Basic Statist'ics:
A Review

3.1 Preview

This chapter reviews the fundamental statistical concepts and mc!hO(‘.ls th:'lt are needed to
understand the more sophisticated multivariable techniques discussed in this text. Through
this review, we shall introduce the statistical notation (using conventional symbols whenever
ible loyed throughout the text.

POSSI%“Z I‘;:)gd im assoc?nrcd with the word statistics involves the methods and procedures
for collecting, classifying, izing, and analyzing d:ua..Wc shall focus. on th.c latcer ewo
activities here. The primary goal of most statistical analysis is to make statistical inferences—
that is, to draw valid conclusions about a population of items or measurements based on
information contained in a sample from that population. . )

A population is any set of items or measurements of interest, and a .ramp.le is any sub-
set of items selected from that population. Any characteristic of that popl_xlmon is mllc(.i a
parameter, and any characteristic of the sample is termed a sratistic. A s(inisn.c may be consid-
ered an estimate of some population parameter, and its accuracy of estimation may be good
or bad. ’ . )

Once sample data have been collected, it is uscful, prior to analysis, to examine the dar.a
using tables, graphs, and descriptive statistics, such as the sample mean and the sample vari-
ance. Such descriptive efforts arc important for representing the essential features of the data
in easily interpretable terms. : .

Following such ination, statistical inferences are made through two related actiy-
ities: estimation and hypothesis testing. The techniques involved here are !3nscd on certain
assumptions about the probability pattern (or distribution) of the ( variables being
studied. ) .

Each of the preceding key terms—descriptive statistics, random variables, probability

o

distril and hypothesis testing—will be reviewed in lh!:. sections that follow.

3.2 Descriptive Statistics

3.2 Descriptive Statistics

Adescriptive statistic may be defined as any single numerical measure computed from a setof data
tharis designed to describea particular aspect or characteristic of the data set. The most common
types of descriptive statistics arc measures of censral tendency and of variability (or dispersion).

The central tendency in a sample of dara is the “average value” of the variable being
observed. OF the several measures of central tendency, the most commonly used is the sam-
ple mean, which we denote by X whenever our underlying variable is called X, The formula
for the sample mean is given by

> X

¥ =i
n
where 7 denotes the sample size; X, X3, . . . , X, denote the # measurements (or observed val-

ucs) of X; and 3 denotes summation. The sample mean X—in contrast to other measures of
central tendency, such as the median or mode—uses in its computation all the observations
in the sample. This property means thac X is necessarily affected by the presence of extreme
X-values, so in some cases it may be preferable to usc the median instead of the mean.

M es of central tendency (such as X) do no, however, completely summarize all
features of the data. Obviously, two sets of dara with the same mean can differ widely in
appearance (e.g., an X of 4 results both from the values 4, 4, and 4 and from the values 0, 4,
and 8). Thus, we customarily consider, in addition to X, measures of variability, which tell
us the extent to which the values of the measurements in the sample differ from one another.

The two measures of variability most often considered are the sample variance and the
sample standard deviation. These are given by the following formulas when considering
observations X, X3, ..., X, ona single variable X:

LS - X , @B.1)

n—1 i

Sample standard deviation = § = 4 ';tl—l. X -X) (3.2)
—li=1 X

The formula for §? describes variability in terms of an average of squared deviations from the
sample mean—although (# — 1) is used as the divisor instead of n, due to considerations that
make 5% 2 good estimator of the variability in the entire population.

A drawback to the use of %is that it is expressed in squared units of the underlying vari-
able X. To obrain a measure of dispersion that is expressed in the same units as X, we simply
take the square root of Sand call it the sample standard deviation S, Using Sin combination
with X thus gives a fairly succince picture of both the amount of spread and the center of the
data, respectively.

Sample variance = §2 =
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‘When more than one variable is being considered in the same analysis (as will be the case 30
throughout this text), we will use different leters and/or different subscripts to differentiate i o Maximum  100%
among the variables, and we will modify the notations for mean and variance accordingly. i
For example, if we are using X to stand for age and ¥'to stand for systolic blood pressure, we 20+
will denote the sample mean and the sample standard deviation for each variable as (X, Sy |
and (Y, Sy), respectively.

