Statistical Learning versus Machine Learning

Machine learning arose as a subfield of Artificial
Intelligence.

Statistical learning arose as a subfield of Statistics.
There is much overlap — both fields focus on supervised
and unsupervised problems:

e Machine learning has a greater emphasis on large scale
applications and prediction accuracy.

e Statistical learning emphasizes models and their
interpretability, and precision and uncertainty.

But the distinction has become more and more blurred,
and there is a great deal of “cross-fertilization”.
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The Supervised Learning Problem

Starting point:

Outcome measurement Y (also called dependent variable,
response, target).

Vector of p predictor measurements X (also called inputs,
regressors, covariates, features, independent variables).

In the regression problem, Y is quantitative (e.g price,
blood pressure).

In the classification problem, Y takes values in a finite,
unordered set (survived/died, digit 0-9, cancer class of
tissue sample).

We have training data (x1,91),..., (N, yn). These are
observations (examples, instances) of these measurements.



Objectives

On the basis of the training data we would like to:

e Accurately predict unseen test cases.
e Understand which inputs affect the outcome, and how.

o Assess the quality of our predictions and inferences.



Unsupervised learning

No outcome variable, just a set of predictors (features)
measured on a set of samples.

objective is more fuzzy — find groups of samples that
behave similarly, find features that behave similarly, find
linear combinations of features with the most variation.
difficult to know how well your are doing.

different from supervised learning, but can be useful as a
pre-processing step for supervised learning.



What is Statistical Learning?

Sales
Sales
Sales

T T
50 0 20 40 60 80 100

T T
50 100 200 300
v Radio Newspaper

Shown are Sales vs TV, Radio and Newspaper, with a blue
linear-regression line fit separately to each.

Can we predict Sales using these three?

Perhaps we can do better using a model

Sales =~ f(TV,Radio, Newspaper)



Notation

Here Sales is a response or target that we wish to predict. We
generically refer to the response as Y.

TV is a feature, or input, or predictor; we name it X7.

Likewise name Radio as Xo, and so on.

We can refer to the input vector collectively as

X1
X=1| X5
X3
Now we write our model as
Y = f(X) +e

where € captures measurement errors and other discrepancies.



What is f(X) good for?

e With a good f we can make predictions of Y at new points
X ==z

e We can understand which components of
X = (X1, Xo,...,X,) are important in explaining Y, and
which are irrelevant. e.g. Seniority and Years of
Education have a big impact on Income, but Marital
Status typically does not.

e Depending on the complexity of f, we may be able to
understand how each component X; of X affects Y.



Is there an ideal f(X)? In particular, what is a good value for
f(X) at any selected value of X, say X = 47 There can be
many Y values at X = 4. A good value is

F(4) = BY|X = 1)
E(Y|X =4) means ezpected value (average) of Y given X = 4.
This ideal f(x) = E(Y|X = z) is called the regression function.



The regression function f(x)

e Is also defined for vector X; e.g.
f(ac) = f(.%'l, 9, xg) = E(Y’Xl = fL'l,XQ = mg,Xg = 373)

o Is the ideal or optimal predictor of Y with regard to
mean-squared prediction error: f(z) = E(Y|X = z) is the
function that minimizes E[(Y — g(X))?|X = x] over all
functions g at all points X = x.

e e =Y — f(x) is the irreducible error — i.e. even if we knew
f(x), we would still make errors in prediction, since at each
X = x there is typically a distribution of possible Y values.

e For any estimate f(x) of f(z), we have

E[(Y — f(X))*|X = 2] = [f(z) — f(@)> + Var(e)
Reducible Irreducible



How to estimate f

e Typically we have few if any data points with X =4
exactly.

e So we cannot compute E(Y|X = x)!

e Relax the definition and let

N

f(z) = Ave(Y|X € N(x))

where N (x) is some neighborhood of x.




e Nearest neighbor averaging can be pretty good for small p
—i.e. p <4 and large-ish N.

e We will discuss smoother versions, such as kernel and
spline smoothing later in the course.

