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INTRODUCTION

IN DISCUSSING the possible shortcomings of the analysis of variance,
much attention has been paid to non-constancy and non-normality of
the “‘error” contribution. (The recent papers in Bzometrics by Eisenhart
[4], Cochran [3] and Bartlett [1] discuss these matters and give refer-
ences.) The present writer is usually much more concerned with and
worried about non-additivity, and until recently has suffered from the
lack of a systematic way to seek it out, and then to measure it. (Con-
versations with Frederick F. Stephan have contributed greatly to this
development and presentation.)

The purpose of the present paper is to indicate such a way, when the
data is in the form of a row-by-column table. (The professional practi-
tioner of the analysis of variance will have no difficulty in extending the
process to more complex designs.) We shall show how to isolate one
degree of freedom from the ‘residue”, “error’”’, “interaction” or ‘“dis-
crepance’’, call it what you will. There are two known situations to
which this single degree of freedom is expected to react by swelling:

(1) when one or more observations are unusually discrepant;
(2) ‘when the analysis has been conducted in terms where
the effects of rows and columns are not additive.

The first situation is quite familiar and requires little explanation. The
second occurs often enough, but may not be noticed. An example may
help to fix the ideas.

Let us construct an artificial example with 3 rows and 4 columns,
with each entry contributed to overall, by rows, by columns, and by
cells. Suppose that these contributions are as follows:

*Prepared in connection with research sponsored by the Office of Naval Research.
tPresented to the Biometrics Section and the Biometric Society at Cleveland, December 29, 1948,
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Construction of the example (don't worry about this )

|Starting point | |Add a row effect | [Add a col effect | [Add a 'cell' effect]
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in general by rows by columns by cells
1111 4 4 4 4 6 1 —4 0 1 -2 1 0
1111 -3 -3 -3 -3 6 1 —4 0 0 -1 2 -3
1111 -3 -3 -3 -3 6 1 —4 0 0 -2 -1 0

Then the tables and corresponding analyses for the sum of all contribu-
tions are:

TABLE 1
ILLUSTRATIVE EXAMPLE IN ORIGINAL TERMS

Values and Means Analysis of Variance

12 4 2 5 23 DF SS MS

5.8

4 -2 —4 =5 |-7 —1.8

4 -3 -7 —2 |—8 —-2.0
Rows 2 140 70
Sums |20 —1 -9 -2 8 Columns 3 157 52
Means | 6.7 —0.3—3.0—0.7 0.7 R X C 6 26 4

Now let us square the entries and divide by 10, rounding to integers.
The resulting tables and analyses are:

The final example (also shown in Table3)
TABLE 2
ILYUSTRATIVE EXAMPLE IN TERMS OF SQUARES

. alues and Means Analysis of Variance
¥
14 2 1 2 19 4.8 DF SS MS
2 0 2 2 6 1.5
2 1 5 0 8 2.0
Rows 2 245 12.2
Sums | 18 3 8 4 33 Columns 3 46.9 15.6
Means | 6.0 1.0 2.7 1.3 2.8 R X C 6 84.8 14.1

Notice that all semblance of row or column effects have now van-
ished, although Table 1 showed large and significant effects. The use
of the squared scale has concealed the real effects. (It may be argued
that squaring numbers which range from plus to minus is unrealistic.
The answer is that this ¢s an extreme example, but one that can be slowly
and smoothly changed into a very mild one. There probably is a differ-
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ence in degree between this example and what happens in practice, but
there is no difference in kind.)

PROCEDURE

How then do we isolate the single degree of freedom? The process
is simple, and runs as follows:

(A) To the row-by-column table, already bordered with sums and means,
add a new border of deviations of means from the grand mean
(decimal places may be reduced, but the sums of deviations, by
rows and by columns must be forced to vanish).

(B) Add an extra column (or row) and enter in each cell the sum of
products of the deviations by columns and the entries in its row
(or column).

(C) Accumulate the sum of products between the deviations of row
(or column) means and the new entries of (B).

(D) Calculate the sum of squares of deviations by columns and by rows.

(E) Divide the square of the number from (C) by the product of the
numbers from (D). This is the mean square (and also the sum of
squares) for the single degree of freedom.

