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1 The Ballot Theorem

Suppose Candidate A gets m votes and Candidate B gets n votes with m > n. We want to
see how many ways we can count the votes such that A is always in the lead. Votes will be
shown with a lattice path from (0, 0) to (m+ n,m− n).

Theorem 1.1. Let n and m be positive integers. There are exactly(
n

n+m
2

)
paths ((0, 0), (1, y1), (2, y2), . . . , (n − 1, yn−1), (n,m)) from the origin to the point (n,m),
n,m > 0, |yk − yk+1| = 1, such that y1, y2, . . . , yn > 0.

Lemma 1.2 (The Reflection Principle). For n,m, y > 0, the number of paths from (0, y) to
(n,m) which touch the t-axis equals the number of paths from (0,−y) to (n,m).

Proof. Consider a path ((0, y), (1, y1), . . . , (n−1, yn−1), (n,m)) from (0, y) to (n,m) which has
at least one vertex on the t-axis. Let r be the time of the first visit to zero; that is r satisfies
yi > 0, . . . , yr−1 > 0, yr = 0. Then ((0,−y), (1,−y1), . . . , (r − 1,−yr−1), (r, yr), . . . , (n,m)) is
a path leading from (0,−y) to (n,m). This map is a bijection and the Reflection Principle
follows.

Lemma 1.3. For m,n ∈ N, the number of paths from (0, 0) to (n,m) is(
n

n+m
2

)
.

Proof. Denote u as the number of up steps and d as the number of down steps. The total
number of steps is

u+ d = n

and the net number of up steps is
u− d = m.

Solving for u gives

u =
n+m

2
,

and the lemma follows, since paths are determined by specifying which of the n steps are up
steps.
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1.1 Proof of The Ballot Theorem

Proof of 1.1. The Reflection Principle shows that for k, n,m > 0, the number of lattice paths
from (0, k) to (n,m) which touch the t-axis (horizontal axis) is equal to the number of paths
from (0,−k) to (n,m).

Suppose Candidate A gets m votes and Candidate B gets n votes. We want to see how
many ways we can count the votes such that A is always in the lead. Votes will be shown
with a lattice path from (0, 0) to (m + n,m − n). Then the number of lattice paths from
(0, 0) to (m+ n,m− n) is (

m+ n

n

)
.

Now, consider the number of ways with Candidate A always in the lead. Candidate A
must always get the first vote. Then we need to find the number of ways of counting the
votes where A is always in the lead while getting the first vote and the number of ways of
counting the votes where A gets the first vote, but B is tied or ahead of A at least one time.
In other words, we need to determine the number of lattice paths from (1, 1) to (m+n,m−n)
and subtract from it the number of lattice paths from (1, 1) to (m+ n,m− n) which touch
the horizontal t-axis.

We can change one of the starting points (1, 1) to (1,−1) since, according to the Reflection
Principle, the number of lattice paths will remain the same.

Then we can compare the number of lattice paths from (1, 1) to (m + n,m − n) and
subtract from it the number of lattice paths from (1,−1) to (m+ n,m− n). Now, suppose
we change the starting position to the origin, then we will be subtracting the number of
lattice paths from (0, 0) to (m + n − 1,m − n − 1) from the number of lattice paths from
(0, 0) to (m+ n− 1,m− n+ 1).

Then we have

#paths =

(
m+ n− 1

(m+n−1)+(m−n−1)
2

)
−
(

m+ n− 1
(m+n−1)+(m−n+1)

2

)
=

(
m+ n− 1

m− 1

)
−
(
m+ n− 1

m

)
=

(m+ n− 1)!

(m− 1)!n!
− (m+ n− 1)!

m!(n− 1)!

=
(m− n)(m+ n− 1)!

m!n!

=
m− n
m+ n

(
m+ n

m

)
.

Therefore, the probability that Candidate A is always in the lead is

P (A is always in the lead) =
m−n
m+n

(
m+n
m

)(
m+n
m

) =
m− n
m+ n

.
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2 Simple Random Walk

Simple Symmetric Random Walk on Z is the process S0, S1, . . . defined by S0 = 0 and
Sn =

∑n
k=1Xk where X1, X2, . . . are i.i.d. with P (X1 = 1) = P (X1 = −1) = 1

2
. The

trajectory of a simple random walk can be pictured as a polygonal path having height Sn at
time n. Note that

P (any particular possible path of length n) =
1

2n
.

We can see that P (S2n+1 = 0) = 0 because we need an even number of steps to return back
to the t-axis. The time 2n return probability is

P (S2n = 0) =
the number of paths from (0, 0) to (2n, 0)

22n

= 4−n
(

2n

n

)
,

since out of the 2n total steps, we need to chose which n are up steps.
Now, we want to show that the probability that the lattice path touches the t-axis on

the 2nth step is the same as the probability that the path does not touch the t-axis before
or at the 2nth step.

