � � amn

�

be an m� n matrix over C. Its conjugate transpose is

the n�m complex matrix given by

M� �

�
���
a11 � � � am1

a12 � � � am2

� � � � � � � � �
a1n � � � amn

�
��
.

That is, we take the transpose of M and then the complex conjugate of each of its entries. ♢

Example 97. The conjugate transpose of M �
�
� 3 1� i

2i π � 3i
7� 2i 3

�

 is M� �

�
3 �2i 7� 2i

1� i π � 3i 3



. ♢

Remark 60. Notice that pAT qT � A and pA�q� � A: transpose twice and you end up back where you
started. ♢

Before moving on to its relevance to the standard inner product, let me observe a basic fact about theh
transpose (or conjugate transpose) of a product.

Lemma 110. If M is an ℓ � m matrix and N an m � n matrix over the field F, then the transpose of
the product satisfies pMNqT � NTMT . If M and N are defined over C (so that the conjugate transpose is
defined), we have pMNq� � N�M�.

Proof. The proof is by direct computation (though the ideas leading Curio 4 can be used to give a conceptual
proof).

Write M �
�
�a11 � � � a1m
� � � � � � � � �
aℓ1 � � � aℓm

�

and N �

�
� b11 � � � b1n
� � � � � � � � �
bm1 � � � bmn

�

. Then the entry pMNqij in row i, column j,

is given by

pMNqij � ai1b1j � � � � � aimbmj , so pMNqTij � pMNqji � aj1b1i � � � � � ajmbmi.
On the other hand, one has

pNTMT qij �
�
b1i � � � bmi

���aj1
� � �
ajm

�

� b1iaj1 � � � � � bmiajm � aj1b1i � � � � � ajmbmi,

the same result. Here we use that multipilication in F is commutative.
The extension to conjugate transposes follows by the same argument, with the addition point that

zw � zw: complex conjugation respects multiplication.

The reason these are relevant is that I can write an formula for the dot product (the standard inner
product on Rn and Cn) using the transpose (or, over C, the conjugate tranpose).

If v P Rn or v P Cn, then we think of v as a column vector

�
�v1
� � �
vn

�

, an n� 1 matrix. Using the discussion

above, I can also define a 1�n matrix: in the real case I will be interested in vT � �
v1 � � � vn

�
, whereas in

the complex case we will be interested in the conjugate transpose v� � �
v1 � � � vn

�
. Furthermore, because

the product of a 1� n matrix and an n� 1 matrix is a 1� 1 matrix (a single number!), the expression wT v
in the first case and w�v in the second case gives us an element of R (resp. C). In fact, these are precisely
the inner products.

Lemma 111. Let v, w P Rn. Then xv, wy � wT v. Similarly, if v, w P Cn, we have xv, wy � w�v.

Proof. Let me write the complex case (the argument in the real case is the same): we have

w�v � �
w1 � � � wn

���v1
� � �
vn

�

� w1v1 � � � � � wnvn � v1w1 � � � � � vnwn � xv, wy.
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Remark 61. One may take this perspective from the start, and derive the basic properties of the inner
product using this formula. For instance, conjugate symmetry comes from the fact that

xv, wy � pw�vq� � v�w�� � v�w � xw, vy. ♢

The following corollary is the reason I’ve discussed all of this. It is immensely useful, and if you take
a different perspective, the formulas below are so important they can be used to define the transpose (and
conjugate transpose) matrix. This is not the same as but not unrelated to the perspective of Curio 4.

Corollary 112 (The transpose and inner products). Let v P Rn and w P Rm. If A : Rn Ñ Rm is a linear
map, then we have

xAv,wy � xv,ATwy.
Similarly for the complex inner product: we would have

xAv,wy � xv,A�wy.
Proof. I will write the proof in the complex case; the real case is the same argument. We have

xv,A�wy � pA�wq�v � w�A��v � w�Av � xAv,wy.
Here I used that the conjugate transpose flips the order of a product, and that taking the conjugate transpose
twice returns you to the original matrix.

Remark 62. When A : Fn Ñ Fn runs from the same space to itself, so that xv,Awy makes sense, observe
that we have the same formula here by (conjugate)-symmetry:

xv,Awy � xAw, vy � xw,A�vy � xA�v, wy. ♢

Remark 63. If A : V Ñ W is a linear map between finite-dimensional inner product spaces, the formula
above defines a map A� :W Ñ V of complex inner product spaces: it is the unique linear map so that

xv,A�wy � xAv,wy
for all v P V and w PW . (One must argue that such a linear map exists and is unique.) The same argument
applies for AT in the real case. From the perspective of Curio 4, the point is that if you have a linear map
V ÑW , there is a canonical dual map W� Ñ V � between the dual vector spaces. Then the fact that V and
W are inner-product spaces gives an isomorphism V � V � by sending v to the functional φvpwq � xw, vy;
this is an isomorphism because it is an injective inear map between two finite-dimensional inner product
spaces of the same dimension (this isomorphism is called the Riesz representation). Then the composite map
W ÑW� Ñ V � Ñ V is precisely the map A� defined by the formula above (AT in the real case). ♢

This fact is incredibly useful, and you should keep it written down somewhere circled — you will use it
again. Let me attempt to give a canonical example of its use. It also demonstrates a very standard trick (to
show that a vector is zero, show that its norm-squared is zero).

Proposition 113. Let A : Fn Ñ Fm be a linear map (where F is either R or C). For convenience, write
A� for the conjugate transpose or the usual transpose, depending on F. Then we have

kerpA�q � impAqK, impA�q � kerpAqK.
Proof. I will write the proof over C (the only change over R is writing the transpose instead of the conjugate
transpose). This is a double containment argument. Suppose v P kerpA�q. Let’s show xv, wy � 0 for all
w P impAq, or equivalently, xv,Auy � 0 for all u P Fn. We have

xv,Auy � xA�v, uy � x⃗0, uy � 0,

as claimed. This proves the forward containment.
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Conversely, suppose v P impAqK, so that xv,Auy � 0 for all u P Cn. We want to show that A�v � 0.
Now for an infinitely-useful magic trick. Observe that

}A�v}2 � xA�v,A�vy � xv,AA�vy � 0.

The second equality follows because we may move A� across the inner product at the cost of adding a
conjugate transpose (and pA�q� � A). Because }A�v}2 � 0 and the norm of a vector is zero if and only if
that vector is zero, it follows that A�v � 0, so that v P kerpA�q. We have completed the double-containment;
this proves the first stated equality.

The second fact follows by applying the first, and the fact that pWKqK �W : we have

impA�q � �
impA�qK�K � pkerppA�q�qqK � kerpAqK,

where the last equality uses that pA�q� � A.

The theorem above will be essential when we later discuss the ‘spectral theorem’: for certain matrices,
we will be able to say that their eigenspaces are orthogonal. (As for why this matters, you’ll have to wait
and see.) I can give an immediate application, though.

Corollary 114. Let A : Fn Ñ Fm be a linear map. Then rankpA�q � rankpAq.
Remark 64. That is, the maximal number of columns of A which are linearly independent is equal to the
maximal number of rows of A which are linearly independent, as these are the (complex conjugates of) the
columns of A�. This is often called the ‘row rank = column rank’ theorem in elementary linear algebra
texts. ♢

Proof. We have

rankpA�q � dim impA�q � dimkerpAqK � n� dimkerpAq � dim impAq � rankpAq.
The first and last equalities are the definition of rank; the second equality is given by the preceding Propo-
sition; the third equality is Midterm #6 together with Proposition 105 that the orthogonal complement is a
complementary subspace; the fourth equality is the rank-nullity theorem.