1.0

All statistical analyses begin with an examination of descriptive statistics computed from
the data st ac hand. However, often the most direct and revealing way to examine the data
is to make a series of plots. We describe three types of simple but useful plots: histograms
(especially stem-and-leaf versions), schematic plots, and normal probability plots.

Suppose that we have collected data on the amount of error that occurs in measurements
taken with a particular type of instrument. We think the error may be related to the age of
the instrument; therefore, readings are taken with 17 instruments of varying ages; the age of -
cach instrument and the error in its measurement are recorded.

In our descriptive analysis of these data, first we examine a frequency histogram of the -20} g
measurement errors, shown in Figure 3.1(a). We observe that the errors appear to be quite | K
symmetrically distributed around 0 (i.e., the mean and the median error are roughly 0) and 5l o Minimum 0% §

that the picture approximates a bell-shaped curve. (See Section 3.3.2 for more information
on data that follow this pattern.) No outliers (data points that are extreme in value and that
may represent data errors) or other anomalies appear to be present.
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FIGURE 3.1  Frequency histogram and stem-and-leaf
diagram of instrument error data (n = 17)

The frequency histogram conveys even more information if it is converted into a
stem-and-leaf diagram, as in Figure 3.1(b), which shows the actual data values while main-
taining the shape of the histogram. In the st d-leaf diagram, the top-most value has a
stem of 2 and a leaf of 7, indicating that the original data value is 2.7. Beneath that is a value
of 1.4 (stem 1, leaf 4); after that are two values that both share a stem of 0 and have leaves
equal to 1 (i.c., both values are 0.1), followed by a value of 0.2, and so on. The last value
shown in the plot is —2.8 (stem —2, leaf 8).

The second kind of uscful plot is a schematic plot. Figure 3.2 presents a schematic plot of
the error data. A schematic plot is based entirely on the order of the values in the
sample. Quartiles are the most important order-based statistics for the schematic plot. The first
quartile, or 25th percentile, is the value at or below which 25% of the data values lie; the second

3.3

first quartile, the second quartile (the median), and the third i i

1 » th ; s quartile (see Figure 3.2). Th
scale is determined by the units and range of the data, The mean is indica?cd !;Jy n)+ o:
the bafkbonc of th‘: ploc. If the data are symmetric, the mean and median will be close in
value (i.c., the + will be marked on or close to the middle horizontal line), and the distances

b.cl:\:vccn the first and second quartiles and berween th
similar in size. The whiskers (vertical lines) extend fro

c second and third quartiles will be
m the box as far as the data extend

up or down, to a limit of 1.5 IQRs (in the vertical direction). An O at the end of a whisker
indicates a moderate oulier. Referring to Figure 3.2, we see one positive moderate outlier

and one negative moderate outlier.

Random Variables and Distributions

The term random variable is used to denote a variable
sidered outcomes of a stochastic or random experime

whose observed values may be con-
nt (e.g., the drawing of a random
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quartile, or 50th percentile (or median), is the value at or below which 50% of the data values

 lie; the third quartile, or 75th percentile, is the value at or below which 75% of the data values S sample). The values of such a variable in a parcicular sample, then, cannot be anticipated

with certainty before the sample is gathered. Thus, if we select a random sample of persons
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from some community and determine the systolic blood p (W), chol ol level (X),
race (¥), and sex (Z) of each person, then W, X, ¥, and Z are four random variables whose
particular realizations (or obscrved values) for a given person in the sample cannot be known
for sure beforchand. In this text, we shall denote random variables by capital italic letters.
The probability pattern that gives the relative frequencies associated with all the possible

values of a random variable in a population is gencrally called the probability distribution of
the random variable. ‘We represent such a distribution by a table, graph, or mathematical *
expression that provides the probabilities corresponding to the different values or ranges of
values taken by a random variable.

* Discrete random variables (such as the number of deaths in a sample of patients or the

. number of arrivals at a clinic), whose possible values are countable, have (gappy) distributions

thac are graphed as a series of vertical lines; the heights of these lines represent the prob-
abilities associated with the various possible discrete outcomes (Figure 3.3(a)). Continuons
random variables (such as blood pressure and weight), whose possible values are uncount-
able, have (nongappy) distributions that are graphed as smooth curves; an area under such
a curve represents the probability associated with a range of values of the continuous variable
(Figure 3.3(b)). We note in passing that the probability of a continuous random variable tak-
ing one particular value is 0 because there can be no area above a single point. For discrete dis-
tributions, the sum of the probabilities for all possible values of Xis equal to 1. For continuous
distributions, the total area under the curve representing the distribution is equal to 1.

