Classification

e Qualitative variables take values in an unordered set C,
such as:
eye colore {brown,blue, green}
email€ {spam, ham}.

e Given a feature vector X and a qualitative response Y
taking values in the set C, the classification task is to build
a function C'(X) that takes as input the feature vector X
and predicts its value for Y; i.e. C(X) € C.

e Often we are more interested in estimating the probabilities
that X belongs to each category in C.

For example, it is more valuable to have an estimate of the
probability that an insurance claim is fraudulent, than a
classification fraudulent or not.
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Can we use Linear Regression?
Suppose for the Default classification task that we code

v — 0 if No
1 if Yes.

Can we simply perform a linear regression of Y on X and
classify as Yes if Y > 0.57

e In this case of a binary outcome, linear regression does a
good job as a classifier, and is equivalent to linear
discriminant analysis which we discuss later.

e Since in the population E(Y|X = z) = Pr(Y = 1|X = ),
we might think that regression is perfect for this task.

e However, linear regression might produce probabilities less

than zero or bigger than one. Logistic regression is more
appropriate.



Linear versus Logistic Regression
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The orange marks indicate the response Y, either 0 or 1. Linear
regression does not estimate Pr(Y = 1|X) well. Logistic
regression seems well suited to the task.



Logistic Regression
Let’s write p(X) = Pr(Y = 1|X) for short and consider using
balance to predict default. Logistic regression uses the form
ePothrX

p(X) = 1+ ePotbr X’

(e ~ 2.71828 is a mathematical constant [Euler’s number.])
It is easy to see that no matter what values 5y, 81 or X take,

p(X) will have values between 0 and 1.

A bit of rearrangement gives

log <1€(§)X)> = fo + 1 X.

This monotone transformation is called the log odds or logit

transformation of p(X).



Maximum Likelihood

We use maximum likelihood to estimate the parameters.
507 H p xz H p(xl))
iy =1 3:y; =0

This likelihood gives the probability of the observed zeros and
ones in the data. We pick By and B; to maximize the likelihood
of the observed data.

Most statistical packages can fit linear logistic regression models
by maximum likelihood. In R we use the glm function.

Coefficient Std. Error Z-statistic P-value
Intercept -10.6513 0.3612 -29.5 < 0.0001
balance 0.0055 0.0002 24.9 < 0.0001




Making Predictions

What is our estimated probability of default for someone with
a balance of $1000?

ePo+BLX —10.6513+0.0055x 1000
pX) = 14 efothiX 1+ e 10-6513+0.0055x1000 0.006
With a balance of $20007
eBot+BLX o—10.6513+0.0055x2000
p(X) = = 0.586

R 1 BotBiX 1+ e 10-6513+0.0055x2000



Lets do it again, using student as the predictor.

Coefficient Std. Error Z-statistic P-value
Intercept -3.5041 0.0707 -49.55 < 0.0001
student [Yes] 0.4049 0.1150 3.52 0.0004

—3.5041+0.4049x 1

— e

Pr(default=Yes|student=Yes) = [ o 350110000051 — 0.0431,
3. :

- o—3-5041+0.4049x0
Pr(default=Yes|student=No) = [ o 350AT 10408950 — 0.0292.
3. :




Logistic regression with several variables

X
log <13(M;)> =Bo+ /X1 +- -+ BpXp

6180+51X1+"'+ﬁpxp
p(X) = 1 + ebotBrXi++BpXp

Coeflicient Std. Error Z-statistic P-value

Intercept -10.8690 0.4923 -22.08 < 0.0001
balance 0.0057 0.0002 24.74 < 0.0001
income 0.0030 0.0082 0.37 0.7115

student [Yes] -0.6468 0.2362 -2.74 0.0062
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e Students tend to have higher balances than non-students,
so their marginal default rate is higher than for
non-students.

e But for each level of balance, students default less than
non-students.

e Multiple logistic regression can tease this out.



Logistic regression with more than two classes

So far we have discussed logistic regression with two classes.

It is easily generalized to more than two classes. One version

(used in the R package glmnet) has the symmetric form
ePok+B1r X1+ +Bpe Xp

25{—1 eBoetBreXi+...4Bpe Xp

Pr(Y = k|X) =

Here there is a linear function for each class.



Discriminant Analysis

Here the approach is to model the distribution of X in each of
the classes separately, and then use Bayes theorem to flip things
around and obtain Pr(Y|X).

When we use normal (Gaussian) distributions for each class,
this leads to linear or quadratic discriminant analysis.

However, this approach is quite general, and other distributions
can be used as well. We will focus on normal distributions.



Bayes theorem for classification

Thomas Bayes was a famous mathematician whose name
represents a big subfield of statistical and probablistic modeling.
Here we focus on a simple result, known as Bayes theorem:

_ Pr(X =z2|Y =k) -Pr(Y =k)
N Pr(X =x)

Pr(Y =kl X =2)

One writes this slightly differently for discriminant analysis:

T fr ()

PriY =kl X =2)= —————
( | ) S mfi(x)

,  where

o fr(z) =Pr(X =z|Y = k) is the density for X in class k.
Here we will use normal densities for these, separately in
each class.

o 7 = Pr(Y = k) is the marginal or prior probability for
class k.



Classify to the highest density

m=.5 =5 m=.3, =7

-4 -2 0 2 4 -4 -2 0 2 4

We classify a new point according to which density is highest.