7.3 Special classes of linear maps

There are privileged classes of linear maps between inner product spaces — most often from an inner product
space to itself, and this is the case we will take up below. (One may slightly generalize this discussion to
allow for maps between different inner product spaces called ‘isometric embeddings’, but we won’t gain much
from this generalization, so I won’t bother.)

Definition 59. Let V be an inner product space. An isometry is an invertible linear map A : V Ñ V with
the additional property that for all v1, v2 P V , we have

xAv1, Av2y � xv1, v2y.
When V is a real inner product space, these transformations are called orthogonal transformations.

When V is complex, they are called unitary transformations. If V � Rn the corresponding n � n
matrices are called orthogonal matrices, and if V � Cn the corresponding n � n matrices are called
unitary matrices. The set of orthogonal n� n matrices is often denoted Opnq, whereas the set of unitary
n� n matrices is often denoted Upnq. ♢

The significance of the given equation is that A preserves the inner-product structure: you can compute
the inner product of two vectors either before or after applying A. This immediately implies that A preserves
the length (norm) of vectors:

}Av} �
a
xAv,Avy �

a
xv, vy � }v}.

In fact, the converse is true as well; one can think of isometries as length-preserving linear maps (or distance-
preserving linear maps, if you like). I include this below in a longer list of equivalent conditions, some of
which are easily checkable.
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Proposition 115. The following are all equivalent conditions on a linear map A : V Ñ V of finite-
dimensional inner product spaces. (Here I write A� to mean the conjugate transpose in the complex case,
and the usual transpose in the real case.)

(a) A is an isometry.

(b) A preserves norms: for all v P V , we have }Av} � }v}.
(c) A satisfies the equation A�A � I.

(d) If V � Fn so that A may be identified with an n � n matrix, the columns of A form an orthonormal
basis for Fn.

Proof. We first prove that paq and pbq are equivalent, and then move on to showing that paq ùñ pcq ùñ
pdq ùñ paq, which shows those three conditons are all equivalent.

We saw that paq ùñ pbq above. As for the reverse direction (which I will prove in the complex case),
observe that we established in Lemma 102(N3) that

}v � w}2 � }v}2 � }w}2
2

� Re xv, wy.

It follows that if A preserves norms, then

Re xAv,Awy � }Apv � wq}2 � }Av}2 � }Aw}2
2

� }v � w}2 � }v}2 � }w}2
2

� Re xv, wy.

In the first equality I used that A is linear to combine Av � Aw � Apv � wq and in the second that A is
assumed to preserve norms. So at least A preserves the real part of the inner product, which establishes
pbq ùñ paq in the real case; for the complex case, a trick shows that the same argument handles the
imaginary part: observe that if xv, wy � x� iy so that

xv, iwy � �ixv, wy � �ipx� iyq � y � ix,

we have
Re xv, iwy � Im xv, wy.

Because A is complex-linear, and we have established that A preserves the real part of the inner product, it
follows that A preserves the imaginary part as well; so xAv,Awy � xv, wy.

Let’s move on to the remaining two conditions. Suppose A is an isometry. I claim that A�A � I. To see
this, observe that for all v, w P V , we have

xA�Av,wy � xAv,Awy � xv, wy,

the first equality using the formula relating the conjugate transpose to the inner product, and the next the
assumption that A is an isometry.

I claim that this implies A�Av � v for all v. To see this, set w � A�Av � v, and observe that

}A�Av � v}2 � xA�Av � v,A�Av � vy � xA�Av,A�Avy � xv,A�Avy � xA�Av, vy � xv, vy;

applying the previous equality repeatedly, we see that xA�Av,A�Avy � xA�Av, vy � xv, vy, and similarly
for the other terms, so that this simplifies to

}A�Av � v}2 � }v}2 � }v}2 � }v}2 � }v}2 � 0.

Therefore A�Av � v � 0⃗, so A�Av � v for all v P V . Thus A�A � I. This gives paq ùñ pcq. Conversely,
if A�A � I, then using the equation relating the inner product to the conjugate transpose, we have for all
v, w P V that

xAv,Awy � xA�Av,wy � xv, wy,
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so A is an isometry.
Lastly I will show that when V � Fn we have pcq ðñ pdq. Write the corresponding matrix as

M �
�
� | |
v1 � � � vn
| |

�

. Then

M�M �
�
�— v�1 —

� � �
— v�n —

�


�
� | |
v1 � � � vn
| |

�

�

�
�v�1 v1 � � � v�1 vn
� � � � � � � � �
v�nv1 � � � v�nvn

�

�

�
�xv1, v1y � � � xv1, vny

� � � � � � � � �
xvn, v1y � � � xvn, vny

�

.

To say that this is the identity matrix means precisely

xvi, vjy �
#
1 i � j

0 i � j

which is precisely what it means to say that the list of columns pv1, � � � , vnq is orthonormal; because this is
an orthornormal list (so linearly independent) of the same dimension as V , it spans V by Corollary 42, so is
an orthonormal basis.

7.3.1 Examples of orthogonal and unitary matrices

The standard examples of orthogonal matrices are rotations and reflections. In fact, every 2� 2 orthogonal
matrix takes one of the following forms:�

cos θ � sin θ
sin θ cos θ



,

�
cos θ sin θ
sin θ � cos θ



.

(Notice that the first column represents some arbitrary unit-length vector in R2, and the second column the
two possibilities for a unit vector perpendicular to it.) The first of these is rotation by an angle θ, and the
second reflection across a line which lies θ{2 radians counter-clockwise from the x-axis.

We can generalize this to arbitrary dimensions, as follows.

Definition 60. Let V be a real inner product space of dimension n, and letW � V be a subspace of dimension
2. Choose an orthonormal basis pv1, v2q forW and an orthonormal basis pv1, � � � , vnq of V extending it. Then
Rotation along W by angle θ is the map RW,θ : V Ñ V defined with respect to this basis as

RW,θpviq �

$'&
'%
cospθqv1 � sinpθqv2 i � 1

� sinpθqv1 � cospθqv2 i � 2

vi i ¡ 2

.

That is, it rotates the planeW by an angle of θ and keeps the orthogonal complementWK � spanpv3, � � � , vnq
fixed. ♢

It is a straightforward computation to verify that RW,θ sends the orthonormal basis pv1, � � � , vnq to
another orthonormal basis; this implies RW,θ is an orthogonal transformation:

xRW,θv,RW,θwy �
C
RW,θp

ņ

i�1

aiviq, RW,θ
ņ

j�1

bjvj

G
�

ņ

i�1

ņ

j�1

aibjxRW,θvi, RW,θvjy

�
ņ

i�1

ņ

j�1

aibjxvi, vjy �
@ ņ

i�1

aivi,
ņ

j�1

bjvjy � xv, wy

with the equality between the first and second row arising because

xRW,θvi, RW,θvjy � xvi, vjy �
#
1 i � j

0 i � j
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and xav, bwy � abxv, wy because we are working in a real inner product space, for which the inner product
is linear in both terms. (Were we working in a complex inner product space, this expression would instead
read xav, bwy � abyv, wy.)

Here is a description of what’s going on in 3D. Pick a line in 3D space, and rotate ‘around’ that line by
some angle θ. This is what is called above the rotation along the plane perpendicular to that line.

