
Linear regression

• Linear regression is a simple approach to supervised
learning. It assumes that the dependence of Y on
X1, X2, . . . Xp is linear.

• True regression functions are never linear!
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Linearity assumption?

η(x) = β0 + β1x1 + β2x2 + . . . βpxp

Almost always thought of as an approximation to the truth.

Functions in nature are rarely linear.
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• although it may seem overly simplistic, linear regression is
extremely useful both conceptually and practically.
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Advertising data
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Simple linear regression using a single predictor X.

• We assume a model

Y = β0 + β1X + ε,

where β0 and β1 are two unknown constants that represent
the intercept and slope, also known as coefficients or
parameters, and ε is the error term.

• Given some estimates β̂0 and β̂1 for the model coefficients,
we predict future sales using

ŷ = β̂0 + β̂1x,

where ŷ indicates a prediction of Y on the basis of X = x.
The hat symbol denotes an estimated value.
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Estimation of the parameters by least squares
• Let ŷi = β̂0 + β̂1xi be the prediction for Y based on the ith

value of X. Then ei = yi − ŷi represents the ith residual
• We define the residual sum of squares (RSS) as

RSS = e21 + e22 + · · ·+ e2n,

or equivalently as

RSS = (y1−β̂0−β̂1x1)2+(y2−β̂0−β̂1x2)2+. . .+(yn−β̂0−β̂1xn)2.

• The least squares approach chooses β̂0 and β̂1 to minimize
the RSS. The minimizing values can be shown to be

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄,
where ȳ ≡ 1

n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi are the sample

means.
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Assessing the Accuracy of the Coefficient Estimates

• The standard error of an estimator reflects how it varies
under repeated sampling. We have

SE(β̂1)
2

=
σ2∑n

i=1(xi − x̄)2
, SE(β̂0)

2
= σ2

[
1

n
+

x̄2∑n
i=1(xi − x̄)2

]
,

where σ2 = Var(ε)

• These standard errors can be used to compute confidence
intervals. A 95% confidence interval is defined as a range of
values such that with 95% probability, the range will
contain the true unknown value of the parameter. It has
the form

β̂1 ± 2 · SE(β̂1).
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Hypothesis testing

• Standard errors can also be used to perform hypothesis
tests on the coefficients. The most common hypothesis test
involves testing the null hypothesis of

H0 : There is no relationship between X and Y

versus the alternative hypothesis

HA : There is some relationship between X and Y .

• Mathematically, this corresponds to testing

H0 : β1 = 0

versus
HA : β1 6= 0,

since if β1 = 0 then the model reduces to Y = β0 + ε, and
X is not associated with Y .
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Hypothesis testing — continued

• To test the null hypothesis, we compute a t-statistic, given
by

t =
β̂1 − 0

SE(β̂1)
,

• This will have a t-distribution with n− 2 degrees of
freedom, assuming β1 = 0.

• Using statistical software, it is easy to compute the
probability of observing any value equal to |t| or larger. We
call this probability the p-value.

10 / 48



Results for the advertising data

Coefficient Std. Error t-statistic p-value

Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001
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Assessing the Overall Accuracy of the Model

• We compute the Residual Standard Error

RSE =

√
1

n− 2
RSS =

√√√√ 1

n− 2

n∑

i=1

(yi − ŷi)2,

where the residual sum-of-squares is RSS =
∑n

i=1(yi− ŷi)2.
• R-squared or fraction of variance explained is

R2 =
TSS− RSS

TSS
= 1− RSS

TSS

where TSS =
∑n

i=1(yi − ȳ)2 is the total sum of squares.

