Why consider alternatives to least squares?

o Prediction Accuracy: especially when p > n, to control the
variance.

o Model Interpretability: By removing irrelevant features —
that is, by setting the corresponding coefficient estimates
to zero — we can obtain a model that is more easily
interpreted. We will present some approaches for
automatically performing feature selection.



Three classes of methods

o Subset Selection. We identify a subset of the p predictors
that we believe to be related to the response. We then fit a
model using least squares on the reduced set of variables.

o Shrinkage. We fit a model involving all p predictors, but
the estimated coefficients are shrunken towards zero
relative to the least squares estimates. This shrinkage (also
known as regularization) has the effect of reducing variance
and can also perform variable selection.

e Dimension Reduction. We project the p predictors into a
M-dimensional subspace, where M < p. This is achieved by
computing M different linear combinations, or projections,
of the variables. Then these M projections are used as
predictors to fit a linear regression model by least squares.



Subset Selection

Best subset and stepwise model selection procedures

Best Subset Selection

1. Let Mg denote the null model, which contains no
predictors. This model simply predicts the sample mean
for each observation.

2. For k=1,2,...p:

(a) Fit all (?) models that contain exactly k predictors.

(b) Pick the best among these (§) models, and call it M,. Here
best is defined as having the smallest RSS, or equivalently
largest R2.

3. Select a single best model from among Mo, ..., M, using
cross-validated prediction error, C), (AIC), BIC, or
adjusted R2.



Stepwise Selection

For computational reasons, best subset selection cannot be
applied with very large p.

Best subset selection may also suffer from statistical
problems when p is large

an enormous search space can lead to overfitting and
high variance of the coefficient estimates.

For both of these reasons, stepwise methods, which explore
a far more restricted set of models, are attractive
alternatives to best subset selection.
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Forward Stepwise Selection

e Forward stepwise selection begins with a model containing
no predictors, and then adds predictors to the model,
one-at-a-time, until all of the predictors are in the model.

e In particular, at each step the variable that gives the
greatest additional improvement to the fit is added to the
model.



In Detail

Forward Stepwise Selection

. Let M denote the null model, which contains no

predictors.

.Fork=0,...,p—1:

2.1 Consider all p — k models that augment the predictors in
M}, with one additional predictor.

2.2 Choose the best among these p — k models, and call it
Mp41. Here best is defined as having smallest RSS or
highest R?.

. Select a single best model from among M, ..., M, using

cross-validated prediction error, C,, (AIC), BIC, or

adjusted R2.



Credit data example

# Variables

Best subset

Forward stepwise

One
Two
Three
Four

rating

rating, income

rating, income, student
cards, income

student, 1limit

rating

rating, income

rating, income, student
rating, income,
student, 1limit

The first four selected models for best subset selection and
forward stepwise selection on the Credit data set. The first
three models are identical but the fourth models differ.



Backward Stepwise Selection

e Like forward stepwise selection, backward stepwise selection
provides an efficient alternative to best subset selection.

e However, unlike forward stepwise selection, it begins with
the full least squares model containing all p predictors, and
then iteratively removes the least useful predictor,
one-at-a-time.



More on Backward Stepwise Selection

e Like forward stepwise selection, the backward selection
approach searches through only 1+ p(p 4+ 1)/2 models, and
so can be applied in settings where p is too large to apply
best subset selection

e Like forward stepwise selection, backward stepwise
selection is not guaranteed to yield the best model
containing a subset of the p predictors.

e Backward selection requires that the number of samples n
is larger than the number of variables p (so that the full
model can be fit). In contrast, forward stepwise can be
used even when n < p, and so is the only viable subset
method when p is very large.



Estimating test error: two approaches

e We can indirectly estimate test error by making an
adjustment to the training error to account for the bias due
to overfitting.

e We can directly estimate the test error, using either a
validation set approach or a cross-validation approach, as
discussed in previous lectures.

o We illustrate both approaches next.



C,, AIC, BIC, and Adjusted R?

e These techniques adjust the training error for the model
size, and can be used to select among a set of models with
different numbers of variables.
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Now for some details
o Mallow’s Cp:
1
Cp = — (RSS +2d6?)
n
where d is the total # of parameters used and 62 is an

estimate of the variance of the error € associated with each
response measurement.

e The AIC criterion is defined for a large class of models fit
by maximum likelihood:

AIC = —2logL+2-d

where L is the maximized value of the likelihood function
for the estimated model.
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Details on BIC

1
BIC = — (RSS + log(n)ds?) .

e Like C), the BIC will tend to take on a small value for a
model with a low test error, and so generally we select the
model that has the lowest BIC value.

e Since logn > 2 for any n > 7, the BIC statistic generally
places a heavier penalty on models with many variables,

and hence results in the selection of smaller models than
Cp.
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Adjusted R?

e For a least squares model with d variables, the adjusted R?
statistic is calculated as

RSS/(n—d — 1)
TSS/(n—1)

where TSS is the total sum of squares.