I will not prove the following theorem, but it is valuable for getting intuition for what an orthogonal
matrix ‘does’.

Theorem 116. Every orthogonal transformation A : V Ñ V with determinant detA ¡ 0 can be written as
a composite of rotations.

Even more precisely, there exists a sequence W1, � � � ,Wm of orthogonal planes inside V (orthogonal
meaning: for all wi P Wi and wj P Wj with i � j we have xwi, wjy � 0; the subspaces are orthogonal to
one another, though not orthogonal complements to one another), so that A is given by rotation by some
θ1, � � � , θm along each of these planes. Thus an orthogonal transformation with positive determinant should
be understood as ‘rotating around some collection of orthogonal planes’.

The case of detA   0 should be understood in terms of reflections.

Definition 61. Let V be a finite-dimensional inner product space and let W � V be a non-trivial proper
subspace. The reflection along W is the unique linear map refW : V Ñ V which is the identity on W and
acts as �1 on WK. If pv1, � � � , vkq is an orthonormal basis for W and this is extended to an orthonormal
basis pv1, � � � , vnq for V , then in terms of this basis we have

refW pviq �
#
vi 1 ¤ i ¤ k

�vi k   i ¤ n
♢

Once again, you can check that this is an orthogonal transformation because it sends an orthonormal
basis to an orthonormal basis. Interestingly, it is also a symmetric transformation in the sense of the next
section (prove by hand that xrefW v, wy � xv, refWwy for all v, w P V ).

The determinant of refW can be computed in the basis pv1, � � � , vnq above to be p�1qn�k. If k � n� 1,
so that W is one dimension smaller than the ambient space it lives in, this is called ‘reflection across a
hyperplane’; it’s what happens when you look in a mirror in 3D space. In this case, detprefW q � �1. The
analogue of Theorem 116 in this context is that an orthogonal matrix with detpAq   0 can be written as a
composite of an orthogonal transformation with detpAq ¡ 0 and a reflection along across a hyperplane (so a
composite of a bunch of rotations and one reflection).

The unitary case is easier.
Let z be a complex number with |z| � 1. Because |x � iy| �

a
x2 � y2, such numbers take the form

cospθq � i sinpθq. These are often written as eiθ because of a relation between the Taylor series of these two
functions, which we will discuss next term. Every complex number can be written as reiθ where r ¥ 0 is
real and θ is some angle; multiplication of complex numbers in this form satisfies preiθqpseiψq � rseipθ�ψq.
Multiplying by reiθ has the visual effect of scaling the complex plane by the factor r and rotating the complex
plane by the angle θ.

Unitary matrices allow us to compress these ‘rotations’ into a single entry. The most common unitary
matrix is a diagonal unitary matrix:

D �
�
�eiθ1 � � � 0
� � � � � � � � �
0 � � � eiθn

�

,

which has the effect of rotating each complex plane factor in Cn by a factor of θj . In fact, we will actually
prove the following as a consequence of the ‘spectral theorem’.

Theorem 117. Let A : V Ñ V be a unitary transformation of a finite-dimensional complex inner product
space. Then there exists a orthonormal basis of eigenvectors pv1, � � � , vnq. With respect to this basis, we
have

rAsβÑβ �
�
�eiθ1 � � � 0
� � � � � � � � �
0 � � � eiθn

�
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for appropriate angles θ1, � � � , θn, where Avj � eiθj .

7.3.2 (skew)-Symmetric and (skew)-Hermitian matrices

The next class of matrices are worth introducing partly for their relationship to quadratic functions (and we
will conclude the term with a discussion of quadratic functions), but they also appear rather often. (I often
see them in the study of partial differential equations, where the relation to the inner product is especially
important.)

Definition 62. Let M be an n � n matrix with real entries. If M � MT we say that M is symmetric,
whereas if MT � �M we say that M is skew-symmetric.

Let M be an n� n matrix with complex entries. If M �M� we say that M is Hermitian1, whereas if
M� � �M we say that M is skew-Hermitian. ♢

Example 98. Let me discuss both the general form of such matrices (which we can easily write down, unlike
the case of orthogonal matrices; the key is that the set of symmetric matrices forms a vector space, as do
the other three classes above, whereas orthogonal matrices firmly do not — they form a ‘matrix group’ or
in modern terminology a ‘Lie group’, named after the mathematician Sophus Lie).

M symmetric ùñ M �

�
���
a11 a12 � � � a1n
a12 a22 � � � a2n
� � � � � � � � � � � �
a1n a2n � � � ann

�
��


is a matrix which ‘looks the same’ when you flip it across the diagonal; aij � aji. For instance,

M �

�
���

4 3 2 17
3 π 6 �1
3 6 0 �2
17 �1 �2 e2

�
��


is a 4� 4 symmetric matrix. On the other hand, a skew-symmetric matrix has aji � �aij ; when i � j this
reads aii � �aii, so that 2aii � 0 and hence aii � 0, so the general form is

M skew-symmetric ùñ M �

�
���

0 a12 � � � a1n
�a12 0 � � � a2n
� � � � � � � � � � � �
�a1n �a2n � � � 0

�
��
.

The diagonal entries are always zero, and the other entries negate when we flip the matrix. For instance, an
example of a skew-symmetric matrix is

M �
�
� 0 3 �2
�3 0 �1
2 1 0

�

.

If M is Hermitian with entries Mkℓ � akℓ � ibkℓ, the relevant formula is Mkℓ � Mℓk. Along the diagonal,
this gives Mkk � Mkk, so the diagonal entries are real numbers; off the diagonal the entries change by
complex conjugation when you flip the matrix. The general form is

M Hermitian ùñ M �

�
���

a11 a12 � ib12 � � � a1n � ib1n
a12 � ib12 a22 � � � a2n � ib2n
� � � � � � � � � � � �

a1n � ib1n a2n � ib2n � � � ann

�
��
.

For instance, M �
�
� 3 2� i i
2� i 4 1
�i 4 0

�

 is Hermitian.

1Named after mathematician Charles Hermite
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On the other hand, if M is skew-Hermitian, we have Mkℓ � �Mℓk. On the diagonal, we thus have
Mkk � �Mkk; that is, Mkk � ibkk is purely imaginary. The general form of a skew-Hermitian matrix is

M skew-Hermitian ùñ M �

�
���

ib11 a12 � ib12 � � � a1n � ib1n
�a12 � ib12 ib22 � � � a2n � ib2n

� � � � � � � � � � � �
�a1n � ib1n �a2n � ib2n � � � ibnn

�
��
.

An example of a skew-Hermitian matrix is M �
�
� 2i 3� i 4
�3� i �i 12� 5i
�4 �12� 5i 0

�

. Notice that 0 � 0 � 0i

is still a purely imaginary number, as it has zero real part. ♢

The first crucial property of these matrices is their relation to the inner product.

Lemma 118. A real matrix is symmetric (and a complex matrix is Hermitian) if and only if, for all v, w P V ,
we have xMv,wy � xv,Mwy. A real matrix is skew-symmetric (and a complex matrix is skew-Hermitian) if
and only if, for all v, w P V , we have xMv,wy � �xv,Mwy.
Proof. I will handle the Hermitian case. All other cases are similar. If M is Hermitian we have

xMv,wy � xv,M�wy � xv,Mwy.
Conversely, if xMv,wy � xv,Mwy, observe that this implies xv,Mwy � xv,M�wy for all v, w. In particular,
xv, pM�M�qwy � 0 for all v, w. Applying this to w � ei and v � pM�M�qei we see that }pM�M�qei} � 0
for all i, so that Mei�M�ei � 0⃗, or rather Mei �M�ei. We have proved these two matrices have the same
columns, hence are the same matrix.