P(X = a) g=mmmm Pla<X<b)

I’l L,

(a) Discrete distribution

a
(b) Continuous distribution

FIGURE 3.3 Discrete and continuous distributions: P(X = a) is read: “The probability that X
takes the value a”

In the next two subsections, we will discuss two particular distributions of enormous
practical importance: the binomial (a discrete distribution) and the normal (a continuous
distribution).

The Binomial Distribution
A binomial random variable describes the number of occurrences of a particular event in a
series of n trials, under the following four conditions:’ )

1. The n trials are conducted identically.

2. Thereare two possible outcomes of each trial: “success” (i.c., the event of interest
occurs) or “failure” (i.c., the event of interest does not occur), with probabilities J
arand 1 — 77, respectively.

S A o e N AR A 3 A B P

3.3.2

3.3 Random Variables and Dislribﬁlions

3. The outcome of any onc trial is independent of (j.c.. i
comenbung e ) p (i.e., is noc affected by) the out-

4. The probability of success, 7r, remains the same for all trials.

For example, the distribution of the number of lung cancer deaths in a random sample of
n= 4013 Pl:m'ns \:vou!d be considered binomial only if the four conditions wereall satil:ﬁed,
:sc»cv::aui n f('o l‘e n::l::;rlx;l.l\:;::ot:lf the number of persons in a random sample of n = 70 who favor
The two elements of the binomial distribution that one must specify to determine the
precise s}.mpc of the probability distribution and to compute binomial probabilities are the
sample size » and the parameter 7. The usual notation for this distribution s, thereft
B(n, ). If X has a binomial distributi on, itis c 1y to write ' ' o

X~ B(n,m)

where ~ stands for “is distributed as.” The probabili is di i
2ble Xis gven by she et  probabi 1ty»formula for this discrete random vari-

PX=j)=,Gul1 ==y~ j=0,1,.,n

where ,C; = nl/[ ! (n — i) - L
Sﬂltc[cd’j/n ot : n{ 'Ej (n = j)1] denotes the number of combinations of » distince objects

The Normal Distribution

The normal distribution, denoted as N, o), where
! A ) 0), & and o are the two pa o1
described by the well-known bell-shaped curve (Figure 3.4). The p:immcxcrsir(:ltrlln: :::ax:)s
zl:nd ?[; (r.hc st“a;dnrd dcl\l'intion) characterize the center and the spread, respectively, of the
istribution. We generally attach a subscript to th istinguish.
variables; that is, we often write i P frand todiinguish among

X~ N, ox)

to denote a normally distributed X,
An important property of any normal curve is its 7, which disti it from
some other continuous distributions that we will discuss later. This symmueu-y property

:jsis?::ﬁ(]i‘;;lll,)fu' when using tables to determine probabilities or percentiles of the normal

Ny, ox)

. Hx
FIGURE 3.4 A normal distribution
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i ents about a normally distributed mndor.n variable X that are ?F
the f!;:(r’rl\m;i(l:ztyss;[:‘b;l require for computation the use of a smg'l;I r:;ble (T: 32!; ,1;\0.’1"1:1
Appendix A). This table gives the probabilities (or areas) assocxitcd with the :ra: o
distribution, which is a normal distribution with u = 0 and o= 1. Itis customary
a standard normal random variable by the letter Z, so we write

Z~N(0, 1) .
To compute the probability P(z = X < #) for an X that is N(px, 0'x), we must transform
(i.e., standardize) X o Z by applying the conversion formula

7= X px (3.3)
ox

to each of the clements in the probability statement about X, as follows:

- b~ px
4" Bx
P(asXsb)=P(—oTSZs = )

i ili in the N(0, 1) rables.
he equivalent probability statement about Z in the )
We tl}::ll"l ,Lonodlzl:s‘ar:;ﬂs, this rufc also applies to the sample mean X whenchr lrhc ur(llc)‘lcrtlzc
ing variable X is normally distributed or whenever the sample size is moderately large (by !
chntml Limit Theorem). But because the standard deviation of X is o'/ V/n, the conversion

formul4 has the form
X- Hx
Ix
v,-‘ o,
i ich the area under the probability
ile is a value of a random variable X below whic ;
distrﬁ;{x’:{:;"l’:a: fccnain specified value. We dcno;_c the (130}7)[‘:1 pcrccn:;l: :cfl):f::»z gg? :u;i
i it as in Fi here p is the amount of area under the curve : e
e A i h ion formula (3.3). Since the pro-
ini fe iven p, we must again use the conversi
g:::: ::::ngr)c(g [l":;: \Ec ﬁrsfdcxerminc Z, and then convert back to X}, however, we gencrally”

rewrite the conversion formulaas

Z=

(3.4)
X, = px+ ox2,

p=PZ<2Z)

p=PX<X,)
.

o X

X Tz
(a) (b)
FIGURE 3.5 The (100p)th percentiles of X and Z
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For example, if uy = 140 and o x =40, and we want to find X, 5, the N(0, 1) table firse gives
us Zy 95 = 1.645, which we convert back to Xo9s as follows:

Xoos = 140 + (40)Zy95 = 140 + 40(1.645) = 205.8

Formulas (3.3) and/or (3.4) can also be used to approximate probabilities and percen-
tiles for the binomial distribution B(n, w) whenever 1 is moderately large (c.g., 7n > 20).
Two conditions are usually required for this approximation to be accurate: nr > 5 and
#(l = ) > 5, Under such conditions, the mean and the standard deviation of the approxi-
mating normal distribution are '

K=nm and o= Var(l - )

A normal probabiliy plo assesses how well the sample data adhere to a normal distri-
bution, in order to help infer whether the data are sampled from a normally distribuced
population. The ordered data values are plotted against corresponding percentiles from an
estimated normal distribution. Plots thar are linear in appearance are consistent with the
assumption of normality, since the lative relative frequencies for a normal distribution
plot as a straight line. For example, in Figure 3.6, plot (a) supports the assumption that the
data constitute a random sample from a normal distribution; the other plots suggest devia-
tions from this assumption.

The skewness and kurtosis statistics can also be helpful in ing normality. Sk
indicates the degree.of asymmetry of a distribution. Just as variance is the average squared
deviation of observations about the mean, skewness is the average of cubed deviations about
the mean. To simplify ¢ parisons between samples and to help account for estimation in
small samples, skewness is usually computed as ’

0= (725)(2) 355

For large , sk(X) should be approximately equal to 0 fora random sample size of 7 from any
symmetric probability distribution (such as 2 normal distribution). Positive values of sk(X)
indicate that relatively more values are above the mean than below it; the sample values are
thus said to be “positively skewed.” A negative value for sk(X') indicates that relatively more
values are below the mean than above it.

Kurtosis indicates the heaviness of the tails relative to the middle of a distribution.
Because kurtosis is the average of the fourth power of the deviations about the mean, it is
always nonnegative. Standardized kurtosis may be computed as

_ n(n + 1) ]( 1 ) "(X—f)‘
Kl{r()() - [(n =2)(n=3)J\n—-1 ,.2, Sy
The term in brackets, which approaches 1 as increases, helps to account for estimation based
on a small sample. Since standardized kurtosis for a standard normal distribution is 3, this
value is often subtracted from Kur(X). The resulting statistic can be as small as ~3 for flac

distributions with short tails; it is approximately zero for moderate to large random samples
from a normal distribution, and it is positive for heavy-tailed distributions. Thus, the positive

23
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FIGURE 3:6 Normal probability plots

kurtosis value in our example (the reader is encouraged to do the required calculations) sug-
gests a distribution with tails heavier than for a normal distribution. Skewness and kurtosis
statistics are highly variable in small samples and hence are often difficult to interpret.