Theorem 2.1. P(S2n = 0) = P (S1, S2, . . . , S2n 6= 0)

Proof. First, we know from above that

P (S2n = 0) = 4−n
(

2n

n

)
.

Next observe that

P (S1, S2, . . . , S2n 6= 0) = P (S1, . . . , S2n > 0) + P (S1, . . . , S2n < 0)

= 2P (S1, . . . , S2n > 0),

and

P (S1, . . . , S2n > 0) = P
( n⋃
r=1

{S1, . . . , S2n > 0, S2n = 2r}
)

=
n∑
r=1

P (S1, . . . , S2n > 0, S2n = 2r).
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Since

P (S1 = 1, S2, . . . , S2n−1 > 0, S2n = 2r)

=
1

2

number of paths from (1, 1) to (2n, 2r) which never touch t-axis

22n−1

=
number of paths from (1, 1) to (2n, 2r)− number of paths from (0, 0) to (2n− 1, 2r + 1)

22n

=

(
2n−1
n+r−1

)
−
(
2n−1
n+r

)
22n

,

we have

P (S1, . . . , S2n > 0) =
n∑
r=1

P (S1 = 1, S2, . . . , S2n−1 > 0, S2n = 2r)

=
1

22n

n∑
r=1

[(
2n− 1

n+ r − 1

)
−
(

2n− 1

n+ r

)]
=

1

4n

[(
2n− 1

n

)
−
(

2n− 1

2n

)]
=

1

4n

(
2n− 1

n

)
,

so

P (S1, . . . , S2n 6= 0) =
1

4n
2

(
2n− 1

n

)
=

1

4n
2

(2n− 1)!

n!(n− 1)!

n

n

=
1

4n
(2n)!

n!n!
= 4−n

(
2n

n

)

3 Recurrence

One can also consider simple random walks with asymmetric increment distributions (so
that P (X = 1) 6= P (X = −1)), as well as simple random walks in higher dimensions. On
Zd, simple symmetric random walk is the process defined by Sn =

∑n
k=1Xk where the Xk’s

are independent and equally likely to be any of the 2d vectors
1
0
...
0

 ,

−1
0
...
0

 ,


0
1
...
0

 ,


0
−1
...
0

 , . . . ,


0
0
...
1

 ,


0
0
...
−1

 ∈ Zd.

There are also random walks which are not simple, meaning that the walker is not constrained
to move only to neighboring sites.
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Definition 3.1. A random walk Sn is recurrent if P (Sn = 0 i.o.) = 1. That is, Sn is
recurrent iff the lattice path touches the t-axis infinitely often. Otherwise, the random walk
is transient.

To state our next result, we define τ0 = 0 and τn = inf{k > τn−1 : Sk = 0} for n ≥ 1. In
other words, τn is the time of the nth return to 0.

Lemma 3.1. For any random walk, the following are equivalent:

1. P (τ1 <∞) = 1

2. P (Sn = 0 i.o.) = 1

3.
∞∑
n=1

P (Sn = 0) =∞

Proof. First note that P (τn < ∞) = P (τ1 < ∞)n for all n ∈ N. Indeed this holds trivially
when n = 1, and if P (τn <∞) = P (τ1 <∞)n, then

P (τn+1 <∞) = P (τn+1 <∞|τn <∞)P (τn <∞)

= P (τ1 <∞)P (τn <∞) = P (τ1 <∞)n+1.

If P (τ1 <∞) = 1, then P (τn <∞) = 1n = 1 for all n, so P (Sn = 0 i.o.) = 1. Using the
converse of Borel-Cantelli 1, we see that if P (Sn = 0 i.o.) = 1, then

∑∞
n=1 P (Sn = 0) = ∞.

Finally,
∑∞

n=1 P (Sn = 0) =∞ implies P (τ1 <∞) = 1 since considering N as the number of
times the simple random walk touches the t-axis gives

N =
∞∑
k=1

1{Sk = 0}

=
∞∑
k=1

1{τk <∞},

so, taking p = P (τ1 <∞),

∞∑
k=1

P (Sk = 0) = E[N ] =
∞∑
k=1

P (τk <∞)

=
∞∑
k=1

pk =
p

1− p
if p < 1.

Therefore, all the above statements are equivalent and can be derived from each other.
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Theorem 3.2. Simple random walk is recurrent in dimensions one and two.

Proof. When d = 1, P (S2n−1 = 0) = 0 and Stirling’s formula gives

P (S2n = 0) =
1

22n

(
2n

n

)
=

1

22n

(2n)!

(n!)2

≈ 1

22n

√
4πn

(
2n
e

)2n(√
2πn

(
n
e

)n)2
=

1

4n

√
4πn

(
2n
e

)2n
2πn

(
n
e

)2n
=

22n

4n

(
n
e

)2n√
4πn(

n
e

)2n
2πn

=
1√
πn

.

