ANalysis Of VAriance Table

FIGURE 6.4 Predictions of Y using and not using X

FIGURE 7.1 Variation explained and unexplained by straight-line regression

• Decomposition of the Total SS

$$\sum_{i} \left[Y_{i} - \overline{Y} \right]^{2} = \sum_{i} \left[(Y_{i} - \hat{Y}_{i}) + (\hat{Y}_{i} - \overline{Y}) \right]^{2}$$

$$= \sum_{i} (Y_{i} - \hat{Y}_{i})^{2} + 2(Y_{i} - \hat{Y}_{i})(\hat{Y}_{i} - \overline{Y}) + (\hat{Y}_{i} - \overline{Y})^{2}$$

$$= \sum_{i} (Y_{i} - \hat{Y}_{i})^{2} + \sum_{i} (\hat{Y}_{i} - \overline{Y})^{2}$$

$$SS(Total) = SS(Error) + SS(Regression)$$

$$SST = SSE + SSR$$

• ANOVA Table

Source	d.f.	Sum of Squares	Mean Square	F
Regression (X)	1	SS(Regression)	MSR = SSR / 1	MSR / MSE
Residual/Error	n-2	SS(Error)	MSE=SSE/(n-2)	
Total	n-1	SS(Total)		

Testing the assumption of Linearity

- <u>Lack of Fit (LOF) test</u>: possible when there are repeated observations at different x-levels
 - Split SSE into 2 parts
 - Amount due to variation in *y*-values for a fixed *x*-value ("pure" experimental error)
 - Amount due to non-linear terms not included in the model ("lack of fit") $SSE = SS_{PureError} + SS_{LOF}$
 - o If the linear regression model is correct $S^2_{Y|X} = MSE$ gives an unbiased estimate of σ^2 If the linear regression model is NOT correct, $S^2_{Y|X}$ gives a biased estimate (inflated)
 - O Suppose there are k different x-levels with repeated observations:

At x_1 we have $y_{11}, y_{12}, \dots, y_{1 n1}$ (n_1 observations with variance s_1^2) At x_2 we have $y_{21}, y_{22}, \dots, y_{2 n2}$ (n_2 observations with variance s_2^2)

• • •

At x_k we have $y_{k1}, y_{k2}, \dots, y_{2nk}$ (n_k observations with variance s_k^2)

- $n_1 + n_2 + \cdots + n_k = n_{PE}$ observations for pure error $(df_{PE} = n_{PE} k)$
- Pooling s_1^2 , s_2^2 , ..., s_k^2 gives $s_p^2 = \sum_{i=1}^k \frac{(n_i 1)s_i^2}{n_{PE} k} = \sum_{i=1}^k \sum_{j=1}^{n_i} \frac{(y_{ij} \overline{y}_i)^2}{n_{PE} k} = \frac{SS(PureError)}{df_{PE}}$

Source	d.f.	Sum of Squares	Mean Square	F
Regression	1	SSR	SSR / 1	MSR / MSE
Error(Residual)	n-2	SSE	SSE/(n-2)	
Lack of Fit	n -2- df_{PE}	SSE- $SS(PE)$	$SS(LOF)/df_{LOF}$	
Pure Error	df_{PE}	SS(PE)	$SS(PE)/df_{PE}$	
Total	n-1	SSY		

o <u>Hypotheses</u>:

 H_0 : There is no lack of fit (the regression is linear in x)

 H_A : There is lack of fit (the regression is <u>not</u> linear in x)