3.4 Sampling Distributions of t, %, and F

The Student’s ¢, chi-square (x?), and Fisher's F distributions are particularly important in
statistical inference making,
The (Student’) ¢ distribution (Figure 3.7(a)), which like the standard normal distribution
is symmetric about 0, was originally developed to describe the behavior of the random variable
\

T=)?“}Lx 5 ‘ ' )

(3.5)

%)
Sk

3.4 Sampling Distributions of 1, x? and F

P=P(T,<n,,)
)

0 lv.r‘
(a) Student's 1 distribution

o

P=P(3<x3,)

0 B
(b) x2 distribution

P=P(F < Fyyp)

0 Fovvrp
(c) F distribution

FIGURE 3.7 The t, % and F distributions

i

which represents an alternative to

"2=M

Ix
Va
whenever the population variance 0% is unl and is 1 by 5%
X " W 1 by Sx. The d inator of
(3:.3). {i\’/ V/n, is the estimated standard error of X. When the underlying ii(isu-ibution of Xis no:—
n; :u}': when X :u'1d .S}- are c:nlculamd using a random sample from that normal distribution, then
( .52ﬁ c::is .du: e distribution with n — 1 degrees of freedom, where n — 1 is the quantity that must be
specified in order to look up tabulated percentiles of this distribution. We denote all this by writing
X = py e
&
\Z
It has generally been shown by statisticians that the ¢ distribution i i i
ate for describing the behavior of a random variablé n; thl:::wl:;it}:;;: eremessppropr:

T=

=YK
r= 55 (3'®
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where @ is any random variable that is normally distributed with mean 25 and stand:u:d .dcvi-
ation &g, where Sy is the estimated standard error of 6, and where 6 and S are sr.:ms‘umlly
independent. For example, when random samples are taken from two normally distributed
populations with the same standard deviation (c.g., from N(u,, o) and N(u,, 7)), and we
consider 6 = X; — X; in (3.6), we can write

% — %) = (i =
T=( 1 2) — (1 F-z)'_‘”m‘l_z

] +_l_
S’ -"_l "
where
oo = S (= 08 o
4 mtn—2

estimates the common variance o in the two populations. The quantity S; if calleda paale.d
sample variance, since it is calculated by pooling the data from both samples in order to esti-
mate the common variance 0% ' . o

The chi-square (or x*) distribution (Figure 3.7(b)) is a nonsymmetric distribution and
describes, for example, the behavior of the nonnegative random variable

(n=1)s* (3.8)
o2
where §% is the sample variance based on a random sample of size # from a normal distri-
bution. The variable given by (3.8) has the chi-square distribution with 7 — 1 degrees of
freedom:
n—1)§?
'('o—z)' ~Xn-1

Because of the nonsymmetry of the chi-square distribution, both upper and lower percentage
points of the distribution need to be tabulated, and .such2 tabulations are .solcly a funcno.n
of the degrees of freedom associated with the particular x disrribu:if)n of interest. The chi-
square distribution has widespread application in analyses of mtcgor{ml r:lat:x:

The F distribution (Figure 3.7(c)), which like the chi-square t?mnbuuon 1s_skcw.cd to the
right, is often appropriate for modeling the probability disrrgbuuon of the ratio of m«%cpcn-
dent estimators of two population variances. For example, given randolm samgles o(;' sizes 7y
and n, from N(iy, ) and N(py, 02), respectively, so that estimates S} and S; ofoiand o3
can be calculated, it can be shown that

$}a? : ' (3.9
/a3 N\

3.5

3.5 Statistical Inference: Esti

has the F distribution with #, ~ 1 and n, — 1 degrees of frecdom, which are called the
numerator and denominator degrees of freedom, respectively. We write this as

2 2
Sio;
Siat

“-Fn.-l.n;-l

The F distribution can also be related to the # distribution when the numerator degrees
of freedom equal 1; that is, the squarc of a variable distributed as Student’s ¢ with v degrees of
freedom has the Fdistribution with 1 and v degrees of freedom. In other words,

T*~F,, ifandonlyif T—s,

Percentiles of the 4, x% and F distributions may be obtained from Tables A.2, A.3,
and A4 in Appendix A. The shapes of the curves that describe these probability distribu-
tions, together with the notation we will use to denote their percentile points, are given in
Figure 3.7.

