Linear regression

e Linear regression is a simple approach to supervised
learning. It assumes that the dependence of Y on
X1, Xo,... X, is linear.

e True regression functions are never linear!

e although it may seem overly simplistic, linear regression is
extremely useful both conceptually and practically.
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Simple linear regression using a single predictor X.

e We assume a model
Y =580+ 51X +¢

where By and (7 are two unknown constants that represent
the intercept and slope, also known as coefficients or
parameters, and € is the error term.

e Given some estimates [3’0 and ﬁl for the model coefficients,
we predict future sales using

§ = Bo + piz,

where ¢ indicates a prediction of Y on the basis of X = x.
The hat symbol denotes an estimated value.



Estimation of the parameters by least squares

o Let g; = Bo + lei be the prediction for Y based on the ith
value of X. Then e; = y; — ¥; represents the ith residual
e We define the residual sum of squares (RSS) as

RSS =€ +e5+ - +e2,
or equivalently as

RSS = (y1—Fo—Prx1)*+(y2—Po—Brxa)*+. . A (Yn—Po—Lrzn)>.

e The least squares approach chooses Bo and 31 to minimize
the RSS. The minimizing values can be shown to be
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where § = % Yo yiand T = % > i, x; are the sample

means.



Assessing the Accuracy of the Coefficient Estimates

e The standard error of an estimator reflects how it varies
under repeated sampling. We have
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where 02 = Var(e)
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e These standard errors can be used to compute confidence
intervals. A 95% confidence interval is defined as a range of
values such that with 95% probability, the range will
contain the true unknown value of the parameter. It has
the form

B £2-SE(B).



Hypothesis testing

Standard errors can also be used to perform hypothesis
tests on the coefficients. The most common hypothesis test
involves testing the null hypothesis of
Hy : There is no relationship between X and Y
versus the alternative hypothesis

Hy: There is some relationship between X and Y.

Mathematically, this corresponds to testing
Hy:51=0

versus
Hy: p1 #0,

since if 81 = 0 then the model reduces to Y = Sy + ¢, and
X is not associated with Y.



Hypothesis testing — continued

e To test the null hypothesis, we compute a t-statistic, given
by R
;= p1—0
SE(51)’
e This will have a t-distribution with n — 2 degrees of
freedom, assuming 5, = 0.

e Using statistical software, it is easy to compute the
probability of observing any value equal to |¢| or larger. We
call this probability the p-value.



Results for the advertising data

Coefficient Std. Error t-statistic  p-value

Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001




Assessing the Overall Accuracy of the Model
e We compute the Residual Standard Error

[ 1 R
pu— f— P— AA 2
RSE n—ZRSS m— g (yi — Ui)?,

i=1

where the residual sum-of-squares is RSS = >0 (yi — §i)>.

R-squared or fraction of variance explained is
TSS —
B2 _ SS—RSS 1 RSS

TSS TSS
where TSS = >°% | (y; — §)? is the total sum of squares.

It can be shown that in this simple linear regression setting
that R? = 72, where r is the correlation between X and Y:

_ > i1 (zi —7)(yi — 7)) ‘
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Advertising data results

Quantity Value
Residual Standard Error | 3.26
R? 0.612

F-statistic

312.1




Example: advertising data
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The least squares fit for the regression of sales onto TV.
In this case a linear fit captures the essence of the relationship,
although it is somewhat deficient in the left of the plot.



Multiple Linear Regression

e Here our model is
Y =60+ 01 X1 + foXo+ -+ Bp X, + ¢,

e We interpret 3 as the average effect on Y of a one unit
increase in X, holding all other predictors fized. In the
advertising example, the model becomes

sales = g + f1 X TV 4 Py X radio + f3 X newspaper + €.