The second is that their eigenvalues are much more constrained than those of general matrices. The first
of these facts

Proposition 119. The eigenvalues of a symmetric or Hermitian matrix are all real (and its characteristic
polynomial splits into linear factors over R). The eigenvalues of a skew-symmetric or skew-Hermitian matrix
are all purely imaginary.

Proof. If M is a symmetric matrix (so an n� n matrix with real entries and MT �M) we may view it as a
complex matrix whose entries all happen to be real (that is, have no imaginary part); from this perspective
M is a Hermitian matrix. Similarly for skew-symmetric and skew-Hermitian matrices. It suffices to argue
the claim in the complex case. This is one place where the complex perspective is actually very valuable,
even if you only care about real matrices!

Suppose M is Hermitian and v P Cn is an eigenvector of M with eigenvalue λ. That is, Mv � λv.
Consider the quantity xMv, vy. (This is a good idea because of two reasons: “Mv” shows up in the definition
of eigenvalue, and the statement thatM is Hermitian means something about its relation to inner-products.)

We can compute this in two ways:

λ}v}2 � xλv, vy � xMv, vy � xv,Mvy � xv, λvy � λ}v}2,
where in the second step I used that M is Hermitian and in the last step I used that xv, cwy � cxv, wy. Thus
λ}v}2 � λ}v}2. Beacuse }v}2 � 0 (to say that v is an eigenvector means, in particular, it is nonzero), we
may divide it from this equation to see that λ � λ — that is, the eigenvalue is real.

A similar argument applies in the skew-Hermitian setting:

λ}v}2 � xλv, vy � xMv, vy � �xv,Mvy � �xv, λvy � �λ}v}2;
proceeding as above we see that λ � �λ, so that the eigenvalue λ is purely imaginary.

Remark 65. It follows that if M is skew-symmetric and invertible, it has no real eigenvectors whatsoever!
So it is certainly not diagonalizable over the reals. There are versions of diagonalization that do hold (but I
will not endeavor to prove them here). ♢
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The last class of operators we will introduce will be precisely those for which the ‘spectral theorem’
is applicable. Notice that the definition below subsumes all of unitary, Hermitian, and skew-Hermitian
operators.

Definition 63. We say that a linear map A : Cn Ñ Cn is normal if we have A�A � AA�. ♢

HW. Prove that if A is normal, then impAq � kerpAqK.
Notice that this contains both the statement of Proposition applied to either a Hermitian or skew-

Hermitian matrix, and the fact that for A unitary we have impAq � Cn and kerpAq � t⃗0u.

7.4 The spectral theorem

In this section, we will prove the following theorem, a good capstone to the course.

Theorem 120 (The spectral theorem over C). Suppose V is a finite-dimensional inner-product space over
C (say dimV � n), and A : V Ñ V is a linear map. Then the following three claims are equivalent:

(a) There exists an orthonormal basis β for V consisting of eigenvectors of A.

(b) There exists an orthonormal basis β for V so that rAsβÑβ is diagonal.

(c) There exists a unitary map U : Cn Ñ V so that U�1AU is diagonal.

(d) The linear map A is normal: A�A � AA�.

We say that A is unitarily diagonalizable if any of the first three conditions hold.

The equivalence (a) ðñ (b) ðñ (c) are straightforward: if β is such a basis, then U � Cβ is such
a unitary map; if we have such a unitary map U , take the basis to be β � pUe1, � � � , Uenq. The interesting
claim is that (a-c) are equivalent to (d). You will prove the claim (c) ùñ (d) on your homework; we will
focus on the harder direction (d) ùñ (a).

My first goal is to convince you that this is an interesting and useful result. My second goal is to prove
it over C. In the section after that, we will prove the corresponding result over R; this is what we’ll use in
Calculus.

7.4.1 Motivation for the spectral theorem

Before talking about orthogonal diagonalization, let me discuss how we intuit what diagonalization means

to begin with. Consider the map A : R2 Ñ R2 with associated matrix M �
�
3 �2
1 0



. You can compute

that this matrix has two eigenvalues — λ � 1, 2 — and has associated eigenspaces

E1 � span

�
2
1



, E2 � span

�
1
1



.

In the basis

β �
�
v1 �

�
2
1



, v2 �

�
1
1




,

we have that rM sβÑβ �
�
2 0
0 1



.

Visually, what this means is that if I draw the plane with a different set of coordinate axes and tickmarks
— one axis being spanpv1q, the other being spanpv2q, and the tickmarks representing multiples of v1 and v2.
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The fact that Av1 � 2v1 and Av2 � v2 tells us that in terms of these coordinate axes, we can see what
A does rather easily. For instance,

A

�
3
2



� Apv1 � v2q � 2v1 � v2 �

�
5
3



,

visualized as follows. Notice that the second vector has twice as much ‘red part’, and the same amount of
‘blue part’.
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This is very algebraically useful, but very hard to work with geometrically... I can very vaguely see that
the ‘red part’ of the dark-green vector got longer when I drew the light-green vector, but very vaguely. One
thing that’s even harder to visualize is what A does to shapes in the plane, as opposed to individual vectors..
As an example, let’s take this picture showing what A does to the unit circle; the unit circle is drawn in
light-blue, while its image under A is drawn in dark-blue.

I find it basically impossible to see what happens to the circle from the coordinate axis picture! Part of
the issue is that the coordinate system itself is hard to visualize.

On the other hand, consider the matrix M �
�
0 1
1 1



. Some of you showed on your homework that

this is diagonalizable, with eigenvalues ϕ � 1�?5
2 and �ϕ�1 � 1�?5

2 . I can compute the eigenspaces in a
particularly suggestive way: they’re given by

Eϕ � span

�
1{p

a
ϕ2 � 1q

ϕ{
a
ϕ2 � 1



, E�ϕ�1 �

��ϕ{a1� ϕ2
1{
a
1� ϕ2



.

I divide by those factors because the two eigenvectors listed here form an orthonormal basis: they are

perpendicular and have length 1! Approximate decimal values are v1 �
�
0.526
0.857



and v2 �

��0.857
0.526



.

Here is a picture of the corresponding coordinate axes.
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M stretches the red axis by a factor of ϕ � 1.62 — so it stretches it by a factor of around 60% — and
it scales the blue axis by a factor of �ϕ�1 � �0.62 (so it flips backwards, and shrinks by a factor of around

40%). For instance, here’s a picture visualizing M

�
1
1



�

�
1
2



in terms of this coordinate system.

See how the ‘red part’ of the vector gets longer, while the ‘blue part’ negates (it should also be smaller;
the fact that it’s not is a small visual error.)

Now let me draw what happens to the unit circle in this picture.
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I can actually see what’s going on in terms of the coordinate axes here, and I can predict the shape the
resulting circle is sent to! The point is that this coordinate system looks a lot like the standard coordinate
system — in fact, it’s obtained from the standard coordinate system by a rotation (a type of orthogonal
transformation) and a reflection (the counterclockwise-oriented circle is sent to a clockwise-oriented ellipse).
This is precisely what it means to be orthogonally diagonalizable: there is a coordinate sytem (related to
the usual one by an orthogonal transformation, which you may think of as a composite of rotations). We’ll
actually use this in the next part.