Adjusted R? =1 —

e Maximizing the adjusted R? is equivalent to minimizing
RSS
n—d—1"

e Unlike the R? statistic, the adjusted R? statistic pays a
price for the inclusion of unnecessary variables in the
model.


rsingle
Text Box

rsingle
Text Box

rsingle
Text Box

rsingle
Text Box


Validation and Cross-Validation

e Each of the procedures returns a sequence of models M,
indexegl by model size £k =0,1,2,.... Our job here is to
select k. Once selected, we will reburn model M,

e We compute the validation set error or the cross-validation
error for each model M}y, under consideration, and then
select the k for which the resulting estimated test error is
smallest.

e This procedure has an advantage relative to AIC, BIC, C,
and adjusted R?, in that it provides a direct estimate of
the test error, and doesn’t require an estimate of the error

variance 0'2 .
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Square Root of BIC
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Shrinkage Methods

Ridge regression and Lasso
e The subset selection methods use least squares to fit a
linear model that contains a subset of the predictors.

e As an alternative, we can fit a model containing all p
predictors using a technique that constrains or reqularizes
the coefficient estimates, or equivalently, that shrinks the
coefficient estimates towards zero.
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Ridge regression

e Recall that the least squares fitting procedure estimates

Bo, B1, - . ., Bp using the values that minimize
2
n p
RSS = [wi—B0—>_ Bjmi
i=1 j=1

e In contrast, the ridge regression coefficient estimates BR
are the values that minimize

n

2
p p p
S (- o Yo | a Y- msseay
j=1

i=1 j=1 j=1

where A > 0 is a tuning parameter, to be determined
separately.



Standardized Coefficients
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Ridge regression: scaling of predictors

e The standard least squares coefficient estimates are scale
equivariant.

e In contrast, the ridge regression coefficient estimates can
change substantially when multiplying a given predictor by
a constant

e Therefore, it is best to apply ridge regression after
standardizing the predictors, using the formula

SL‘Z']' =

Lij
VAT (e — )2
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Why Does Ridge Regression Improve Over Least

Squares?
The Bias-Variance tradeoff

Mean Squared Error
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Mean Squared Error
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I
—

- A 185 112/1812
Simulated data with n = 50 observations, p = 45 predictors, all having
nonzero coefficients. Squared bias (black), variance (green), and test
mean squared error (purple) for the ridge regression predictions on a
simulated data set, as a function of X and ||BE||2/ B2
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The Lasso

e Ridge regression does have one obvious disadvantage:
unlike subset selection, which will generally select models
that involve just a subset of the variables, ridge regression
will include all p predictors in the final model

e The Lasso is a relatively recent alternative to ridge
regression that overcomes this disadvantage. The lasso
coefficients, ﬁf , minimize the quantity

2
n

p p p
o lvi—Bo—D B | XD 18]l =RSS+A) _|5l-

=1 j=1 j=1 j=1
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The Lasso: continued

e As with ridge regression, the lasso shrinks the coefficient
estimates towards zero.

e However, in the case of the lasso, the ¢; penalty has the
effect of forcing some of the coefficient estimates to be
exactly equal to zero when the tuning parameter A is
sufficiently large.

e We say that the lasso yields sparse models — that is,
models that involve only a subset of the variables.
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The Variable Selection Property of the Lasso

Why is it that the lasso, unlike ridge regression, results in
coeflicient estimates that are exactly equal to zero?

One can show that the lasso and ridge regression coefficient
estimates solve the problems

2
p

n p
miniﬁmizez yi — Bo — Zﬁjxij subject to Z 16| < s
i=1 J=1

j=1

and

2

n p P
miniﬁmizez yi — Po — Zﬁjxij subject to Z BJZ <s,
i=1 j=1 j=1

respectively.



The Lasso Picture




Comparing the Lasso and Ridge Regression
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A R? on Training Data
Left: Plots of squared bias (black), variance (green), and test
MSE (purple) for the lasso on simulated data set of Slide 32.
Right: Comparison of squared bias, variance and test MSE
between lasso (solid) and ridge (dashed). Both are plotted
against their R% on the training data, as a common form of
indexing. The crosses in both plots indicate the lasso model for
which the MSE is smallest.



Conclusions

e In general, one might expect the lasso to perform better
when the response is a function of only a relatively small
number of predictors.

e However, the number of predictors that is related to the

response is never known a priori for real data sets.

e A technique such as cross-validation can be used in order
to determine which approach is better on a particular data
set.
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Credit data example
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Left: Cross-validation errors that result from applying ridge
regression to the Credit data set with various values of .
Right: The coefficient estimates as a function of A. The vertical
dashed lines indicates the value of A\ selected by cross-validation.



