
Curio 2: Infinite-dimensional vector spaces and Zorn’s lemma

mike miller eismeier

Preamble

When submitting solutions to this (or any other) Curio, please write solutions to the things labeledProblem.
below. Here, there are three Problems, and the first has four parts. When actually working through it, you
should read and attempt to understand all linked references and all discussion.

Please take your time and be careful in writing up your solutions, because the Curio submission is a not
insubstantial portion of your final grade.

I advise reading each Curio and maybe trying to think through the problems, but only submitting formally
written solutions halfway into the term.

This Curio is highly dependent on the work from Curio 1 (which you may take for granted while working
on this, but should at least understand). Later curios will be more independent. The first parts of this are
expository; your work starts on the last two pages the document.

Curio 2

In the notes and in class, we’ve developed the theory of finite-dimensional vector spaces. For a number of
foundational lemmas, I used things which ultimately relied on an inductive argument (any time I referred
to the notion of “redundancy”, I ordered our vectors into a finite list).

Most of these make sense for infinite-dimensional vector spaces, except for the very final thing we covered
in Chapter 4.7.

Definition 1. Write MapfinpS,Fq for the set of functions a : S Ñ F so that apvsq is nonzero for only finitely
many s. If S � V is a set of vectors in V , this guarantees the expression¸

vsPS

apvsqvs P V

makes sense, because only finitely many terms are nonzero.
In this case, we say a linear relation between the elements of S is a function a P MapfinpS,Fq for which¸

vsPS

apvsqvs � 0⃗.

The trivial linear relation is the function apvsq � 0 for all vs P S. We say the set S is linearly independent
if the only linear relation between the elements of S is the trivial linear relation.

The notion of ‘basis’ then means exactly what it has before: a linearly independent spanning set. (The
equivalent statement is now “S is a basis if and only if, for all v P V , there exists a unique a P MapfinpS,Fq
so that v �

°
vsPS

apvsqvs; that is, every element can be written as a finite linear combination of elements
of S in a unique way.)

To make any progress thinking about these I need a way to carry out the iterative arguments I had in
mind before, but with infinite sets. One way to do this is in terms of an extension to infinite sets called
“transfinite induction”. This is not my preferred method; I think that most such arguments are more clearly
phrased in terms of “Zorn’s lemma”.
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Partially ordered sets

Zorn’s lemma is a statement about partially ordered sets, so we need to define those.

Definition 2. Given a set P , a partial order ¤ on P is a rule which, given a pair px, yq P P � P , asserts
whether x ¤ y or x ¦ y. We demand that this rule satisfies the following three properties:

� Reflexivity. We have x ¤ x for all x P S.

� Antisymmetry. If x ¤ y and y ¤ x, then x � y.

� Transitivity. If x ¤ y and y ¤ z, then x ¤ z.

A partially ordered set is a set P equipped with a partial order ¤.

Formally, ¤ can be understood as a subset Γ¤ � P �P , of pairs px, yq for which x ¤ y. I will not think in
terms of this formalism. One important thing to note is that not all elements are comparable: you can have
x, y P P for which neither x ¤ y nor y ¤ x is true. Before using this notion, it’s worth giving an example,
to show how different it is from the idea you’re used to.

Example 1. Let X be any set, and let PpXq be the power set of X, with the order S ¤ T if S � T . Then
S � S, so this is reflexive; if S � T and T � S then T � S, so this is antisymmetric; and if S � T and
T � U then S � U , so it is a transitive relation.

However, for instance, neither t1u nor t2, 3u are contained in the other, so these are incomparable elements
of Ppt1, 2, 3uq.
Definition 3. A maximum of a partially ordered set pS,¤q is an element x P S so that for all y P S, we
have y ¤ x.

A maximal element of a partially ordered set pS,¤q is an element x so that for all y comparable to
x, we have y ¤ x.

The restriction in the second part means that we only look at those y for which at least one of y ¤ x or
x ¤ y is true. An equivalent phrasing is “x is maximal if there does not exist a y � x for which x ¤ y”:
there are no larger elements, even if there are other incomparable elements.

The definitions of minimums and minimal elements are similar.

Example 2. Write P�pNq for the set of proper subsets of N, equipped with the relation S ¤ T if S � T
(the containment relation, where S � T means x P S implies x P T ; it is possible here that S � T ). Then
P�pNq has a minimum, ∅; the empty set is contained in every other set!

The set t0, 2, 3, 4, 5, � � � u � t1uc � N is a proper subset of N. There is only one larger subset of N, which is
N itself — not a proper subset, so not an element of P�pNq. Therefore, t1uc is a maximal element of P�pNq.
However, it is not a maximum, because it does not contain eg t1u — there is an element incomparable to
it.