The unitary case is the same idea, but harder to visualize!

7.4.2 Proof of the spectral theorem over C
The proof will be given by induction on dimV . When dimV � 1, the only linear maps A : V Ñ V are
given by scaling; Apvq � cv for some c P C. Any unit vector defines an orthonormal basis for V consisting
of eigenvectors of A. So the interesting step is the inductive step.

The idea is as follows.

� Because A is a complex matrix, it has some eigenvector v1, which may be rescaled to be a unit vector.
Call W � spanpv1qK.

� Because A is normal, we can argue that A mapsW into itself, and therefore we may restrict its domain
and codomain to a map AW : W Ñ W . We then check that AW is normal and dimW � dimV � 1.
For convenience, say dimV � n.

� We can now apply the inductive hypothesis to find an orthonormal basis pv2, � � � , vnq for W consisting
of eigenvectors of AW . Notice that pv1, � � � , vnq defines an orthonormal basis for V . Further, because
v1 is an eigenvalue of A, and v2, � � � , vn are eigenvalues of AW (which is just the restriction of A to
W !) Therefore pv1, � � � , vnq is an orthonormal basis for V consisting of eigenvectors of A, as desired.

Let me give more details for each of these three steps.

Step 1. Because C is algebraically closed by the fundamental theorem of algebra, Corollary 100 guarantees
that there exists an eigenvector of A. Call this v. By definition of eigenvector, v � 0⃗, so by definiteness of
the inner-product }v} � 0. Set

v1 � 1

}v}v; we have }v1} �
���� 1

}v}v
���� �

���� 1

}v}
���� }v} � }v}

}v} � 1.
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Here I used that 1{}v} is a positive real number, so its absolute value is itself. Because v1 is a scalar multiple
of v, it is again an eigenvector of A. (This is teh step that will be most subtle when we move to the real
case: such an eigenvector is not so simply guaranteed.)

Step 2. Consider the subspace W � spanpv1qK. It follows from Midterm #6 and Proposition 105 that
have dimW � dimV � 1 (because v1 is nonzero, pv1q is a linearly independent set, hence forms a basis for
spanpv1q, so that dim spanpv1q � 1.

My first claim is that ApW q �W . That is, if w has the property that xw, v1y � 0, then xAw, v1y � 0 too.
(Notice that if w is orthogonal to v1, it is also orthogonal to cv1 for all c P C; so xw, v1y � 0 is equivalent to
the claim w P spanpv1qK.) This is the hardest part of the proof by a long shot. The first fact we need is a
relationship between the norms of Av and A�v.

Lemma 121. Let V be a finite-dimensional inner product space and A : V Ñ V a normal operator. Then
}Av} � }A�v} for all v P V .

Proof. If A is normal, then we have

}Av}2 � xAv,Avy � xv,A�Avy � xv,AA�vy
� xAA�v, vy � xA�v,A�vy � xA�v,A�vy � }A�v}2.

The reason this is relevant is a simple formula for computing the lengths in terms of an orthonormal
basis.

Lemma 122. Suppose pv1, � � � , vnq is an orthonormal basis for the inner product space V . Then

}a1v1 � � � � � anvn}2 � |a1|2 � � � � � |an|2.
Proof. We have

}a1v1 � � � � � anvn}2 � x
ņ

i�1

aivi,
ņ

j�1

ajvjy �
ņ

i�1

ņ

j�1

aiajxvi, vjy

�
ņ

i�1

aiai �
ņ

i�1

|ai|2,

as desired.

We can combine these to prove the crucial lemma.

Lemma 123. Let A : V Ñ V be a normal operator, and let v1 P V be an eigenvector of A. Then xw, v1y � 0
implies xAw, v1y � 0.

Proof. Let me try to give some conceptual insight here into what normality buys us. It’s easiest to describe
this in terms of matrices, so extend v1 to an orthonormal basis pv1, � � � , vnq for V . In terms of this orthonormal
basis, because Av1 � a11v1 for some scalar a11, we have

rAsβÑβ �

�
���
a11 a12 � � � a1n
0 a22 � � � a2n
� � � � � � � � � � � �
0 an2 � � � ann

�
��
.

Notice that the entries are aij � xAvi, vjy. In particular,

aji � xAvj , viy � xvi, Avjy � xA�vi, vjy,
so that

rA�sβÑβ � rAs�βÑβ �

�
���
a11 0 � � � 0
a12 a22 � � � an2
� � � � � � � � � � � �
a1n a2n � � � ann

�
��
.
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The key point is that the previous two lemmas show us that because A is normal, the norm of each
row is the same as the norm of each column. More precisely, Avj � a1jv1 � � � � � anjvn, whereas A

�vj �
aj1v1 � � � � � ajnvn. It follows that

|a1j |2 � � � � � |anj |2 � }Avj}2 � }A�vj}2 � |aj1|2 � � � � � |ajn|2 � |aj1|2 � � � � � |ajn|2.

Applying this to the first column we see that

|a11|2 � |a11|2 � |a12|2 � � � � � |a1n|2 ùñ |a12|2 � � � � � |a1n|2 � 0.

It follows that a12 � � � � � a1n � 0, and

rAsβÑβ �

�
���
a11 0 � � � 0
0 a22 � � � a2n
� � � � � � � � � � � �
0 an2 � � � ann

�
��
.

It follows that for all j ¡ 1, we have

xAvj , v1y � xa2jv2 � � � � � anjvn, v1y �
ņ

i�2

aijxvi, v1y � 0.

Therefore, if w P spanpv1qK — so that w � b2v2 � � � � � bnvn — we have

xAw, v1y � x
ņ

j�2

bjAvj , v1y �
ņ

j�2

bjxAvj , v1y � 0,

as desired.

Recall that we are writingW � spanpv1qK. We have proved that A restricts to a linear map AW :W ÑW
(as if w PW , then Aw PW as well). We also verified that dimW � dimV �1. Notice that AW is still normal.
This is easiest to see at the level of matrices. In the orthonormal basis pv1, � � � , vnq, writing β1 � pv2, � � � , vnq,
we saw above that rAsβÑβ takes the block-matrix form

rAsβÑβ �
�
a11 0
0 rAW sβ1Ñβ1



,

so that

rA�AsβÑβ � rAsβÑβ �
�
a11a11 0

0 rA�WAW sβ1Ñβ1



, while rAA�sβÑβ �

�
a11a11 0

0 rAWA�W sβ1Ñβ1



.

Because A�A � AA�, it follows that A�WAW � AWA
�
W as well.

Step 3. We have now establishes that AW : W Ñ W is a normal operator on an inner product space
of dimension dimW � dimV � 1. By inductive hypothesis, there exists an orthonormal basis pv2, � � � , vnq
for W which consists of eigenvectors of W . Because spanpv1q and spanpv1qK are complementary subspaces
— and all of these vectors are perpendicular to the length-1 vector v1 — it follows that pv1, � � � , vnq is an
orthonormal basis for V consisting of eigenvectors. This completes the proof.

7.4.3 The real case

The real spectral theorem works for a smaller class of operators, but they’re exactly the operators that show
up in calculus when trying to understand second derivatives. The first part of the argument is easier

Theorem 124 (The spectral theorem over R). Suppose V is a finite-dimensional inner-product space over
R (say dimV � n), and A : V Ñ V is a linear map. Then the following three claims are equivalent:
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(a) There exists an orthonormal basis β for V consisting of eigenvectors of A.

