9. a
$$H_0$$
: $\beta_1 = \beta_2 = 0$ vs. H_A : $\beta_1 \neq 0$ and/or $\beta_2 \neq 0$ in the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + E$.

$$F = 20.03$$
 df: 2, 4
 $P = 0.0082$

At $\alpha = 0.05$, we would reject H_0 and conclude that at least one $\beta_i \neq 0$.

b Variables-added-last tests:

i
$$H_0$$
: $\beta_1 = 0$ vs. H_A : $\beta_1 \neq 0$ in the model $Y = \beta_0 + \beta_1 X_1 + E$.

$$F = \frac{\text{R egression SS}(X_1)}{[\text{SSY - Regression SS}(X_1)]/5} = \frac{5732.2228}{[6305.7143 - 5732.2228]/5} = 49.98$$
df: 1, 5
 $P < 0.001$

At
$$\alpha = 0.05$$
, we would reject H_0 and conclude that $\beta_1 \neq 0$.
ii H_0 : $\beta_2 = 0$ vs. H_A : $\beta_2 \neq 0$ in the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + E$.

$$F(X_2|X_1) = 0.01$$
 df: 1, 4
 $P = 0.9344$

At $\alpha = 0.05$, we do not reject H_0 and conclude that $\beta_2 = 0$.

c i
$$H_0$$
: $\beta_2 = 0$ vs. H_A : $\beta_2 \neq 0$ in the model $Y = \beta_0 + \beta_2 X_2 + E$.

$$F = \frac{\text{Regression SS}(X_1, X_2) - \text{Regression SS}(X_1 \mid X_2)}{[\text{SSY -(Regression SS}(X_1, X_2) - \text{Regression SS}(X_1 \mid X_2))]/5}$$

$$= \frac{5733.3213 - 1402.3153}{[6305.7143 - (5733.3213 - 1402.3153)]/5} = 10.97$$
df: 1, 5
$$0.01 < P < 0.025$$

At $\alpha = 0.05$, we would reject H_0 and conclude that $\beta_2 \neq 0$.

ii
$$H_0$$
: $\beta_1 = 0$ vs. H_A : $\beta_1 \neq 0$ in the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + E$. $F(X_1|X_2) = 9.80$ df: 1, 4 $P = 0.0352$

At $\alpha = 0.05$, we reject H_0 and conclude that $\beta_1 \neq 0$.

e Based on the hypothesis tests in this problem, X₁ is the only necessary predictor. If one considered X₂ to be an important confounding variable, it may be considered a necessary predictor along with X₁ -see chapter 11 for a discussion of confounding.