Since
∑∞

n=1
1√
πn

diverges, it follows from the limit comparison test that

∞∑
n=1

P (Sn = 0) =
∞∑
n=1

P (S2n = 0) =∞,

so P (Sn = 0 i.o.) = 1 and Sn is recurrent in one dimension.
Similarly, when d = 2, P (S2n−1 = 0) = 0 and

P (S2n = 0) =
1

42n

n∑
k=0

(
2n

2k

)(
2n− 2k

n− k

)(
2k

k

)
=

1

42n

n∑
k=0

(2n)!

(2k)!(2n− 2k)!

(2n− 2k)!

(n− k)!(n− k)!

(2k)!

k!k!

=
1

42n

n∑
k=0

2n!

k!2(n− k)!2

=
1

42n

(
2n

n

) n∑
k=0

(
n

k

)2

=
( 1

22n

)2(2n

n

) n∑
k=0

(
n

k

)(
n

n− k

)
=
[ 1

22n

(
2n

n

)]2
=
[ 1

22n

( 2n!

n!n!

)]2
≈
[

1

22n

(
2
(√

2πn
(
n
e

)n)
√

2πn
(
n
e

)n√
2πn

(
n
e

)n)]2
=

1

24n

(
4
(
2πn

)(
n
e

)n
2πn

(
n
e

)n
2πn

(
n
e

)n) =
1

πn
.

Since
∑∞

n=1
1
πn

diverges, we see that Sn is recurrent in two dimensions as well.
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It follows from the previous result that when d = 1 every site in Z is visited infinitely
often with probability one. However, one can show that the expected time to travel between
any two sites (or return to the present site) is infinite!

Theorem 3.3. Simple random walk is transient in three or more dimensions.

Proof. When d = 3,

P (S2n = 0) = 6−2n
∑

n1,n2,n3≥0:
n1+n2+n3=n

(
2n
)
!(

n1!n2!n3!
)2

= 2−2n
(

2n

n

) ∑
n1,n2,n3≥0:
n1+n2+n3=n

(
3−n

n!

n1!n2!n3!

)2

.

Now 3−n n!
n1!n2!n3!

≥ 0 for each choice of n1, n2, n3, n, and the multinomial theorem gives

∑
n1,n2,n3≥0:
n1+n2+n3=n

3−n
n!

n1!n2!n3!
=

∑
n1,n2,n3≥0:
n1+n2+n3=n

(
n

n1, n2, n3

)(1

3

)n1
(1

3

)n2
(1

3

)n3 =
(1

3
+

1

3
+

1

3

)
= 1,

so ∑
n1,n2,n3≥0:
n1+n2+n3=n

(
3−n

n!

n1!n2!n3!

)2 ≤ ( max
0≤n1≤n2≤n3:
n1+n2+n3=n

3−n
n!

n1!n2!n3!

) ∑
n1,n2,n3≥0:
n1+n2+n3=n

3−n
n!

n1!n2!n3!

= 3−n max
0≤n1≤n2≤n3:
n1+n2+n3=n

n!

n1!n2!n3!

The latter quantity is maximized when n1!n2!n3! is minimized. This happens when n1, n2, n3

are as close as possible: If ni < nj − 1 for i < j, then ni!nj! >
ni+1
nj

ni!nj! = (ni + 1)!(nj − 1)!.

It follows that

max
0≤n1≤n2≤n3:
n1+n2+n3=n

n!

n1!n2!n3!
≈ n!([

n
3

]
!
)3 ≈

√
2πn

(
n
e

)n(√
2πn
3

(
n
3e

)n
e

)3 =
3

3
2

(
n
e

)n
2πn

(
n
3e

)n ≤ 3n

n
.

Putting all this together and recalling that 1
22n

(
2n
n

)
≈ 1√

πn
shows that

P (S2n = 0) = 2−2n
(

2n

n

) ∑
n1,n2,n3≥0:
n1+n2+n3=n

(
3−n

n!

n1!n2!n3!

)2

≤ 2−2n
(

2n

n

)
1

n
≈ c

n
3
2

,

where c is a constant.

7



Hence
∑∞

n=1 P (Sn = 0) <∞ and we conclude that Simple Random Walk is transient in
3-dimensions.

Transience in higher dimensions follows by letting Tn = (S1
n, S

2
n, S

3
n) be the projection

onto the first three coordinates and letting N(n) = inf{m > N(n− 1) : Tm 6= TN(n−1)} to be
the nth time that the random walker moves in any of the first three coordinates (with the
convention that N(0) = 0). Then TN(n) is a simple random walk in three dimensions and
the probability that TN(n) = 0 infinitely often is 0. Since the first three coordinates of Sn
are constant between N(n) and N(n+ 1) and N(n+ 1)−N(n) is almost surely finite, this
implies that Sn is transient.