Statistical Inference: Estimation

Two general categories of statistical inference—estimation and hypothesis testing—can be
distinguished by their differing purposes: estimation is concerned with quantifying the spe-
cific value of an unknown population parameter; hypothesis testing is concerned with mak-
ing a decision about 2 hypothesized value of an unknown population parameter.

In estimarion, which we focus on in chis section, we want to estimate an unknown
parameter 6 by using a random variable 6 (“theta hat,” called a point estimator of 6). This
point estimator takes the form of a formula or rule. For example,

X=23X o =—— 3 (x- X
n i n—=17

tells us how to calculate a specific point estimate, given a particular set of data.

To estimate a parameter of interest (e.g., a population mean g, a binomial proportion 7r,
a difference between two population means g1, — 1y, or a ratio of two population standard
deviations o'y /a3), the usual procedure is to sclect a random sample from the population or
populations of interest, calculate the point estimate of the parameter, and then associate with
this estimate a measure of its variability, which usually takes the form of a confidence interval
for the parameter of interest.

As its name implies, a confidence interval (often abbreviated CI) consists of two random
boundary points berween which we have a certain specified leve! of confidence that the popu-
lation parameter lics. More specifically, a 95% confidence interval for a parameter 6 consists
of lower and upper limits determined so that, in many repeated scts of samples of the same
size, about 95% of all sitch intervals would be expected to contain the parameter 0. Care
must be taken when interpreting such a confidence interval not to consider 8 a random vari-
able that cither falls or does not fall in the calculated interval; rather, 8 is a fixed (unknown)
constant, and the random quantities are the lower and upper limits of the confidence inter-
val, which vary from sample to sample.

27
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We illustrate the procedure for computing a confidence interval with two examples
using random samples from normally distributed populations—one involving estimation
of a single population mean g and one involving estimation of the difference between two
population means gy — . In each case, the appropriate confidence interval has the follow-
ing general form:

(Poim estimate of) " [( Percentile of ) Esr.imntcdsmndnrd)] i (3.10)

the parameter the ¢ distribution/ \ crror of the estimate

This general form also applies to confidence intervals for other parameters considered in
the remainder of the text (c.g., those considered in multiple lysis)

B )

W Example 31 Suppose that we have determined the Quantitative Graduate Record
Examination (QGRE) scores for a random sample of nine student applicants toacertain
graduate department in a university and that we have found X = 520 and § = 50. If
we want to estimate with 95% confidence the population mean QGRE score () for
all such applicants to the department, and we are willing to assume that the population
of such scores from which our random sample was selected is approximately normally
distributed, the confidence interval for p is given by the general formula

X = 'n—l.l-a/l(vs;') 3.11)

which givesthe 100(1 — @)% (small-sample) confidence interval for w when o is unknown.

In our problem, & = 1 — .95 = .05 and # = 9; therefore, by substituting the given informa-

tion into (3.11), we obtain

50
520 = tg_om,(%)

Since 50975 = 2.3060, this formula becomes

50
20 * 2.3060| —=
* # (va)
or
520 * 38.43

Our 95% confidence interval for p is thus given by
(481.57, 558.43)

35 Statistical Inference: Estimation

If we wanted to use this confidence interval to help determine whether 600 is a likely
value for u (i.c., if we werc interested in making a decision about a specific value for u), we
would conclude that 600 is nor a likely value, since it is not contained in the 95% confi-
dence interval for g just developed. This helps clarify the connection berween estimation
and hypothesis testing.

W Example 32 Suppose that we want to compare the change in health status of two
groups of mental patients who are undergoing different forms of treatment for the same
disorder. .‘.Jupposc that we have a measure of change in health status based on 2 question-
naire given to each patient at two different times and that we are willing to assume this
measure of change in health status is approximately normally distributed and has the
same variance in the populations of patients from which we selected our independent

d ples. The data obtained are ized as follows:’

Group 1: m =15, % = 15.1,5 =25
Group2: m = 15, % = 123, .52 =3.0

where the underlying variable X denotes the change in health status between time 1 and time 2.