• It can be shown that in this simple linear regression setting
that R2 = r2, where r is the correlation between X and Y :

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
.
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Advertising data results

Quantity Value

Residual Standard Error 3.26
R2 0.612
F-statistic 312.1
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Example: advertising data

4 3. Linear Regression

between the ith observed response value and the ith response value that is
predicted by our linear model. We define the residual sum of squares (RSS)

residual sum of
squaresas

RSS = e21 + e22 + · · ·+ e2n,

or equivalently as

RSS = (y1− β̂0− β̂1x1)
2+(y2− β̂0− β̂1x2)

2+ . . .+(yn− β̂0− β̂1xn)
2. (3.3)

The least squares approach chooses β̂0 and β̂1 to minimize the RSS. Using
some calculus, one can show that the minimizers are

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄,

(3.4)

where ȳ ≡ 1
n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi are the sample means. In other

words, (3.4) defines the least squares coefficient estimates for simple linear
regression.
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FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV is shown. The fit is found by minimizing the sum of squared
errors. Each grey line segment represents an error, and the fit makes a compro-
mise by averaging their squares. In this case a linear fit captures the essence of
the relationship, although it is somewhat deficient in the left of the plot.

Figure 3.1 displays the simple linear regression fit to the Advertising

data, where β̂0 = 7.03 and β̂1 = 0.0475. In other words, according to this

The least squares fit for the regression of sales onto TV.
In this case a linear fit captures the essence of the relationship,
although it is somewhat deficient in the left of the plot.
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Multiple Linear Regression

• Here our model is

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε,

• We interpret βj as the average effect on Y of a one unit
increase in Xj , holding all other predictors fixed. In the
advertising example, the model becomes

sales = β0 + β1 × TV + β2 × radio + β3 × newspaper + ε.
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Estimation and Prediction for Multiple Regression

• Given estimates β̂0, β̂1, . . . β̂p, we can make predictions
using the formula

ŷ = β̂0 + β̂1x1 + β̂2x2 + · · ·+ β̂pxp.

• We estimate β0, β1, . . . , βp as the values that minimize the
sum of squared residuals

RSS =

n∑

i=1

(yi − ŷi)2

=

n∑

i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2 − · · · − β̂pxip)2.

This is done using standard statistical software. The values
β̂0, β̂1, . . . , β̂p that minimize RSS are the multiple least
squares regression coefficient estimates.
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3.2 Multiple Linear Regression 15
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FIGURE 3.4. In a three-dimensional setting, with two predictors and one re-
sponse, the least squares regression line becomes a plane. The plane is chosen
to minimize the sum of the squared vertical distances between each observation
(shown in red) and the plane.

The parameters are estimated using the same least squares approach that
we saw in the context of simple linear regression. We choose β0, β1, . . . , βp

to minimize the sum of squared residuals

RSS =

n∑

i=1

(yi − ŷi)
2

=
n∑

i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2 − · · · − β̂pxip)
2. (3.22)

The values β̂0, β̂1, . . . , β̂p that minimize (3.22) are the multiple least squares
regression coefficient estimates. Unlike the simple linear regression esti-
mates given in (3.4), the multiple regression coefficient estimates have
somewhat complicated forms that are most easily represented using ma-
trix algebra. For this reason, we do not provide them here. Any statistical
software package can be used to compute these coefficient estimates, and
later in this chapter we will show how this can be done in R. Figure 3.4
illustrates an example of the least squares fit to a toy data set with p = 2
predictors.
Table 3.4 displays the multiple regression coefficient estimates when TV,

radio, and newspaper advertising budgets are used to predict product sales
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Results for advertising data

Coefficient Std. Error t-statistic p-value

Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper -0.001 0.0059 -0.18 0.8599

Correlations:
TV radio newspaper sales

TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000
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Is at least one predictor useful?

For the first question, we can use the F-statistic

F =
(TSS− RSS)/p

RSS/(n− p− 1)
∼ Fp,n−p−1

Quantity Value

Residual Standard Error 1.69
R2 0.897
F-statistic 570
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Deciding on the important variables

• The most direct approach is called all subsets or best
subsets regression: we compute the least squares fit for all
possible subsets and then choose between them based on
some criterion that balances training error with model size.

• However we often can’t examine all possible models, since
they are 2p of them; for example when p = 40 there are
over a billion models!
Instead we need an automated approach that searches
through a subset of them. We discuss two commonly use
approaches next.
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Forward selection

• Begin with the null model — a model that contains an
intercept but no predictors.

• Fit p simple linear regressions and add to the null model
the variable that results in the lowest RSS.

