Designed Experiments

- How many levels of X should be used?
- What should the smallest/largest values be for X?
- How should other levels be spaced along the X-axis?
- How many observations should be taken at each level?

$$\hat{\beta}_{1} \sim N\left(\beta_{1}, \frac{\sigma^{2}}{\sum (x_{i} - \overline{x})^{2}}\right) \qquad SE(\hat{\beta}_{1}) = \sqrt{\frac{S_{Y|X}^{2}}{\sum (x_{i} - \overline{x})^{2}}}$$

Multiple Linear Regression (MLR)

• General Case: k Predictor variables

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \dots + \beta_{k}X_{ik} + \varepsilon_{i}, \quad \varepsilon_{i}^{iid} \sim N(0, \sigma^{2}) \quad i = 1, 2, \dots, n$$

- Assumptions: similar to the assumptions as for Simple Linear Regression
 - \circ **Existence** for any combo of indep. variables X_i , Y is a RV with finite mean & variance
 - \circ **Independence** Y_i are independent of each other
 - o **Linearity** the mean value of Y for each combo of X_i is a linear function of the β_i
 - \circ **Homoskedasticity** the variance of Y is the same for any combo of X_i
 - o **Normality** for any combo of X_i , Y has a normal distribution
- Specific Case: *k*=2 Predictor variables

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \varepsilon_{i}$$
, $\varepsilon_{i}^{iid} \sim N(0, \sigma^{2})$ $i = 1, 2, ..., n$

o <u>Decomposition of the Total SS</u>

$$\sum_{i} [Y_{i} - \overline{Y}]^{2} = \sum_{i} (Y_{i} - \hat{Y}_{i})^{2} + \sum_{i} (\hat{Y}_{i} - \overline{Y})^{2}$$

$$SS(Total) = SS(Error) + SS(Regression)$$

$$SSY = SSE(x_{1}, x_{2}) + SSR(x_{1}, x_{2})$$

ANOVA Table

Source	d.f.	Sum of Squares	Mean Square	F
Regression	2	$SSR(x_1,x_2)$	$SSR(x_1,x_2)/2$	$MSR(x_1,x_2) / MSE$
$\int X_1$	1	SSR_1	$SSR_1/1$	
$\bigcup X_2$	1	SSR_2	$SSR_2/1$	
Error(Residual)	n-3	SSE	MSE=SSE/(n-3)	
Total	n-1	SSY		VI -

- \circ SSR, SSE, R^2 depend on the model chosen
 - $R^2(x_1, x_2) = SSR(x_1, x_2) / SSY$
 - $R^2(x_1) = SSR(x_1) / SSY$

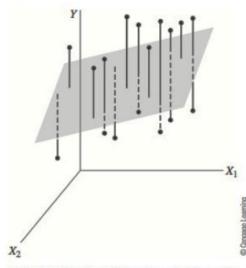


FIGURE 8.2 Best-fitting plane for three-dimensional data