(b) There exists an orthonormal basis β for V so that rAsβÑβ is diagonal.

(c) There exists an orthogonal transformation O : Rn Ñ V so that O�1AO is diagonal.

(d) The linear map A is symmetric: AT � A.

The equivalence (a) ðñ (b) ðñ (c) is exactly as above, and the implication (b) ùñ (d) is similar
to (but simpler than) the complex case. Again, I’ll focus on (d) ùñ (a).

Again, I’ll prove this by induction on dimV , and the 1 � 1 case is tautological (every 1 � 1 matrix is
symmetric and diagonal). Our steps are the same as before:

� Prove that there exists an eigenvector of A. Rescaling it, write v1 for a length-1 eigenvector of A.

� Let W � spanpv1qK. Prove that ApW q �W , so restricting domain and codomain defines a linear map
AW :W ÑW . Argue that AW remains symmetric.

� Choosing an orthonormal basis pv2, � � � , vnq for W consisting of eigenvectors of AW , we find that
pv1, � � � , vnq is an orthonormal basis of V consisting of eigenvectors, as desired.

This time, the first step is harder, and the second step is easier. In fact, for the first step, we have little
choice but to think about complex operators.

Lemma 125. Let A : V Ñ V be a symmetric map on a finite-dimensional real inner product space, meaning
xAv,wy � xv,Awy for all v, w P V . Then the characteristic polynomial pApλq has only real roots, and
therefore splits into linear factors over the real numbers.

Proof. Choose an orthonormal basis β � pv1, � � � , vnq for V . With respect to this basis, rAsβÑβ is a symmetric
matrix: as discussed earlier, the entries aij are xAvi, vjy, and therefore

aji � xAvj , viy � xvj , Aviy � xAvi, vjy � aij ,

in the second-to-last step using that real inner products are symmetric.

We showed in Proposition 119 that a symmetric matrix has only real eigenvalues, which is the stated
claim. Notice that in that proof we had to think about complex operators!

Because pApλq has only real roots, it has some real root, and hence A : V Ñ V has some eigenvalue λ —
that is, there exists λ P R so that Eλ is non-trivial. Then any nonzero vector in Eλ is an eigenvector of A.
Normalizing it to a length-1 vector, this finishes step one.

For the next step, we have an easier version of the lemma about normal operators:

Lemma 126. Let A : V Ñ V be a symmetric map on a finite-dimensional real inner product space. If
v1 P V is an eigenvector, and w P V is orthogonal to v1, then Aw is as well.

Proof. We have

xAw, v1y � xw,Av1y � xw, λv1y � λxw, v1y � 0.

The rest of the proof now goes through as before.
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7.5 Quadratic functions on Rn and the spectral theorem

I want to conclude with one application that appears, at first glance, to be outside the realm of linear algebra:
quadratic functions!

Definition 64. A quadratic function on Rn is a function of the form

qpx1, � � � , xnq �
ņ

i�1

aiix
2
i �

ņ

i�1

i�1̧

j�1

aijxixj .

♢

That is, the general form of a quadratic function of two real variables is ax2�bxy�cy2, while the general
form of a quadratic function of three real variables is

qpx, y, zq � ax2 � by2 � cz2 � dxy � exz � fyz,

where a, b, c, d, e, f P R are fixed real numbers (here, e does not denote the exponential constant, but rather
an arbitrary real number).

Our big goal is as follows. These functions can be hard to understand in general; for instance, can
you visualize what qpx, yq � 3x2 � 4xy � 3y2 ‘looks like’? For instance, can you visualize what the shape
3x2 � 4xy � 3y2 � 1 should look like? (I can’t immediately.) But the actual picture is rather simple:

It’s an ellipse with major axis the line y � �x and minor axis the line y � x. If I rotate it by π{4 radians
counter-clockwise, it becomes a standard ellipse, stretched along the x- and y-axes.

But how can I see this from looking at the function itself, without drawing a graph? This turns out to
be closely related to our theory of orthogonal diagonalization!

The first observation is that these quadratic functions can be encoded in terms of bilinear functions,
inspired by the fact that xy is a bilinear function of x and y. Before explaining this equivalence, let me recall
the definition of symmetric bilinear functions, and then give a useful way to think about these in terms of
matrices.

Definition 65. If V is a real vector space, an symmetric bilinear function on V is a function B : V � V Ñ R
so that Bpv, wq is linear in each coordinate separately and so that Bpv, wq � Bpw, vq. ♢

Lemma 127. Let B be a symmetric bilinear function on Rn. Then there exists a unique n� n symmetric
matrix M for which

Bpv, wq � xMv,wy � wTMv.
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Proof. First, observe that for a symmetric matrix M , the expression Bpv, wq � xMv,wy does indeed define
a symmetric bilinear form. It is bilinear because M is linear and the real inner product is bilinear; it is
symmetric because

Bpw, vq � xMw, vy � xv,Mwy � xMv,wy � Bpv, wq,
the second-to-last equality by the assumption that M is symmetric.

Explicitly, suppose

M �

�
���
b11 b12 � � � b1n
b21 b22 � � � b2n
� � � � � � � � � � � �
bn1 bn2 � � � bnn

�
��
, and we writev �

�
�x1
� � �
xn

�

� ņ

i�1

xiei and w �
�
�y1
� � �
yn

�

� ņ

j�1

yjej .

Here, because M is symmetric, bij � bji for all i, j. Then the associated bilinear form is

Bpv, wq � xMv,wy �
C�
�b11x1 � � � � � b1nxn

� � �
bn1x1 � � � � � bnnxn

�

,

�
�y1
� � �
yn

�

G

� pb11x1 � � � � � b1nxnqy1 � � � � � pbn1x1 � � � � � bnnxnqyn

�
ņ

i�1

ņ

j�1

bijxiyj .

Remembering that bij � bji, when i � j we can collect the expressions xiyj and xjyi into the same term;
writing this as a sum over the terms where i � j and the terms where i   j, we thus have

Bpv, wq �
ņ

i�1

biixiyi �
¸

1¤i j¤n
bijpxiyj � xjyiq.

Showing that every bilinear form arises in this way, from a unique matrix M , is a bit like the proof that
the determinant must take the form it does. Suppose B is an arbitrary bilinear form. Then Then

Bpv, wq � B

�
ņ

i�1

xiei,
ņ

j�1

yjej

�
�

ņ

i�1

ņ

j�1

xiyjBpei, ejq.

Because Bpei, ejq � Bpej , eiq, we may rewrite this as

ņ

i�1

Bpei, eiqxiyi �
¸

1¤i j¤n
Bpei, ejqpxiyj � xjyiq.

By comparing these two expressions, we see that there is a unique symmetric matrixM so that Bpv, wq �
xMv,wy: set the entries of M to have bij � Bpei, ejq.

Now that we’ve compared the study of symmetric bilinear forms on Rn and symmetric n � n matrices,
let’s bring quadratic functions into the mix.

Lemma 128. Let B : Rn � Rn Ñ R be a symmetric bilinear function, meaning Bpv, wq is linear in each
input and Bpv, wq � Bpw, vq. Then the function Bpv, vq is a quadratic function, and in fact, the assignment
SymBilinearpRnq Ñ QuadraticpRnq is a bijection.