• Add to that model the variable that results in the lowest
RSS amongst all two-variable models.

• Continue until some stopping rule is satisfied, for example
when all remaining variables have a p-value above some
threshold.
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Backward selection

• Start with all variables in the model.

• Remove the variable with the largest p-value — that is, the
variable that is the least statistically significant.

• The new (p− 1)-variable model is fit, and the variable with
the largest p-value is removed.

• Continue until a stopping rule is reached. For instance, we
may stop when all remaining variables have a significant
p-value defined by some significance threshold.
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Qualitative predictors with more than two levels

• With more than two levels, we create additional dummy
variables. For example, for the ethnicity variable we
create two dummy variables. The first could be

xi1 =

{
1 if ith person is Asian

0 if ith person is not Asian,

and the second could be

xi2 =

{
1 if ith person is Caucasian

0 if ith person is not Caucasian.
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Qualitative predictors with more than two levels —
continued.

• Then both of these variables can be used in the regression
equation, in order to obtain the model

yi = β0+β1xi1+β2xi2+εi =


β0 + β1 + εi if ith person is Asian

β0 + β2 + εi if ith person is Caucasian

β0 + εi if ith person is AA.

• There will always be one fewer dummy variable than the
number of levels. The level with no dummy variable —
African American in this example — is known as the
baseline.
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Extensions of the Linear Model

Removing the additive assumption: interactions and
nonlinearity

Interactions:

• In our previous analysis of the Advertising data, we
assumed that the effect on sales of increasing one
advertising medium is independent of the amount spent on
the other media.

• For example, the linear model

ŝales = β0 + β1 × TV + β2 × radio + β3 × newspaper

states that the average effect on sales of a one-unit
increase in TV is always β1, regardless of the amount spent
on radio.
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Interaction in the Advertising data?
3.2 Multiple Linear Regression 81

Sales

Radio

TV

FIGURE 3.5. For the Advertising data, a linear regression fit to sales using
TV and radio as predictors. From the pattern of the residuals, we can see that
there is a pronounced non-linear relationship in the data.

which simplifies to (3.15) for a simple linear regression. Thus, models with
more variables can have higher RSE if the decrease in RSS is small relative
to the increase in p.
In addition to looking at the RSE and R2 statistics just discussed, it can

be useful to plot the data. Graphical summaries can reveal problems with
a model that are not visible from numerical statistics. For example, Fig-
ure 3.5 displays a three-dimensional plot of TV and radio versus sales. We
see that some observations lie above and some observations lie below the
least squares regression plane. Notice that there is a clear pattern of nega-
tive residuals, followed by positive residuals, followed by negative residuals.
In particular, the linear model seems to overestimate sales for instances
in which most of the advertising money was spent exclusively on either
TV or radio. It underestimates sales for instances where the budget was
split between the two media. This pronounced non-linear pattern cannot be
modeled accurately using linear regression. It suggests a synergy or inter-
action effect between the advertising media, whereby combining the media
together results in a bigger boost to sales than using any single medium. In
Section 3.3.2, we will discuss extending the linear model to accommodate
such synergistic effects through the use of interaction terms.

When levels of either TV or radio are low, then the true sales

are lower than predicted by the linear model.
But when advertising is split between the two media, then the
model tends to underestimate sales.
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Modelling interactions — Advertising data

Model takes the form

sales = β0 + β1 × TV + β2 × radio + β3 × (radio× TV) + ε

= β0 + (β1 + β3 × radio)× TV + β2 × radio + ε.

Results:

Coefficient Std. Error t-statistic p-value

Intercept 6.7502 0.248 27.23 < 0.0001
TV 0.0191 0.002 12.70 < 0.0001
radio 0.0289 0.009 3.24 0.0014
TV×radio 0.0011 0.000 20.73 < 0.0001
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Hierarchy

• Sometimes it is the case that an interaction term has a
very small p-value, but the associated main effects (in this
case, TV and radio) do not.

• The hierarchy principle:

If we include an interaction in a model, we should also
include the main effects, even if the p-values associated
with their coefficients are not significant.
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