The Efficiency of Blocking:

How to Use MS(Blocks)/MS(Error) Correctly
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Even though there are no valid tests of block effects in
randomized complete block and Latin square experiments,
it is noted that a commonly used measure of efficiency is
monotonically related to the F ratios used inappropriately
for testing the effectiveness of blocking. Because of this
relationship one can give beginning students a useful inter-
pretation of otherwise inappropriate F statistics without in-
troducing concepts of relative efficiency.
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1. INTRODUCTION

In many experiments, the experimental units are arranged
in homogeneous sets called blocks. The objective of block-
ing is to account for the effects of nuisance factors that
characterize the experimental material. Although units within
blocks are to be as homogeneous as possible, units in dif-
ferent blocks are expected to be heterogeneous. As these
~ two conditions approach their ‘‘ideal’’ states, blocking be-
comes very effective and yields ‘‘better’’ inference with
respect to treatment effects than one would get from an
experimental design without blocking. On the other hand,
if blocking has been used and units in different blocks are
not more heterogeneous than within blocks, then inference
is not as good as one would have obtained from a design
without blocking. Thus the researcher may wish to know,
after the experiment has been done, whether blocking of
experimental units was worthwhile, especially if these or
similar units might be used in future experiments.

Measures of relative efficiency should be used to compare
an experimental design where blocking is present with a
similar experiment without the blocking in question. The
relative efficiency (RE) of design D, compared with design
D, is defined as follows:

efficiency D,

RE (D d with D,) =
E (D compared with D) =" 2o D,

variance D,
=—2>, (D
variance D,
where variance D refers to the variance of a treatment com-
parison using design D.

Two widely used experimental designs having blocks are
the randomized complete block design (RCB) and latin square
design (LS). We shall show that the estimated relative ef-
ficiencies (ERE’s) used to evaluate these designs are mon-
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otonically related to the ‘‘F’’ ratios, which are frequently
and inappropriately used for testing the effectiveness of
blocking. This provides a useful way of interpreting the
““F’’ ratios correctly without deriving the expressions for
the ERE’s.

In Section 2 we give a brief review of the notion and -
properties of block designs and two-way classifications,
mainly to contrast these two situations and point out why
they are different. In Section 3 we use these results for the
RCB and give an alternate expression for the ERE of an
RCB compared with a completely randomized design (CRD).
The same argument is used in Section 4 for the ERE of an
LS compared with an RCB.

2. BASIC IDEAS OF TWO-WAY
CLASSIFICATION AND BLOCK DESIGNS

In many textbooks the concepts of experimental design,
linear models, and analysis of variance are used almost
synonymously. For example, the RCB is often equated with
a two-way classification. As a result, a common linear model
and analysis of variance are used to analyze data arising in
different ways.

To elaborate briefly on this latter point, in a randomized
block design treatments are assigned randomly to experi-
mental units within blocks. This implies immediately that
the two factors treatments and blocks are not ‘‘interchange-
able.”” In a two-way classification, however, the factors are
symmetric or ‘‘interchangeable.”” Data for this situation
come either from an observational study, where the items
observed are classified according to two factors, or from an
experimental study, where the treatments are defined by
level combinations from two factors and then applied to
experimental units in a CRD.

Although the commonly used mathematical (linear) mod-
els for both situations described previously are basically of
the same form, their statistical properties are quite different
(a fact that is often overlooked). The major difference is
due to the different randomization process, that is, restricted
versus unrestricted randomization. For purposes of this note
we shall not go into details of the theoretical aspects but
shall refer the reader to some pertinent results in the liter-
ature. Wilk (1955) and Wilk and Kempthorne (1956a) in-
vestigated a general class of block-treatment experimental
designs from the finite population and randomization point
of view. Wilk and Kempthorne (1955, 1956a,b) also in-
vestigated, along the same lines, a two-factor experiment
in the context of a CRD. Under the usual assumptions for
the RCB design (no block-treatment interaction, application
of each treatment to one experimental unit in each block)
and the CRD (no two-factor interaction and one replication
for each treatment combination), their results reduce to those
given in Table 1. Under the RCB model, o denotes ‘block
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Table 1. Analysis of Variance for RCB and Two-way
Classification With One Observation Per Cell

Source df MS EMS)
RCB

Block b—1 B* 02 + tof

Treatment t—1 T* o2 + o2 + bo?