4 Arcsine Laws

In this section, we focus on simple random walk on Z. Define

Ln = max{0 ≤ k ≤ n : Sk = 0}

to be the time of the last visit to zero by time n.

Lemma 4.1. Let u2m = P (S2m = 0). Then P (L2n = 2k) = u2ku2n−2k for k = 0, 1, . . . n.

Proof.

P (L2n = 2k) = P (S2k = 0, S2k+1 6= 0, . . . , S2n 6= 0)

= P (S2k = 0, X2k+1 6= 0, . . . , X2k+1 + . . .+X2n 6= 0)

= P (S2k = 0)P (X2k+1 6= 0, . . . , X2k+1 + . . .+X2n 6= 0)

= P (S2k = 0)P (S1 6= 0, . . . , S2n−2k 6= 0) = u2ku2n−2k.

The preceding observation allows us to prove the second arcsine law.

Theorem 4.2. For 0 < a < b < 1,

P

(
a ≤ L2n

2n
≤ b

)
→
∫ b

a

1

π
√
x(1− x)

dx.

Proof. We first note that

nP (L2n = 2k) = nu2ku2(n−k) ≈
n√

πk
√
π(n− k)

=
1

π

1√
k
n
(1− k

n
)
,

so if k
n
→ x, then

nP (L2n = 2k) =
(nP (L2n = 2k)

1

π
√

k
n
(1− k

n
)

1

π
√

k
n
(1− k

n
)

)
→ 1

π
√
x(1− x)

.
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Now, define an and bn, so that 2nan is the smallest even integer greater than or equal to 2na
and 2nbn is the largest even integer less than or equal to 2nb.

Setting fn(x) = nP (L2n = 2k) for k
n
≤ x < (k+1)

n
, we have

P
(
a ≤ L2n

2n
≤ b
)

= P (2nan ≤ L2n ≤ 2nbn) =
nbn∑

k=nan

nP (L2n = 2k)
1

n
=

∫ bn+
1
n

an

fn(x)dx.

Using ideas from real analysis, one can show that this implies

P
(
a ≤ L2n

2n
≤ b
)

=

∫ bn+
1
n

an

fn(x)dx→
∫ b

a

f(x)dx.

5 Appendix

Proposition 1 (Stirling’s Formula).

n! ≈
√

2πn

(
n

e

)n
where an ≈ bn means limn→∞

an
bn

= 1.

Proposition 2 (Continuity From Below). If A1 ⊆ A2 ⊆ A3 ⊆ . . ., then

P
( ∞⋃
i=1

Ai

)
= lim

n→∞
P (An)

Proof. Set B1 = A1, B2 = A2\A1, . . . , Bk = Ak\
⋃k−1
i=1 Ai, . . .. Then B1, B2, . . . are disjoint,

with
k⋃
j=1

Bk = Ak and
∞⋃
j=1

Bj =
∞⋃
j=1

Aj.

Thus

P
( ∞⋃
j=1

Aj) = P
( ∞⋃
j=1

Bj

)
=
∞∑
j=1

P (Bj)

= lim
n→∞

n∑
j=1

P (Bj)

= lim
n→∞

P
( n⋃
j=1

Bj

)
= lim

n→∞
P (An).
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Proposition 3 (Continuity Above). If A1 ⊇ A2 ⊇ A3 ⊇ . . ., then

P
( ∞⋂
i=1

Ai

)
= lim

n→∞
P (An).

Proof. If A1 ⊇ A2 ⊇ A3 ⊇ . . ., then AC1 ⊆ AC2 ⊆ . . ., so

P
( ∞⋂
i=1

Ai

)
= 1− P

(( ∞⋂
i=1

Ai

)C)
= 1− P

( ∞⋃
i=1

ACi

)
= 1− lim

n→∞
P (ACn )

= 1− lim
n→∞

(1− P (An))

= lim
n→∞

P (An)

Proposition 4 (Borel-Cantelli I). If A1, A2, . . . are events with
∑∞

n=1 P (An) <∞, then

P (An i.o.) := P
( ∞⋂
n=1

∞⋃
m=n

Am

)
= 0.

Proof. If Bn =
⋃∞
m=nAm, then B1 ⊇ B2 ⊇ B3 ⊇ . . ., so

P (An i.o.) = P
( ∞⋂
n=1

∞⋃
m=n

Am

)
= P

( ∞⋂
n=1

Bn

)
= lim

n→∞
P (Bn).

The result follows since
∑∞

n=1 P (An) <∞ implies

P (Bn) = P
( ∞⋃
m=n

Am

)
≤

∞∑
m=n

P (Am)→ 0

as n→∞.
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