Example 3. Not every partially ordered set has a maximal element. For instance, pN,¤q with the usual
ordering has no maximal element: given n, the element n� 1 is always larger.

Example 4. Write SubSpV q for the set of subspaces of a vector space V which contain a given subset S � V ,
and equip it with the relation W ¤ U if W � U . Our first theorem about spans asserts that spanpSq is the
minimum in this partially ordered set.

We need to give two more definitions for the statement of Zorn’s lemma.

Definition 4. Given a partially ordered set pP,¤q, a chain is a subset C � P for which all elements are
comparable.

Example 5. For instance,

C �
 
t1u, t1, 2u, t1, 2, 3u, t1, 2, 3, 4u, � � �

(
� PpNq

is a chain. Each pair of sets t1, � � � , nu and t1, � � � ,mu has one contained in the other (which it is depends
on whether m ¤ n or n ¤ m). Chains don’t have to be countable sequences of elements like this, in general,
but that is how people often imagine them: “increasing chains” instead of “increasing sequences”.

Definition 5. Given a subset S � P , an upper bound for S is an element x P P so that, for all s P S, we
have s ¤ x. (In particular, x is comparable to every element of S.)
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Zorn’s lemma

We can finally state Zorn’s lemma.

Lemma 1 (Zorn’s lemma). Suppose pP,¤q is a partially ordered set with the following property: for every
chain C � P , there exists an element xC P P which is an upper bound for C.

Then there exists a maximal element x P P .

It turns out that this statement is completely equivalent to the axiom of choice. I will give the proofs
here to show you a test case of how one might use each of Zorn’s lemma and the axiom of choice.

Lemma 2. The axiom of choice follows from Zorn’s lemma.

Proof. Suppose we have a set I parameterizing a family of sets Xi. I claim there exists a function f : I Ñ
YIXi so that fpiq P Xi for all i, and thus that there exists an element of

±
iPI Xi. This is called a “choice

function for I”.
To prove this, consider the partially ordered set

P � tpA, fq | A � I and f : AÑ YiPIXi is a choice function for Au.

These might be called “partial choice functions”, where I have a choice function on a subset A � I. The
order relation has pA, fq ¤ pA1, f 1q if A � A1 and f 1paq � fpaq for all a P A.

I want to apply Zorn’s lemma to P . First, I will show that any chain in P has an upper bound. Suppose we
have a chain pAc, fcq P P labeled by c P C. Consider the set A � YcPCAc with the function f : AÑ YiPIXi

defined by
fpaq � fcpaq if a P Ac.

Because this is a chain, whenever a P Ac and a P Ac1 , one of pAc, fcq or pAc1 , fc1q is less than or equal to the
other, meaning that (eg) fc1pxq � fcpxq for all x P Ac. Because our a lies in both of these sets, we see that
fcpaq � fc1paq, so that the function defined above is unambiguous (did not depend on a choice of c for which
a P Ac).

Thus pA, fq is defined, and Ac � A for all c P C and whenever a P Ac, we have fpaq � fcpaq. Thus
pAc, fcq ¤ pA, fq for all c P C, so that this is indeed an upper bound for the chain.

Now Zorn’s lemma implies that there exists a maximal pA, fq. I claim that A � I. For if pA, fq P P and
A � I, it is not maximal: I can choose an element i P I for which i R A, and choose some xi P Xi. Then I
define pA1, f 1q for which A1 � AY tiu and

f 1pjq �

#
fpjq j P A

xi j � i
.

This has A � A1 and the restriction of f 1 to A is f , so that pA, fq ¤ pA1, f 1q and pA1, f 1q � pA, fq, so indeed
pA, fq is not maximal.

Thus the maximal pA, fq has A � I, in which case pI, fq P P means precisely that f is a choice function
for I, as desired.

(Do you see how this feels a little bit like a generalized induction? The inductive step was where we said
“the maximal element has to be everything”, because I could just add one more element. But there’s also
one more step, in showing that every chain has an upper bound.)

Lemma 3. Zorn’s lemma follows from the axiom of choice.

This is actually substantially harder, and is not worth going into for my purposes. If you want to read
the proof, I recommend this handout. Let me point out an application I like (it tells me that I can compare
the sizes of any two sets).

Corollary 4. Assuming the axiom of choice, for any two sets X and Y , there exists either an injection
f : X Ñ Y or an injection g : Y Ñ X. Thus either |X| ¤ |Y | or |Y | ¤ |X|.
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Proof. Consider the set P � tpA, fq | A � X and f : A Ñ Y injectiveu, with the order pA, fq ¤ pA1, f 1q
when A � A1 and f 1paq � fpaq for all a P A.