The process is illustrated on the same example below:

TABLE 3
SAMPLE CALCULATION
Devia- | Sums of
Sums Means tions |x-products
14 2 1 2 19 4.75 2.0 38.4
2 0 2 2 6 1.50 —1.2 3.6
2 1 5 0 8 2.00 —0.8 4.6
Sums 18 3 8 4 33 0.0 68.8
Means 6.00 1.00 2.67 1.33 2.75 | 6.08
Deviations| 3.2 —-1.8 00 —1.4| 0.0 15.44 | 50.9

(B): 14(3.2) + 2(—1.8) + 1(0.0) + 2(—1.4) = 38.4

2(3.2) 4+ 0(—1.8) 4+ 2(0.0) 4+ 2(—1.4) =
2(3.2) + 1(—1.8) 4+ 5(0.0) + 0(—1.4) =

3.6
4.6
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(C): 38.4(2.0) + 3.6(—1.2) + 4.6(—0.8) = 68.8
D): (3.2 + (—1.8)° + (—0.0)* + (1.4)° = 15.44
(2.0)* 4+ (—1.2)° + (—0.8)* = 6.08

_(68.8°
(15.44)(6.08) — 209

Assigning the mean square 50.9 to the degree of freedom for non-addi-
tivity, which is subtracted from ‘“R X C”, the analysis of variance of
Table 2 becomes:

Rows 2 24.5 12.2
Columns 3 46.9 15.6
Non-additivity 1 50.9 50.9
Balance 5 33.9 6.8

Thus the obvious thing about the illustrative example was its non-addi-
tivity. The corresponding F value of 7.3 on 1 and 5 degrees of freedom
is significant at the 59, level.

EXPLANATION

We have explained what we are looking for—non-additivity—and
how to look—Ilast section—but we have not explained what we are really
doing. This we shall now try to do. Those experienced with single
degrees of freedom may have already recognized the computation as a
short-cut method of eliminating the single degree of freedom labeled by

6.40 —3.60 0.00 —2.80 2.0
—3.84¢ 2.16 0.00 1.68 | = | —1.2| - 3.2 -—-18 00 -1.4
—2.56 1.44 0.00 1.12 —0.8

where 6.40 = (2.0)(3.2), —3.60 = (—1.8)(2.0), 2.16 = (—1.8)(—1.2)
and soon. We have used the products of the deviations of the row means
and the deviations of the column means to label this single degree of
freedom. Since the sum of each column and of each row is zero, this
degree of freedom is orthogonal to rows and to columns. It must be a
part of “R X C”. This is what we did, but why?
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Let us take a special case, where there are row contributions, and
column contributions, and nothing else. We start with perfect additivity.
If z; is the column contribution (where 7 goes from 1 to ¢, the number of
columns), and if y; is the row contribution (where j goes from 1 to r, the
number of rows), then the 7j entry in the table is

ai; = + y; .

Now let us start to analyze a slightly nonlinear function of the a,; .
Instead of a,; , consider

flai) = a;; + NMai; — a)2

where \ is a small constant, and a is, for convenience, the average ¥ + ¥
of all the a;; . We find that we can write

f@) = [w + Ma: — D]+ [y; + Mys — 9] + Ma: — Dy — 7).

The first two terms depend, respectively, on the column alone and on the
row alone, so the last one contains all the non-additive effect due to
analysis in terms of f(a) instead of in terms of a. Notice that this non-
additive effect is a’ multiple of

(x: =), — Y.

This means that it occurs in a single degree of freedom, which is identified
in terms of z; — T and y; — ¥.

We assumed no error of measurement, or the like, and we wrote
a,; = x; + y; without an additional term. This means that the differ-
ence between the-i-th column mean and the grand mean is

(@ = B + M@ =D — @ — 2°)

which is nearly z; — Z when X is small. Thus a satisfactory approxima-
tion to the single degree of freedom we want is that indicated by the
coefficients

(column mean — grand mean)(row mean — grand mean).

This is exact for the combination of no error and a very slight change
from a to f(a), that is for no error and A small. This fact plus empirical
tests seems enough to warrant recommending general use of this single
degree of freedom as a test of non-additivity.

WHAT OF SIGNIFICANCE?

Suppose that the test shows statistically significant evidence of
non-linearity—what then? The simplest and laziest thing to do would
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be to forget the degree of freedom for non-additivity and go on and use
the mean square for the balance in considering for example, the signifi-
cance of the row effects. This s not recommended, for the following
reasons: :

(1) In general, results expressed in terms in which effects are
additive apply in a broader region and are practically
more useful.

(2) If the ‘“error” or fluctuating contribution is not normally
distributed, then it is not known whether or not the use
of the balance mean square unduly inflates the apparent
significance of other mean squares (for the case of a nor-
mally distributed fluctuating contribution there is no
distortion of significance.)

For these reasons, the occurrence of a large non-additivity mean square
should lead to consideration of a transformation followed by a new
analysis of the transformed variable.

This consideration should include two steps:

(a) inquiry whether the non-additivity was due to analysis
in the wrong form or to one or more unusually discrepant
values; B

(b) in case no unusually discrepant values are found or indi-
cated, inquiry into how much of a transformation is
needed to restore additivity.

The decision under (a) will depend ¢n an examination of the data and
all the background information available in the field—in particular the
result of similar inspections of other experiments for non-additivity.
What seems to be the best way of inspecting the results of a single experi-
ment so far proposed is to plot the entries in the new column (of sums of
cross-products) against the corresponding row means. A single unusu-
ally discrepant observation will tend to be reflected by one point high
or low and the others distributed around a nearly horizontal regression
line. An analysis in the wrong terms will tend to be reflected by a
slanting regression line.