Proof. Suppose Bpv, wq � xMv,wy, where M �
�
�b11 � � � b1n
� � � � � � � � �
b1n � � � bnn

�

 is a symmetric matrix. Writing v �

�
�x1
� � �
xn

�

, by the formula discussed above we have

Bpv, vq �
ņ

i�1

biix
2
i �

¸
1¤i j¤n

2bijxixj .
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This is exactly the form of a quadratic function defined above, where aii � bii and aij � 2bij .
If I have a quadratic function

qpx1, � � � , xnq �
ņ

i�1

aiix
2
i �

¸
1¤i j¤n

aijxixj ,

then it arises as xMv, vy where M is the symmetric matrix

M �

�
���

a11 a12{2 � � � a1n{2
a12{2 a22 � � � a2n{2
� � � � � � � � � � � �
a1n{2 a2n{2 � � � ann

�
��
.

In the discussion before getting into the linear algebra, I talked about ‘rotating the ellipse π{4 radians
clockwise’. In terms of the expression qpvq � 1, the rotated ellipse corresponds to the equation qpAvq � 1,
where A is the linear map which rotates the plane π{4 radians counter-clockwise. This suggests that the
function sending v to qpAvq is worth naming and studying.

Definition 66. Suppose A : Rn Ñ Rn is a linear map. If q : Rn Ñ R is a quadratic function, then the pullback
along A is the functionA�q : Rn Ñ R defined by pA�qqpvq � qpAvq.

Similarly, if B : Rn � Rn Ñ R is a symmetric bilinear function, its pullback along A is pA�Bqpv, wq �
BpAv,Awq. ♢

I’ve really stated the same definition twice, as if qpvq � Bpv, vq, then pA�qqpvq � qpAvq � BpAv,Avq �
pA�Bqpv, vq. Note that the pulled-back quadratic function is still quadratic. I’ll record this statement as a
lemma, but the fact for bilinear forms is immediate from the fact that A is linear (and this implies the fact
for quadratic functions by the discussion above).

Lemma 129. If q is a quadratic function on Rn (or B is a symmetric bilinear function), then the pullback
A�q is again quadratic (and A�B again symmetric bilinear).

More important is that we can explicitly compute the matrix associated to A�q.

Lemma 130. Suppose q is a quadratic function on Rn with associated symmetric matrix M . Then A�q has
associated symmetric matrix ATMA.

Proof. Write qpvq � xMv, vy. Then

pA�qqpvq � qpAvq � xMAv,Avy � pAvqT pMAvq � vTATMAv � xpATMAqv, vy.

This is almost exactly the expression we see when we write a linear map in terms of a different basis!
The only difference is the appearance of a transpose instead of an inverse; usually the expression would be
A�1MA.

However, for orthogonal transformations, we have AT � A�1. This is the content of Proposition
115(a) = (c) in the real case: ATA � I, and as A is a square matrix, Our theory of orthogonal diagonalization
will let us transform any quadratic function into an easily-visualizable one.

Theorem 131. Let q : Rn Ñ R be a quadratic function with associated symmetric matrix M . Then there
exists an orthonormal basis β � pv1, � � � , vnq of Rn for which

qpa1v1 � � � � � anvnq � λ1a
2
1 � � � � � λna2n.

That is, there exists an orthogonal transformation O : Rn Ñ Rn so that pO�qqpx1, � � � , xnq � λ1x
2
1 � � � � �

λnx
2
n. (Here, O is the transformation Cβ, whose associated matrix has columns the vectors v1, � � � , vn.) The

scalars λ1, � � � , λn are the eigenvalues of the matrix M .
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Proof. By the spectral theorem, there exists an orthogonal matrix O for which

O�1MO �

�
���
λ1 0 � � � 0
0 λ2 � � � 0
� � � � � � � � � � � �
0 0 � � � λn

�
��
 is diagonal.

The matrix O�1MO � rM sβÑβ is the matrix M written in the basis β � pOe1, � � � , Oenq, as this reads

ϕstdÑβrM sstdÑstdϕβÑstd, where ϕβÑstd � C�1
stdCβ � Cβ .

In particular, MpOeiq � λiOei, so the diagonal entries are the eigenvalues of M .

Because O�1 � OT , we see that the matrix associated to O�q is OTMO � O�1MO �
�
�λ1 � � � 0
� � � � � � � � �
0 � � � λn

�

.

Thus

pO�qqpx1, � � � , xnq � λ1x
2
1 � � � � � λnx2n.

Often the eigenvalues are arranged so that λ1 ¡ � � � ¡ λn.

If you think of O as being a composite of rotations (and maybe one reflection, if its determinant is
negative), the picture is that we can make q into a standard quadratic function λ1x

2
1�� � ��λnx2n by rotating

the coordinate axes appropriately. In particular, we can understand the set of vectors qpvq � 1 very easily
and visually.

Remark 66. If you allow non-orthogonal transformations so that I can stretch the axes in addition to
rotating them, you can get every quadratic function into an even simpler form. Suppose λ1, � � � , λk ¡ 0,
while λk�1, � � � , λk�ℓ � 0, and λk�ℓ�1, � � � , λn   0. We say that the signature of the quadratic function is
pn�, n0, n�q � pk, ℓ, n� k � ℓq; these are the number of positive, zero, and negative eigenvalues. Then if

qpx1, � � � , xnq � λ1x
2
1 � � � � � λnx2n,

then if I write

ai �

$'&
'%
1{?λi λi ¡ 0

1 λi � 0

1{?�λi λi   0

,

I find that

qpa1x1, � � � , anxnq � x21 � � � � � x2k � x2k�ℓ�1 � � � � � x2n.
That is, applying the appropriate transformation A, the function A�q squares the coordinates, adds some,
and subtracts some.

If q and q1 are quadratic functions, there exists an invertible transformation A : Rn Ñ Rn so that A�q � q1

if and only if the signatures pn�, n0, n�q of q and q1 agree. This is called Sylvester’s inertia theorem, for
some reason or another. ♢

7.5.1 The 2� 2 case

Consider a function qpx, yq � ax2� bxy� cy2, where not all of the coefficients are zero (as then the function

would simply be the zero function); the associated symmetric matrix is M �
�
a b{2
b{2 c



. I want to

understand what this function ‘looks like’, and a good first step at that is understanding its level curves
Cq,k � tpx, yq | qpx, yq � ku as k varies.
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I claim that there are four possibilities for the shape of these sets.

I The quadratic function could be ‘elliptic’, in which case the sets Cq,k are either empty, the origin, or
an ellipse centered at the origin. The function q is either non-negative or non-positive; this case splits
into two sub-cases, depending on whether q ¥ 0 or q ¤ 0.

(a) If q ¥ 0, then Cq,k is empty for k   0, while Cq,0 � tp0, 0qu, and Cq,k is an ellipse for k ¡ 0.
Think qpx, yq � x2 � y2.

(b) If q ¤ 0, then Cq,k is an ellipse for k   0, while Cq,0 � tp0, 0qu, and Cq,k is empty for k ¡ 0.
Think qpx, yq � �x2 � y2.

II The quadratic function could be ‘hyperbolic’, in which case Cq,k is a hyperbola for all k � 0. The set
Cq,0 is the union of two lines through the origin. Think qpx, yq � x2 � y2.