When the priors are different, we take them into account as
well, and compare 7y fi(z). On the right, we favor the pink
class — the decision boundary has shifted to the left.



Why discriminant analysis?

e When the classes are well-separated, the parameter
estimates for the logistic regression model are surprisingly
unstable. Linear discriminant analysis does not suffer from
this problem.

e If n is small and the distribution of the predictors X is
approximately normal in each of the classes, the linear
discriminant model is again more stable than the logistic
regression model.

e Linear discriminant analysis is popular when we have more
than two response classes, because it also provides
low-dimensional views of the data.



Linear Discriminant Analysis when p =1

The Gaussian density has the form

fule) = e H0A)

Here py, is the mean, and o} the variance (in class k). We will
assume that all the o, = o are the same.

Plugging this into Bayes formula, we get a rather complex
expression for py(z) = Pr(Y = k| X = z):

”’“F e 2<z ”Hk)
Z{i1ﬂlﬁ€_%(z;l)2

pr(z) =

Happily, there are simplifications and cancellations.



Discriminant functions

To classify at the value X = z, we need to see which of the
pr(x) is largest. Taking logs, and discarding terms that do not
depend on k, we see that this is equivalent to assigning x to the
class with the largest discriminant score:

2
. B K
op(z) = - PRy e log ()

Note that dx(z) is a linear function of z.
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training data. In that case we simply estimate the parameters

Typically we don’t know these parameters; we just have the
and plug them into the rule.



From d;(z) to probabilities

Once we have estimates 4y, (), we can turn these into estimates
for class probabilities:

esk (:1?)

leil eSZ (z) .

Pr(Y =k|X =2) =

So classifying to the largest Ok (x) amounts to classifying to the
class for which Pr(Y = k| X = z) is largest.
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LDA on Credit Data
True Default Status

No  Yes | Total
Predicted No | 9644 252 | 9896
Default Status  Yes 23 81 104
Total | 9667 333 | 10000

(23 + 252)/10000 errors — a 2.75% misclassification rate!

Some caveats:
e This is training error, and we may be overfitting. Not a big
concern here since n = 10000 and p = 4!
o If we classified to the prior — always to class No in this
case — we would make 333/10000 errors, or only 3.33%.

e Of the true No’s, we make 23/9667 = 0.2% errors; of the
true Yes’s, we make 252/333 = 75.7% errors!



Types of errors

False positive rate: The fraction of negative examples that are
classified as positive — 0.2% in example.

False negative rate: The fraction of positive examples that are
classified as negative — 75.7% in example.

We produced this table by classifying to class Yes if

f’\r(Default = Yes|Balance, Student) > 0.5

We can change the two error rates by changing the threshold
from 0.5 to some other value in [0, 1]:

—

Pr(Default = Yes|Balance, Student) > threshold,

and vary threshold.



Varying the threshold

= Overall Error
—— False Positive
—— False Negative

Error Rate
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In order to reduce the false negative rate, we may want to
reduce the threshold to 0.1 or less.



ROC Curve

o |
@ |
o

2

g o |

o o

=

‘@

o

a v |

o o

3

2
o
o
o |
o

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

The ROC plot displays both simultaneously.

Sometimes we use the AUC or area under the curve to
summarize the overall performance. Higher AUC' is good.



Linear Discriminant Analysis when p > 1

. 1 L) TR (2
Den51ty; f(gj):We S(x—p)" B (z—p)

1
Discriminant function: dx(x) = TSy — §u£2_1,uk + log 7

Despite its complex form,
Ok () = cko + i1 + crax2 + ... + crpxp — a linear function.



Other forms of Discriminant Analysis

i fr(x
Pr(Y:k|X::z:):KkL()
> =1 mfi(@)
When fi(z) are Gaussian densities, with the same covariance
matrix 3 in each class, this leads to linear discriminant analysis.
By altering the forms for fy(x), we get different classifiers.
o With Gaussians but different 3 in each class, we get
quadratic discriminant analysis.
e With fi(x) = ?:1 [jk(x;) (conditional independence
model) in each class we get naive Bayes. For Gaussian this
means the ¥, are diagonal.

e Many other forms, by proposing specific density models for
fx(z), including nonparametric approaches.



Naive Bayes

Assumes features are independent in each class.
Useful when p is large, and so multivariate methods like QDA
and even LDA break down.

e Gaussian naive Bayes assumes each X is diagonal:

p p
1
Ok (z) o log | g | | Tri(zj)| = —5 g Mk] + log 7y,
j=1 j=1 J

e can use for mized feature vectors (qualitative and
quantitative). If X; is qualitative, replace f;(z;) with
probability mass function (histogram) over discrete
categories.

Despite strong assumptions, naive Bayes often produces good
classification results.
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Logistic Regression versus LDA

For a two-class problem, one can show that for LDA

log (%) = log <§;EB> = CoFam + .. + Ty

So it has the same form as logistic regression.

The difference is in how the parameters are estimated.

e Logistic regression uses the conditional likelihood based on
Pr(Y|X) (known as discriminative learning).

e LDA uses the full likelihood based on Pr(X,Y") (known as
generative learning).

e Despite these differences, in practice the results are often
very similar.



Summary

e Logistic regression is very popular for classification,
especially when K = 2.
e LDA is useful when n is small, or the classes are well

separated, and Gaussian assumptions are reasonable. Also
when K > 2.

e Naive Bayes is useful when p is very large.
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