Confounding and Interaction

- Interaction:
 - When the relationship between 2 variables of interest is different at different levels of another extraneous variable(s)
 - Interaction should be assessed before confounding is assessed.
- <u>Confounding:</u>
 - When the relationship between 2 variables of interest is *meaningfully* different when another extraneous variable(s) is included (vs. not included) in the model
 - An extraneous variable may be kept in a model in order to control for confounding.
- Interaction Modeling 3 approaches
 - o Include only interactions that are anticipated a-priori based on previous studies
 - <u>Challenge</u>: a-priori information about potential interactions may be limited
 - Include all possible interactions
 - For any higher-order interaction included, typically include the corresponding lowerorder interactions
 - E.g., predicting the dependent variable (\underline{DV}) based on 3 independent variables (\underline{IVs})

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_1 X_2 + \beta_5 X_1 X_3 + \beta_6 X_2 X_3 + \beta_7 X_1 X_2 X_3 + \varepsilon$$

- <u>Challenge</u>: the number of terms may be too large for reliable estimates of all effects
- Include only interactions with the DV and *primary* IV(s) a compromise for reliability
 - E.g., suppose X_1 is the primary IV and $X_2 \& X_3$ are of less interest

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_1 X_2 + \beta_5 X_1 X_3 + \varepsilon$$

• Controlling for Confounding

Let $C_1, ..., C_p$ be *p* potential confounders and $\mathbf{C}^* \& \mathbf{C}^{\#}$ be different subsets of the C_i Let $\beta_{1|C_i}^{\circ}$ be the value of the regression coefficient for X_i after including C_i in the model Let β_1° be the value of the regression coefficient for X_i alone

- Confounding exists if $\beta_{1|C}^{\circ}$ is *substantially* different from β_{1}° r_{YX1} is *substantially* different from $r_{YX1|C}$
- o Identifying a minimal set of confounders to control for
 - Determine a baseline estimate for the relationship of interest $\beta_{1|C^*}^{\wedge}$
 - Any subset of confounders $\mathbf{C}^{\#}$ where $\beta_{1|\mathbf{C}^{\#}}^{2} \approx \beta_{1|\mathbf{C}^{*}}^{2}$ provides equivalent control
 - Choose a subset with equivalent control that leads to high precision

> EDUC2 <- dat\$EDUC^2			
> lm(LSTART ~ EDUC, data=dat)\$coef	#(Intercept)	EDUC	
	# 7.334	0.105	
<pre>> lm(LSTART ~ EDUC+EDUC2, data=dat)\$coef</pre>	#(Intercept)	EDUC	EDUC2
	# 9.715	-0.250	0.013
> lm(LSTART ~ EDUC+AGE, data=dat)\$coef	#(Intercept)	EDUC	AGE
	# 7.049	0.113	0.005
> lm(LSTART ~ EDUC+JOBCAT, data=dat)\$coef	#(Intercept)	EDUC	JOBCAT
	# 7.675	0.049	0.183
L.A <- lm(LSTART ~ AGE, data=dat)			
L.J <- lm(LSTART ~ JOBCAT, data=dat)			
E.A <- lm(EDUC ~ AGE, data=dat)			
E.J <- lm(EDUC ~ JOBCAT, data=dat)			
<pre>cor(dat\$LSTART, dat\$EDUC) #[1] 0.7662246</pre>			
cor(L.A\$resid, E.A\$resid) #[1] 0.7680637			
cor(L.J\$resid, E.J\$resid) #[1] 0.5415896			