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3.2

FIGURE 3.3 .

Relofive frequancy of winnings.

Expected Values of Random Variables

Because a probability can be thought of as the long-run relative frequency of oc-
currence for an event, a probability distribution can be interpreted as showing the
long-run relative frequency of occurrence for numerical outcomes associated with
an experiment. Suppose, for example, that you and a friend are matching balanced
coins. Each of you tosses a coin. If the upper faces match, you win $1.00; if they do
not match, you lose $1.00 (your friend wins $1.00). The probability of a match is 0.5
and, in the long run, yon should win about half of the time. Thus, a relative frequency
distribution of your winnings should look like the one shown in Figure 3.3. The —1
under the lefimost bar indicates a loss by you.
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On the average, how much will you win per game over the long run? If Figure

3.3 presents a correct display of your winnings, you win —1 half of the time and +1
half of the time, for an average of

“n{2)+mf-1) =0
(- )(E)H )("ﬁ) =

This average is sometimes called your expected winnings per game, or the. expecred
value of your winnings. (An expected value of 0 indicates that this is a fair game)
The general definition of expected vatue is given in Definition 3.4.

The expected value* of a discrete random variable X with probability
distribution p(x) is given by

E(X)=pr(X)

(The sum is over all values of x for which p(x)>0.)
We sometimes use the notation

E(X)=u

for this equivalence.

Now payday has arrived, and you and your friend up the stakes to $10 per game
of matching coins, You now win —10 or +10 with equal probability. Your expcctcd

WINnings per game is
(—10) : + (10) L =0
9/ 2/

and the game is still fair: The new stakes can be thought of as a function of the old
in the sense that, if X represents your winnings per game when you were playing for
$1.00, then 10X represents your winnings per game when you play for $10.00. Such
functions of random variables arise offen. The extension of the definition of expected
value to cover these cases is given in Theorem 3.1.

If X 15 a discrete random variable with probability distribution p(x) and if
gfx} is any real-valued function of X, then

E[g(X)]=D g(x) p(x)

(The proof of this theorem will not be given.)

*We assume absolute convergence when the range of X is countable; we talk about an ctpc.cmrmn only
when it 15 assumed to exist.
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You and your friend decide to complicate the payoff picture in the coin-matching
game by agreeing to let you win $1 if the match is tails and $2 if the match is heads.
You still lose $1 if the coins do not match. Quickly you see that this is not a fair pame,
because your expected winnings are '

1 N _
(—1)(5) + (1)(4) e (3) = 0.25

You compensate for this by agreeing to pay your friend $1.50 if the coins do not
match. Then, your expected winnings per game are

{1 1 1
(=13 (E) *'@(z) * ”‘)(z) =0

and the gams is again fair. What is the difference between this game and the original

one, in which all payofts were $17 The difference certainly cannot be explained by
the expected value, since both games are fair. You can win more but also lose more
with the new payoffs, and the difference between the two games can be explained to
some extent by the increased variability of your winnings across many games. This
increased variability can be seen in Figure 3.4, which displays the relative frequency
for your winnings in the new game; the winnings are more spread out than they were
in Figure 3.3. Formally, variation is often measured by the variance and by a related
quantity called the standard deviation.

2=
T

BN

The variance of a random variable X with expected value [Lis given by
V(X)=E[(X-p) |
. We sometimes use this notation
E[(X-u) |=0”

for this equivalence.

The smallest value that o can assume is zero; it occurs when all the probability
is concentrated at a single point (that is, when X takes on a constant value with

. probability 1). The variance becomes larger as the points with positive probability

spread out more.
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The variance squares the units in which we are measuring. A measure of variation
that maintains the original units is the standard deviation.

The standard deviation of a random variable X is the square root of the
Variance and is given by

U:\/C_T?:\[E[(X_ﬂ)z]

For the game represented in Figure 3.3, the variance of your winnings (with
w=0}is

0? = E(X — p)*

= (- 1)2( )+(1) (;):1

1t follows that o = 1, as well. For the game reprcsentcd in Figure 3.4, the variance
of your winnings is

oF = (-15 ( )T(Dg(l) e (1)

= 2,375
and the standard deviation is

o=154

‘Which game would you rather play?

The standard deviation can be thought of as the size of a.“typical” deviation
between an observed outcome and the expected value. For the situation described in
Figure 3.3, each outcome (—1 or +1) deviates by precisely one standard deviation -
{rom the expected value. For the situation described in Figure 3.4, the positive values
average 1.5 units from the expected value of O (as do the negative values), and so 1.5
units is approximately one standard deviation here,

‘The mean and the standard deviation often yield a useful summary of the probabil-
ity distribution fora random variable that can assume many vatues. An illustration is
provided by the age distribution of the U.S. population for 1990 and 2050 (pro;ecled
as shown in Table 3:1).

Age is actually @ continuous measurement, but since it is reported in c‘ategoncs,
we can ireat it as a discrete random variable for purposes of approximating its key
functions. To move from continuous age intervals to discrete age classes, we assign
each interval the value of its midpoint (rounded). Thus, the data in Table 3.1 are
interpreted as showing that 7.6% of the 1990 population were around 3 years of age
and that 22.5% of the 2050 population is anticipated to be around 55 years of age.
(The open intervals at the upper end were stopped at 100 for convenience.)