If pAc, fcq (labeled by c P C) is a chain, then the same argument as above verifies that pA, fq � pYAc,Yfcq
is well-defined. Notice that f is still injective: if x, y P A, then x P Ac and y P Ac1 for some c, c1; because C
is a chain, one of Ac � Ac1 or Ac1 � Ac (say the latter for convenience), so that x, y P Ac; then because fc is
injective we see that fpxq � fpyq ùñ fcpxq � fcpyq ùñ x � y. So f is injective, and pA, fq is an upper
bound for this chain.

Zorn’s lemma implies that there is a maximal element in the set P . I claim that if either A � X or f is
surjective. To prove this, I’ll show that if A � X is proper and f is not surjective, pA, fq is not maximal.
To see this, pick some y R fpAq, and pick some x R A; then define pA1, f 1q to be A1 � AY txu and

f 1pa1q �

#
fpa1q a1 P A

y a1 � x
.

This new function is injective, defined on a larger domain, and restricts to f on the original domain. Thus
pA, fq is not maximal in P .

Thus for our maximal pA, fq we either have A � X — in which case f : X Ñ Y is an injection, as desired
— or pA, fq has f : A Ñ Y surjective (and f injective because pA, fq P P requires that f is injective). In
the latter case, f : A Ñ Y is a bijection, and therefore has an inverse function f�1 : Y Ñ A. Composing
this with the inclusion i : AÑ X, we obtain an injective map g : Y Ñ X, as desired.

Basis restriction and existence

Now you’re mostly on your own. I’m going to tell you the restatements of some facts from linear algebra,
adapted to the infinite-dimensional context. For some, I will tell you what set to apply Zorn’s lemma on;
for others, I will ask you to figure out the whole strategy.

Lemma 5 (Basis restriction lemma). Let V be a vector space. If S � V spans V , then there is a subset
S1 � S which is a basis for V .

1. Prove the previous lemma by applying Zorn’s lemma to the set P � tS1 � S | S1 is linearly independentu,
with the containment relation.

Proposition 6. Let V be an arbitrary vector space. There exists a basis for V .

2. Prove the previous proposition. (All you really have to do here is provide me a spanning set for V .)

This statement is in fact equivalent to the axiom of choice (though I will not prove it). The bases you
produce are completely inexplicit; you will never get a handle on them.

Corollary 7. There exists a basis for R as a vector space over Q. This means there exists a set S � R
so that every real is a rational linear combination of elements of S in a unique way. One may even choose
S � r0, 1s.

You will never be able to tell me such a set S; it can only be constructed in this highly inexplicit fashion.
It is used in measure theory to construct a non-measurable subset of R (a “Vitali set”).

Size of linearly independent sets

I would like to say there is a good notion of “dimension” of infinite-dimensional vector spaces.

Proposition 8. Suppose V is a vector space. If S � V spans V , and I � V is linearly independent, then
there exists an injection f : I Ñ S, and thus |I| ¤ |S|.
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The strategy is analogous to the finite-dimensional case, but uses Zorn’s lemma. Consider the set

P � tpI 1, fq | I 1 � I and f : I 1 Ñ S an injection, and I 1 Y pSzfpI 1qq spans V u.

Here recall the notation SzfpI 1q to mean

SzfpI 1q � ts P S | s R fpI 1qu;

it is the complement of fpI 1q in the set S. The idea is that we are replacing elements of S with elements of
I 1 without changing the size of the spanning set.

3. Give a careful proof of the previous Proposition.

Corollary 9. Every vector space has a well-defined dimension dimpV q, the cardinality of a basis for V . If
W � V , we have dimpW q ¤ dimpV q.

Proof. If S and S1 are two bases for V , the previous Proposition produces an injection f : S Ñ S1 and an
injection g : S1 Ñ S. The Cantor-Schroeder-Bernstein theorem asserts that when this is the case, there
exists a bijection h : S Ñ S1, so that |S| � |S1|. We set dimpV q � |S| for some basis S of V .

In particular, dimQpRq � |R| is an uncountable-dimensional vector space; the basis we constructed above
has uncountably many elements.

To conclude, recall that for finite-dimensional vector spaces, proper subspaces have strictly smaller di-
mension. This is false for infinite-dimensional vector spaces, and as a result most of our results about
finite-dimensional vector spaces will not extend to the general case.
4. Consider the vector space F8 of eventually-zero sequences in F. Show that there exists a proper subspace
V � F8 of the same dimension as F8, meaning that there is a basis S for F8, a basis S1 for V , and a
bijection f : S Ñ S1.
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