e Nearest neighbor methods can be lousy when p is large.
Reason: the curse of dimensionality. Nearest neighbors
tend to be far away in high dimensions.

e We need to get a reasonable fraction of the N values of y;
to average to bring the variance down—e.g. 10%.

e A 10% neighborhood in high dimensions need no longer be
local, so we lose the spirit of estimating E(Y|X = x) by
local averaging.
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Parametric and structured models

The linear model is an important example of a parametric
model:

fo(X) = Bo+ BiX1 + BoXo + ... Bp X,

e A linear model is specified in terms of p + 1 parameters
Bo, B, - Bp-

e We estimate the parameters by fitting the model to
training data.

e Although it is almost never correct, a linear model often
serves as a good and interpretable approximation to the
unknown true function f(X).



A linear model f1(X) = By + 51X gives a reasonable fit here

A quadratic model fo(X) = o+ f1X + B2 X2 fits slightly
better.
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Simulated example. Red points are simulated values for income
from the model

income = f(education, seniority) + €
f is the blue surface.
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More flexible regression model fg(education, seniority) fit to
the simulated data. Here we use a technique called a thin-plate

spline to fit a flexible surface. We control the roughness of the
fit (chapter 7).
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Even more flexible spline regression model

fs(education, seniority) fit to the simulated data. Here the
fitted model makes no errors on the training data! Also known
as overfitting.



Some trade-offs

e Prediction accuracy versus interpretability.
— Linear models are easy to interpret; thin-plate splines
are not.

e Good fit versus over-fit or under-fit.
— How do we know when the fit is just right?

e Parsimony versus black-box.

— We often prefer a simpler model involving fewer
variables over a black-box predictor involving them all.



Interpretability
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Assessing Model Accuracy

Suppose we fit a model f (z) to some training data
Tr = {z;,v;}Y, and we wish to see how well it performs.

e We could compute the average squared prediction error
over Tr:
MSEt, = Avejere[ys — f(xi)]?
This may be biased toward more overfit models.

e Instead we should, if possible, compute it using fresh test
data Te = {z;,y; }}1:

MSETe = AV@ieTe [yz - f(l'l)]Q
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Black curve is truth. Red curve on right is MSEr., grey curve is
MSET,. Orange, blue and green curves/squares correspond to fits of
different flexibility.



Bias-Variance Trade-off

Suppose we have fit a model f (x) to some training data Tr, and
let (z0,y0) be a test observation drawn from the population. If
the true model is Y = f(X) + € (with f(z) = E(Y|X = z)),
then

N 2 N N
E (yo _ f(z:o)) — Var(f(z0)) + [Bias(f(x0))]2 + Var(e).

The expectation averages over the variability of yy as well as

the variability in Tr. Note that Bias(f(z0))] = E[f(x0)] — f(z0).
Typically as the flexibility of f increases, its variance increases,
and its bias decreases. So choosing the flexibility based on
average test error amounts to a bias-variance trade-off.



Classification Problems

Here the response variable Y is qualitative — e.g. emalil is one
of C = (spam, ham) (ham=good email), digit class is one of
C ={0,1,...,9}. Our goals are to:
e Build a classifier C'(X) that assigns a class label from C to
a future unlabeled observation X.
o Assess the uncertainty in each classification

e Understand the roles of the different predictors among
X =(X1,Xo,...,Xp).
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Is there an ideal C'(X)? Suppose the K elements in C are
numbered 1,2,..., K. Let

pp(x) =Pr(Y =kl X =x), k=1,2,... K.

These are the conditional class probabilities at x; e.g. see little
barplot at x = 5. Then the Bayes optimal classifier at x is

C(x) = j if pj(x) = max{pi(x),p2(2),...,pr(z)}



Classification: some details

Typically we measure the performance of C (z) using the
misclassification error rate:

Errre = Avejetel [y # é(%)]

The Bayes classifier (using the true py(z)) has smallest
error (in the population).

Support-vector machines build structured models for C(z).

We will also build structured models for representing the
pr(z). e.g. Logistic regression, generalized additive models.



Example: K-nearest neighbors in two dimensions
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