TABLE 3.1
Age Distmibution of 11.5.
Poputotion (in percents)”

TABLE 3.2
Age Distribution of U.S.
Population Summory
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Age

Age Interval  Midpoint 1990 2030
Under 5 3 7.6% 6.4%
5-13 9 12.8 11.6
14-17 6 53 5.2
1824 21 108 = 90
2534 30 17.3 12.5
3544 40 . 15.1 12.2
45-64 55 18.6 22.5
65-84 75 - 113 16.0
85 and over 92 1.2 4.6

Saurre: U.S. Bureau of the Censis.

Interpreting the percentages as probabilities, we see that the mean age for 1990

p=> xp(x)
= 3(0.076) + 9(0.128) + - - - +92(0.012)
=355

s approximated by

(How does this compare with the median age for 1990, as approximated from Table
3.17) For 2050, the mean age is approximated by

p=Y xpix)
= 3(0.064) + 9(0.116) + - - 4+ 92(0.046)
=412

Over the projected period, the mean age increases rather markedly (as does the median
age).

The variations in the two age distributions can be approximated by the standard
deviations. For 1990, this is

= \/Z(x — ) p(x)

= \/ (3 —-35.5)%(0.76) + - -+ + (92 — 35.5)*(0.012)
=225

A similar calculation for the 2050 data yields o = 25.4. Thesetesults are summarized
in Table 3.2.

Statistic 1996 2050

Mean 355 412
Standard deviation 225 254
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Not only is the population getting older, on the average, but its variability is
mcreasing. What are some of the implications of these trends?
We now provide other examples and extensions of these basic resulis.

E XAMPLE 3.2 The manager of a stockroom in a factory knows from his study of records that the
: daily demand (nhumber of times used) for a certain tool has the following probability

distribution:
Demand | 0 L2
Probability | 0. 05 04

(In other words, S50% of the daily records show that the tool was used one time.)
Letting X denote the daily demand, find E{(X) and V (X).

Solution  From Definition 3.4, we see that
EX) = xp(x)
= 0-‘([0;1) + 1(0.5) +2(0.4) = 1.3
The tool is used an average of 1.3 times per day.

From Definition 3.5, we ses that
-

V(X)) = E(X — fu)?
=Y (x — u)p(x)
=(0—13%0.D+ (1 — 1.3D*05 + 2 - 1.2 04D

= (1.69){0:1) + (0.09X0.5) + (0.49)(0.4)
=0410 =

Our work in manipulating expected values can be greatly facilitated by making
use of the two results of Theorem 3.2, Often, g(X) 1s a linear function; and when this
is the case, the calculations of expected value and vanance are especially simple.

THEOREM 32

For any random variable X and constants ¢ and b

1) E(aX +b)=aE(x)+b

DV (aX +b)=a’V(x)

Proot By Theorem 3.1,

E(aX +b)=) (ax+b) p(x)
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Solution

- +b +b) p(x :
E (aX )= Z(ax ) p(x) 3.2 Fxpecied Volues of Random Yorigbles 79

= Z[(GA)P(JC) +bP(X)]
= z axp(x)+ Z bp(x)

= aZ xp(x) +bz p(x)
= aE(x)+b

Notice that Zp(x) 1. Also, by definition 3.5,

V(aX +b)= E[(aX +b)— E(aX +b]’
= E[aX +b—(aE(X)+b)]
= E[aX —aE(X)T
= E[a*(X - E(X))’]
=a’ E[(X ~ E(X))")
=a’V{x)

An important special case of Theorem 3.2 involves establishing a “standardized”

variable. If X has mean w and standard deviation o, then the “standardl?ed” form of
X 1y given by

Employing Theorem 3.2, one can easily show that £(¥) = 0 and V(¥) = 1. This
idea will be used often in later chapters.
We illustrate the use of these results in the following example.

In Example 3.2, suppose that it costs the factory $10 each time the tool is used. Find
the mean and the variance of the daily costs of using this tool.

Recall that the X of Example 3.2 is the dally demand. The daily cost of using this
tool 1s the 10X. By Theorem 3.2, we have

E(10X) = 10E(X)
= 10(1.3)
=13

Thus, the factory should budget $13 per day to cover the cost (Jf using the tool.
Also, by Theorem 3.2,

V(10X) = (10> v(X)
= 100(0.410)
=41
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We will make use of this value in a later example. =

Theorem 3.2 leads us to a more efficient computational formula for variance, as
given in Theorem 3.3.

THEOREM 33

If X is a random variable with mean (expected value) , then

V(X)=E(X*) -

Proot -Starting with the definition of variance, we have

V(X)=E[ (X -u)’ ]
=E(X°-2Xpu+u’)
=E(X*)-EQX )+ E(u")
= E(X™)-2uE(X)+ i’
=E(X*)-2u" +u*

=E(X*)-u’

EXAMPLE 34 Usetheresult of Theorem 3.3 to compute the variance of X as given in Fxample 3.2.
Solution  In Example 3.2, X had a probability distribution given by

x |0 1 2

plx) ‘ 01 05 04
and we saw that E(X) = 1.3. Now,
E(X?) =} x*p(x)

= @0.1) + (1D2(0.5) + V*©0.4)
=0+4+05+106
=721

By Theorem 3.3,

V(X) = E(X?) ~ p’
=21-(13°=041 =

We have computed means and vaiances {or a number of probability distributions
and noted that these two quantities give us some useful information on the center