Error b-1)(t-1) E* o2 + o?

Two-way classification

Fa a—1 A* o + o + Coj
Fo c—1 c o® + of + aog
Error @-1)c-1) E* o2 + o2

variability,”” o denotes ‘‘treatment variability,”” o2 denotes
variability among units within blocks, and ¢ denotes vari-
ability due to all other extraneous components, and under
the two-way classification model, o denotes ‘‘factor A
variability,”” o7 denotes ‘‘factor B variability,” and o2
denotes variability among experimental units. From Table
1, we observe that (a) blocks and treatments are ‘‘asym-
metric,”’ whereas factors A and C are ‘‘symmetric,”’ and
(b) there exists no test for equality of block effects (i.e.,
Hy: o7 = 0) except for the very unlikely event that

2
o, =

>

3. RANDOMIZED COMPLETE BLOCK DESIGN

As we pointed out in the previous section there does not
exist a valid test for block effects (e.g., Anderson and McLean
1974; Kempthorne 1952; Lentner and Bishop 1986). It may,
however, be important to assess the usefulness of blocking,
not for the current experiment but for future experiments
using the same or similar experimental material. For this
purpose Yates (1935), using the construct of a uniformity
trial, introduced the notion of relative efficiency [see (1)].
Using the notation from Table 1, the ERE for comparing
the RCB with the CRD is given by

ERE (RCB compared with CRD)
_ (b=1)B* + b(t—1)E*
(bt — 1)E*

We note that Kempthorne (1952, 1955) derived (2) by using
only randomization arguments, that is, restricted versus un-
restricted randomization.

Rewriting (2), we observe that

ERE(RCB compared with CRD) = a + (1 — @)H, (3)

where & = b(t — 1)/(bt — 1) and H = B*/E*. Examination
of the ERE in (3) reveals that:

2

ERE< | iff H< 1
=1 iff H=1
> 1 iff H> 1. @)

It should be noted that H is the ratio of block and error
mean squares (MS), which many textbooks present, incor-
rectly, as an F statistic for testing block effects. It is clear
from (3) that the commonly used efficiency measure, ERE,
is a one-to-one monotone function of H. Thus, although H
is not a valid F statistic for testing block effects, it may be

used equivalently for judging the value of blocking in an
RCB design: ERE > 1 or, alternatively, H > 1 indicates
that the RCB is more effective than the CRD with the same
number of replications for each treatment. A CRD would
require b(ERE) replications to achieve the same efficiency
as an RCB with b blocks. Whereas a value of H greater
(smaller) than 1 implies a greater (lesser) efficiency, the
value of H by itself does not provide full information about
the efficiency measure; the degrees of freedom are important
also, as can be seen in (3).

4. LATIN SQUARE DESIGNS

For a basic LS design, the experimental units are arranged
in a square array according to row and column blockings.
The ¢ treatments are randomized to the units in such a way
that each appears once in every ‘‘row block’’ and once in
every ‘‘column block.”” This makes row and column block-
ings orthogonal and, therefore, represents a straightforward
extension of the basic RCB design. As with the RCB design,
a valid test of equal treatment means exists (under appro-
priate assumptions), but valid tests of row and column
blockings do not exist.

The assessment of one or both blocking factors in an LS
design may be of interest. If only one blocking factor had
been used, the experiment would have been conducted as
an RCB design. For these, the relative efficiencies are

ERE, (LS compared with RCB, no row blocking)

_R* + (1— DE¥

(E* ©)

and
ERE, (LS compared with RCB, no column blocking)

_ C* + (1— DE*

tE* - ©

where R*, C*, and E* are row, column, and error MS,
respectively, for the LS design. These measures may be
rewritten as

ERE, = ¢ + (1 —c)Hy @)

and
ERE, = ¢ + (1 - 0)H, (8)

where ¢ = (t — 1)/t, Hy = R*/E*, and H- = C*E*. Again,
the ratios, Hz and H, are given incorrectly in many text-
books as F statistics for testing row and column blockings,
respectively. As seen in (7) and (8), the efficiency measures,
ERE, and ERE,, have the same format as the ERE given
in (3). Thus, although Hy and H are not valid F statistics
for testing row and column blockings, these ratios may be
used equivalently for assessing the value of the respective
blocking factor, as was indicated in (4).