III The quadratic form could be ‘degenerate’, in which case the sets Cq,k is always either a line, a union
of two parallel lines, or empty. Think qpx, yq � x2. There x2 � 0 is the vertical axis and x2 � 1 is the
union of two vertical lines.

In case I(a), the origin is the minimum of the function: if px, yq � p0, 0q, then qpx, yq ¡ 0. In case I(b),
the origin is the maximum of the function: if px, yq � p0, 0q then qpx, yq   0. In case II the origin is neither
a maximum nor a minimum; q is positive in some places and negative in others. (In the last case, the origin
is again either a local maximum or a local minimum depending on the sign of q, but it is a ‘degenerate local
max/min’: there are other points nearby with the same value (a whole line of them).

The punchline is that we can use linear algebra to determine immediately which case we’re in! (The
ideas here are certainly older than linear algebra, but I’m very fond of the way it allows us to package them
together.) This statement is often used in multivariable calculus classes to state a ‘second derivative test’
for functions of two real variables.

Theorem 132. The quadratic function qpx, yq � ax2�bxy�cy2 is elliptic if and only if b2   4ac, hyperbolic
if and only if b2 ¡ 4ac, and degenerate if and only if b2 � 4ac.

Suppose we are in the first case, and qpx, yq � ax2 � bxy � cy2 is elliptic. Then a and c have the same
nonzero sign, and a, c ¡ 0 if and only if q ¥ 0, while a, c   0 if and only if q ¤ 0.
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Proof. By the discussion in the preceding section, there is an orthogonal matrix O for which pO�qqpx, yq �
λ1x

2 � λ2y2; we have

CO�q,k � tpx, yq | qpOpx, yqq � ku � tO�1px, yq | qpx, yq � ku � O�1Cq,k.

The transformation Opx, yq is either a rotation by some angle or a reflection (and in fact one can assume O
is a rotation, though I won’t discuss this in detail), and any rotation or reflection of an ellipse, hyperbola,
line, or union of lines is another shape of the same type.

So first let’s discuss the case λ1x
2 � λ2y

2. If both λ1, λ2 are positive, then λ1x
2 � λ2y

2 ¥ 0, and it is
equal to zero if and only if px, yq � p0, 0q; if k ¡ 0 the set λ1x

2� λ2y2 � k is precisely an ellipse, a stretched
version of the standard circle x2 � y2 � 1, and we are in case I(a). One may write this ellipse as the set of
px, yq for which paλ1{kxq2 � p

a
λ2{kyq2 � 1.

If λ1, λ2   0, then λ1x
2 � λ2y2 ¤ 0, with equality if and only if px, yq � p0, 0q; in this case for k   0 the

set λ1x
2 � λ2y2 � k is again an ellipse, a stretched version of �x2 � y2 � �1 (the standard unit circle), and

we are in case I(b). One may write this ellipse as the set of px, yq for which pa�λ1{kxq2�pa�λ2{kyq2 � 1.
If λ1 ¡ 0 and λ2   0 have opposite sign, then λ1x

2 � λ2y
2 � 0 defines a union of lines; this can be

rewritten as p?λ1xq2 � p
?�λ2yq2, which gives as solutions the two lines y � �a�λ1{λ2x. For k � 0, it is

instead a hyperbola, stretched from the standard hyperbola x2 � y2 � 1:

p
a
λ1{kxq2 � p

a
�λ2{kyq2 � 1.

There we are in case II.
Finally, if one of the λ’s is zero — say, λ2 � 0 — then the equations are λ1x

2 � k. When k � 0 this is a
single line, when k is nonzero and it has the same sign as λ1 this is the two lines x � �ak{λ1, when they
have opposite sign it is empty. This is case III.

(It is not possible for λ1 � λ2 � 0, as this would imply qpx, yq � 0, and I assumed the function is not
zero.)

So the cases are determined by the eigenvalues λ1, λ2 of the matrix M �
�
a b{2
b{2 c



, and in particular

what their signs are. Here’s the fun part. The determinant of a matrix is the product of its eigenvalues
(counted with multiplicity, so if M has characteristic polynomial pλ� 2q2, its determinant is 4); so here

ac� b2{4 � detM � λ1λ2, or rephrased 4ac� b2 � 4λ1λ2.

If one of the eigenvalues is zero — the degenerate case — then detM � λ1λ2 � 0. This means 4ac� b2 � 0,
or 4ac � b2.

If the eigenvalues have opposite sign (the hyperbolic case), then detM � λ1λ2   0, so that 4ac� b2   0,
or b2 ¡ 4ac. Finally, if the eigenvalues have the same sign (positive or negative!) we have detM � λ1λ2 ¡ 0.
This gives us case (I).

As for identifying between cases I(a) and I(b), notice that in case I(a) qpx, yq ¡ 0 away from the origin
and in case I(b) qpx, yq   0 away from the origin. As we have a � qp1, 0q and c � qp0, 1q, the signs of either
of these determine which of the two sub-cases we are in.

This can be rephrased in an amusing but useless way in terms of the characteristic polynomial.

Corollary 133. The point p0, 0q is an isolated local maximum of the function qpx, yq � ax2 � bxy � cy2 if

and only if M �
�
a b{2
b{2 c



has characteristic polynomial pM ptq � t2 � dt� e where d, e ¡ 0.

Proof. The only case of the four in which p0, 0q is an isolated local maximum is case I(b), where λ1, λ2   0.
We have

pM ptq � pλ� λ1qpλ� λ2q � λ2 � pλ1 � λ2qλ� λ1λ2.
The quantity e � λ1λ2 is the product of the eigenvalues — the determinant of that matrix — and

d � �λ1�λ2 is the negative of their sum. If e � λ1λ2 ¡ 0, then both λ1 and λ2 have the same sign; if d ¡ 0
then thaht sign must be negative. So under the given assumptiom, both eigenvalues are negative — so we
are in case I(b) above.
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Remark 67. Similar logic as the preceding discussion implies that if qpx⃗q is a quadratic functon with associated
symmetric matrix M , the origin 0⃗ is an isolated local maximum of q if and only if M has all negative
eigenvalues (and 0⃗ is an isolated local minimum if and only if M has all positive eigenvalues).

I believe it is the case that all of the values λ1, � � � , λn are negative if and only if the coefficients of pM ptq
are all positive; equivalently, that

λ1, � � � , λn   0 ðñ for all k,
¸

1¤i1 ��� ik¤n

n¹
j�1

λij   0.

The expression on the right is called the k’th symmetric polynomial. For n � 2, these are λ1λ2 and λ1 � λ2.
For n � 3, they are

λ1λ2λ3, λ1λ2 � λ1λ3 � λ2λ3, λ1 � λ2 � λ3.
This would imply that 0⃗ is an isolated local minimum of q if and only if pM ptq has all positive coefficients.

An amusing, but computationally useless, criterion. (In real practice, you would probably just determine
the eigenvalues in a more computationally stable way.) ♢

See you next term, where we’ll actually use this to discuss the second-derivative test in multivariable
calculus.

Remark 68. One can understand the principal axes of the ellipse, too, by determining the precise eigenspaces

of the associated matrix M �
�
a b{2
b{2 c



. For the example opening this section, M �

�
3 2
2 3



. The minor

axis is parallel to

�
1
1



, while the major axis is parallel to

�
1
�1



. With respect to this basis the formula for

the ellipse is 5y21 � y22 � 1, or p?5y1q2 � y22 � 1. There is a stretch factor of 1{?5 in the direction of the
minor axis. ♢
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