Simulated data example
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Left: Ten-fold cross-validation MSE for the lasso, applied to the
sparse simulated data set from Slide 39. Right: The
corresponding lasso coefficient estimates are displayed. The
vertical dashed lines indicate the lasso fit for which the
cross-validation error is smallest.



Dimension Reduction Methods

e The methods that we have discussed so far in this chapter
have involved fitting linear regression models, via least
squares or a shrunken approach, using the original
predictors, X1, Xo,..., X,,.

e We now explore a class of approaches that transform the
predictors and then fit a least squares model using the
transformed variables. We will refer to these techniques as
dimension reduction methods.



Dimension Reduction Methods: details

Let Z1,Zs, ..., Zy; represent M < p linear combinations of
our original p predictors. That is,

P
Zn =) dmiX; (1)
j=1
for some constants ¢m1,. .., Omp.

We can then fit the linear regression model,

M
yi=90+29mz,~m+ei, i=1,...,n, (2)
m=1
using ordinary least squares.
Note that in model (2), the regression coefficients are given
by 0o,01,...,05. If the constants ¢p,1,. .., ¢mp are chosen
wisely, then such dimension reduction approaches can often
outperform OLS regression.



e Notice that from definition (1),

Z Omzim = Z Om Z ¢m]w2j = Z Z 6m¢mjx2] = Zﬁjx1]7

j=1m=1

where
M
6] = Z qusmj‘ (3)
m=1

e Hence model (2) can be thought of as a special case of the
original linear regression model.

¢ Dimension reduction serves to constrain the estimated /3;
coefficients, since now they must take the form (3).

e Can win in the bias-variance tradeoff.



Principal Components Regression

Here we apply principal components analysis (PCA)
(discussed in Chapter 10 of the text) to define the linear
combinations of the predictors, for use in our regression.
The first principal component is that (normalized) linear
combination of the variables with the largest variance.
The second principal component has largest variance,
subject to being uncorrelated with the first.

And so on.

Hence with many correlated original variables, we replace
them with a small set of principal components that capture
their joint variation.



Pictures of PCA
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The population size (pop) and ad spending (ad) for 100
different cities are shown as purple circles. The green solid line
indicates the first principal component, and the blue dashed line
indicates the second principal component.



Pictures of PCA: continued
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A subset of the advertising data. Left: The first principal
component, chosen to minimize the sum of the squared
perpendicular distances to each point, is shown in green. These
distances are represented using the black dashed line segments.
Right: The left-hand panel has been rotated so that the first
principal component lies on the x-axis.



Pictures of PCA: continued
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Plots of the first principal component scores zj1 versus pop and
ad. The relationships are strong.



Pictures of PCA: continued
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Plots of the second principal component scores z;2 versus pop
and ad. The relationships are weak.



Application to Principal Components Regression
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PCR was applied to two simulated data sets. The black, green,
and purple lines correspond to squared bias, variance, and test
mean squared error, respectively. Left: Simulated data from
slide 32. Right: Simulated data from slide 39.
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Partial Least Squares

PCR identifies linear combinations, or directions, that best
represent the predictors Xi,..., X,

These directions are identified in an unsupervised way, since
the response Y is not used to help determine the principal
component directions.

That is, the response does not supervise the identification
of the principal components.

Consequently, PCR suffers from a potentially serious
drawback: there is no guarantee that the directions that
best explain the predictors will also be the best directions
to use for predicting the response.



Partial Least Squares: continued

e Like PCR, PLS is a dimension reduction method, which
first identifies a new set of features Z1,..., Z); that are
linear combinations of the original features, and then fits a
linear model via OLS using these M new features.

e But unlike PCR, PLS identifies these new features in a
supervised way — that is, it makes use of the response Y in
order to identify new features that not only approximate
the old features well, but also that are related to the
response.

e Roughly speaking, the PLS approach attempts to find
directions that help explain both the response and the
predictors.



Details of Partial Least Squares

After standardizing the p predictors, PLS computes the
first direction Z; by setting each ¢1; in (1) equal to the
coefficient from the simple linear regression of ¥ onto X;.
One can show that this coefficient is proportional to the
correlation between Y and Xj.

Hence, in computing Z; = 3°0_, ¢1;X;, PLS places the
highest weight on the variables that are most strongly
related to the response.

Subsequent directions are found by taking residuals and
then repeating the above prescription.



Summary

e Model selection methods are an essential tool for data
analysis, especially for big datasets involving many
predictors.

e Research into methods that give sparsity, such as the lasso
is an especially hot area.

e Later, we will return to sparsity in more detail, and will
describe related approaches such as the elastic net.