5. CONCLUDING REMARKS

From the point of view of teaching elementary or applied
statistics courses, the relationships between the relative ef-
ficiencies and the respective ratios of MS enables instructors
to give students a method of assessing general gains (or
losses) due to blocking without the need for introducing
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efficiency concepts. Not only is the relationship monotone
one to one, but the efficiency is unity when the ratio of MS
is unity (the point of no gain due to blocking). For either
efficiency or ratio of MS, judgment of significant gains (or
losses) due to blocking is subjective and must also be con-
sidered from a practical standpoint.

[Received May 1987. Revised November 1988.]
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Exploratory Plots for Paired Data

PAUL R. ROSENBAUM*

1. PLOTTING MATCHED-PAIR DIFFERENCES

Paired data consist of bivariate measurements, (q;, b;),
i =1,...,1, where the g;’s and b;’s are on a common
scale. The pair (a;, b;) may be measurements on a single
subject i at two times, or measurements on two distinct
subjects who are similar in some way.

The paired ¢ statistic, the Wilcoxon signed rank statistic,
and many other conventional statistical procedures for paired
data focus on the matched-pair differences, b, — a;. It is
natural, then, to plot the differences. Still, the differences
tell only part of the story—they omit information about the
marginal distributions of the a;’s and the b;’s and the de-
pendence between the a;’s and b;’s. Moreover, an extreme
or outlying difference, b, — a;, may result from an extreme
a; or an extreme b; or, when the a;’s and b;’s are strongly
related, from an exceptional pair in which the relationship
does not hold. Examination of the differences alone cannot
distinguish these three cases. An exploratory display should
tell more of the story.

The example discussed here is based on data from Morton
et al. (1982), a comparison of blood lead levels in I = 33
pairs of children. The parent of one child in each pair worked
in a factory in Oklahoma in which lead is used in the man-
ufacture of batteries. The parents of the second child in each
pair, the control child, had not worked in an industry using
lead for five years. The control child was matched to the
treated child on the basis of age and neighborhood of res-
idence. The thought was that parents who are exposed to
lead while working might bring lead home in their clothes
and hair, thereby exposing their children as well. Morton
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et al. compared blood lead levels (ug/dl of whole blood)
for the pairs of exposed (b;) and control (g;) children using
the signed rank statistic, presenting the data in tabular form,
and plotting the marginal distributions in each group using
histograms that ignore the pairing.

Figure 1 is a *‘sliding square plot.”” The center of the
square is a scatterplot of the (a;, b;) pairs in which the
horizontal and vertical axes have the same 0—80 wg/dl scale.
Points project to the east to the boxplot (Tukey 1977) of
the marginal distribution of the lead levels for exposed chil-
dren, the b;’s. Points project to the north to the boxplot of
the marginal distribution of the lead levels from control
children, the a;’s. Points project to the southwest along the
diagonal to the boxplot of the marginal distribution of the
matched-pair differences, the b; — a;’s. Recall that in a
boxplot, the center line is the median, the box ends at the
quartiles, and extreme observations are indicated individ-
ually. Multiple projections of a single scatterplot have been
used for a different purpose in Rosenbaum (1981). Multiple
projections of a scatterplot allow us to locate a single point
in several marginal distributions.

Figure 1 leads to the following observations. Since the
lower quartile of the differences is 4, more than three quar-
ters of the exposed children had higher lead levels than their
matched controls, and the typical difference was 15 ug/dl.
The lead levels for exposed children are not only higher but
also more variable than for controls, as is seen from the
width of the horizontal and vertical boxplots. Matching chil-
dren on the basis of age and neighborhood did not produce
a strong dependence within pairs; arguably, the matching
was not very successful. The extreme difference of 60 ug/
dl was due to an exposed child with an extremely high lead
level; however, the level for this child’s matched control is
not unusual, being at the lower quartile of the controls.
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