The figure shows such a plot, including 2s limits, for

(A) the illustrative example worked above,

(B) Youden and Beale’s data [6] as simplified by Snedecor
(5, p. 44],

(C) Beall’s experiment VI [2] on insect infestation, with plots
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GRAPHICAL ANALYSIS OF NONADDITIVITY
(Ordinates are Sums of Cross Products, Dashed Lines are 28 Limits)

A—ILLUSTRATIVE
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treated alike combined (analyzed in terms of numbers of
insects).
(D) Cochran’s example [3] of an obviously discrepant value.
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The limits are set by the formula

( average ) ( sum of squares of >%<mean square)*
cross product deviations of column means/ \ for balance

For the illustrative example (Case A), this becomes

15.53 & 2 (15.44)¥(6.8)* = 15.5 & 20.5 = —5.0 and +36.0.

In every one of the four cases, the plotted points could be accounted
for by non-additivity due to analysis in incorrect terms. Cases A and D
can also be accounted for by a discrepant point. This suggests that it
will be hard to make this distinction for single experiments on this scale.
When several small experiments are available for analysis, agreement in
signs of the slopes of the graphs or equivalently, the signs of the sums
obtained in Step C may show up analysis in incorrect terms.

" Why does the graph fail to decide about Cases A and D? The reason
is simple—either explanation is plausible. If in Case A we alter the
upper left-hand entry from 14 to 2, the analysis of variance becomes:

DF SS MS

Rows 2 0.5 0.2
Columns 3 4.9 1.6
Non-additivity 1 0.2 0.2
Balance 5 12.6 2.5

Thus we see that our illustrative table of 3 X 4 entries could have per-
fectly well come from an additive situation where exactly one entry has
been seriously disturbed.

Similarly in Case D, taken from Cochran’s paper, if a nonlinear
function is chosen so that

Y, 704 < y < 792,

g(y) =
800, y = 1.035,

then his table is converted into one where the F-ratio for non-additivity
against balance is 0.8 instead of 27.6. We know that this table arose
from an error in computation, but it could equally well have come from
an additive table analyzed in the wrong terms.

In eachjcase, the graphical solution has gone as far as it reasonably
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could in assigning responsibility for the non-additivity. While the
graphical analysis is not certain to settle Step (a), it may be expected
to be a big help.

AID IN CHOOSING A TRANSFORMATION

If it has been decided that the wrong terms had been used, then the
actual size of the mean square for non-additivity must be useful for
choosing an appropriate transformation. We lack experience with the
more delicate use of such information, so that it seems appropriate to
stop here with the following table which shows the connection between
the szgn of the final sum of products (which was +68.8 in the illustrative
example) and the type of transformation which may then be appropri-

ate.

TABLE 4

SIGN OF FINAL SUM OF PRODUCTS WHEN CERTAIN TRANSFORMATIONS
ARE APPROPRIATE (VALUES OF z OR « + o« NON-NEGATIVE)

Transformed

values which Conditions Sign when z Important

are additive* needed is analyzed special cases
0<p<1 + Va, Vo + 1

P or
p=1 0 ()

(x + a)

1<p - x2, o

log (x + a) (none) — log z, log (1 + z)

*Multiplication by a fixed constant and addition or subtraction of a fixed constant freely possible

While the removal of non-additivity by transformation usually tends
to stabilize the variance, there may be cases where the variance is no-
tably non-constant after transformation. In such cases, analysis of the
transformed data using weights seems appropriate.

APPENDIX
VALIDITY OF THE ANALYSIS

This section is prepared for those who may feel that the method of
obtaining the “single degree of freedom” may not produce quantities
with the usual distribution.

The basic fact is this: If u, , uy, - - - , U have some

y Up 301, Vg, *
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joint distribution, and if, for fixed u, , u, , -+ , uw; , the distribution of
Vi, Vs, c Uy exists and is always the same, then the marginal distribu-
tion of v; , v, , - -+ , v, exists and, indeed, is the same, and, furthermore,
Uy, Ug,y <, U and vy , 0y, -+, 0, are independent. This can be estab-
lished either by general considerations or by analytical detail.

To apply this in our case, let u, , u, , -+ - , u; be the row and column
means, and let »; and », be the sums of squares for non-additivity and
for the balance. If the situation is additive, and the cell effects are
normally distributed, and w, , u, , --- , w, are fixed, then v, and v, are
independently distributed like ¢° times chi-squares on 1 and r¢ — r — ¢
degrees of freedom. Hence v, and v, have these distributions, and are
independent of all functions of row and column means. Thus the F-tests
of rows, columns, or non-additivity against balance are valid.

In the presence of non-additivity and/or non-normality, the usual
arguments indicate that the F-test is, if anything, conservative.
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