Estimation and Prediction for Multiple Regression

e Given estimates Sy, f1, ...y, we can make predictions
using the formula

?32304-313314—323724-'”4-3;9%-

e We estimate [y, 31, ..., 5p as the values that minimize the
sum of squared residuals

RSS = ) (vi— )

i=1
n

= Z(?/i — Bo — Prwir — Pazia — -+ — Bpip)”.
i=1

This is done using standard statistical software. The values
Bo, B1, - . ., Bp that minimize RSS are the multiple least
squares regression coefficient estimates.
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Results for advertising data

Coefficient Std. Error t-statistic p-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper -0.001 0.0059 -0.18 0.8599
Correlations:
‘ TV radio newspaper sales
TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283

sales 1.0000



Is at least one predictor useful?

For the first question, we can use the F-statistic

(TSS — RSS)/p

F = ~Fy
RSS/(n—p—1) ~prrl
Quantity Value
Residual Standard Error | 1.69
R? 0.897

F-statistic

970




Deciding on the important variables

e The most direct approach is called all subsets or best
subsets regression: we compute the least squares fit for all
possible subsets and then choose between them based on
some criterion that balances training error with model size.

e However we often can’t examine all possible models, since
they are 2P of them; for example when p = 40 there are
over a billion models!

Instead we need an automated approach that searches
through a subset of them. We discuss two commonly use
approaches next.



Forward selection

Begin with the null model — a model that contains an
intercept but no predictors.

Fit p simple linear regressions and add to the null model
the variable that results in the lowest RSS.

Add to that model the variable that results in the lowest
RSS amongst all two-variable models.

Continue until some stopping rule is satisfied, for example
when all remaining variables have a p-value above some

threshold.



Backward selection

Start with all variables in the model.

Remove the variable with the largest p-value — that is, the
variable that is the least statistically significant.

The new (p — 1)-variable model is fit, and the variable with
the largest p-value is removed.

Continue until a stopping rule is reached. For instance, we
may stop when all remaining variables have a significant
p-value defined by some significance threshold.



Qualitative predictors with more than two levels

e With more than two levels, we create additional dummy
variables. For example, for the ethnicity variable we
create two dummy variables. The first could be

1 if 4th person is Asian
Tyl =

0 if ith person is not Asian,

and the second could be

1 if 4th person is Caucasian
Ti2 = P . .
’ 0 if 4th person is not Caucasian.



Qualitative predictors with more than two levels —
continued.

e Then both of these variables can be used in the regression
equation, in order to obtain the model

Bo+B1+e€ if ith person is Asian
yi = Bot+Bizii+Paziat+ei =< Po+ P2+ € if ith person is Caucasian
Bo + € if 4th person is AA.

e There will always be one fewer dummy variable than the
number of levels. The level with no dummy variable —
African American in this example — is known as the
baseline.



Extensions of the Linear Model

Removing the additive assumption: interactions and
nonlinearity

Interactions:

e In our previous analysis of the Advertising data, we
assumed that the effect on sales of increasing one
advertising medium is independent of the amount spent on
the other media.

e For example, the linear model
sales = Bo + P1 X TV + Py X radio + f3 X newspaper

states that the average effect on sales of a one-unit
increase in TV is always (1, regardless of the amount spent
on radio.



Interaction in the Advertising data?

Radio

When levels of either TV or radio are low, then the true sales
are lower than predicted by the linear model.

But when advertising is split between the two media, then the
model tends to underestimate sales.



Modelling interactions — Advertising data

Model takes the form

sales = [p+ 1 X TV+ [y x radio + f3 X (radio x TV) + €
= Bo+ (81 + B3 x radio) X TV + B2 x radio + €.

Results:
Coefficient Std. Error t-statistic p-value
Intercept 6.7502 0.248 27.23 < 0.0001
TV 0.0191 0.002 12.70 < 0.0001
radio 0.0289 0.009 3.24 0.0014
TVxradio 0.0011 0.000 20.73 < 0.0001




Hierarchy

e Sometimes it is the case that an interaction term has a
very small p-value, but the associated main effects (in this
case, TV and radio) do not.

e The hierarchy principle:
If we include an interaction in a model, we should also

include the main effects, even if the p-values associated
with their coefficients are not significant.