A 99% confidence interval for the true mean difference (4, — p,) in health status
change berween these two groups is given by the following formula, which assumes equal
population variances (i.e., 0 = o3):

z _3 Y '
X —X;) = Pn.+..,-z.1—n/z:5, —'-';+"—z _ (3.12)

T |

where S, is the pooled standard deviation derived from S2, th led le vari i
7 , the poole
by (3.7). Hore £ havc ! p sample variance given

g2 = (15 = D@5)° + (15 - 1)3.0)°
L4 15+ 15~2

=7.625

50

S, = V7,625 = 2.76

Since a = .01, our percentile in (3.12) is given by #5995 = 2.7633. So the 99% confi-
dence interval for p; — p, is given by

. 1 1

15.1 = 12.3) *:2.7633(2.76), | — + —

( ) 28) 15 15
which reduces to

280 + 278
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3.6

yielding the following 99% confidence interval for g1y — pty:

(0.02, 5.58)
Since the value 0 is not contained in this interval, we conclude that there is statistical
evidence of a difference in health status change between the two groups. |

Statistical Inference: Hypothesis Testing

Although closely related to confidence interval estimation, hypothesis testing has a slightly
different orientation. When developing a confidence interval, we use our sample data to esti-
mate what we think is a /ikely set of values for the parameter of interest. When performing a
statistical test of a null hypothesis concerning a certain parameter, we use our sample data to
test whether our estimated value for the parameter is different enough from the hypothesized
value to support the conclusion that the null hypothesis is unlikely to be true.

The general procedure used in testing a statistical null hypothesis remains basically the
same, regardless of the p being considered. This procedure (which we will illustrate
by example) consists of the following seven steps:

1. ‘Check the assumptions regarding the properties of the underlying variable(s)
being measured that are needed to justify use of the testing procedure under
consideration.

2, State the null hypothesis Hp and the alternative hypothesis .
3. Specify the significance level c.
4. Specify the test statistic to be used and its distribution under Ho.

5. Form the decision rule for rejecting or not rejecting Hy (i.c., specify the rc;ccuon
and nonrejection regions for the test, based on both Hjand ).

G. Compute the value of the test statistic from the observed data.

7. Draw conclusions regarding rejection or nonrcjection of Ho.

M Example33 Let usagain consider the random sample of nine student applicants with

mean QGRE score X = 520 and standard deviation S = 50. The department chair-
person suspects that, because of the declining reputation of the dcpanmcnr. this year's
applicants are not quite as good quantitatively as those from the previous five years for
whom the average QGRE score was 600. If we assume that the population of QGRE
scores from which our random sample has been selected is normally distributed, we can
test the null hypothesis that the population mean score associated with this year's appli-
cants is 60O versus the alternative hypothesis that it is less than 600. The null hypothesis,
in mathematical termis, is Hy: o = 600, which asserts that the population mean g for
this year's applicants does not differ from what it has generally been in the past. The
alternative hypothesis is stated as Hy: pt < 600, which asserts that the QGRE scorcs, on
average, have gotten worse.

h

3.6 Statistical Inference: Hyp is Testing

We have thus far considered the first two steps of our testing procedure:

1. Assumptions: The variable QGRE score has a normal distribution, from which a
random sample has been selected.

2. Hypotheses: Hy: i = 600; Hy: 1 < 600.

Our nexc step is to decide what crror or probability we are willing to tolerate for incor-
rectly rejecting H (i.e., making a Type I error, as discussed lmcr in this chapter). We call this
probability of makmg a Type I error the significance level o'

We usually assign a value such as .1, .05, .025, or .01 to a. Suppose, for now, that we
choose & = .025. Then Step 3 is

3. Usea =.025.

Step 4 requires us to specify the test statistic that will be used to test Hp. In this case,
with Ho: o = 600, we have

X-
S/\/'

Step 5 requires us to specify the decision rule that we will use to reject or not reject Hj.
In determining this rule, we divide the possible values of T'into two sets: the rejection region
(or critical region), which consists of values of T for which we reject Hy; and the nonrejection
region, which consists of those T-values for which we do not reject Hy. If our computed value
of T falls in the rejection region, we conclude that the observed results deviate far enough
from Hj to cast considerable doubt on the validity of the null hypothesis.

In our example, we determine the critical region by choosing from ¢ tables a point
called the critical point, which defincs the boundary between the nonrejection and rejection
regions. The alternative hypothesis (#) informs the determination of the rejection region.
Because our Hy states that the true mean is less than 600, an observed sample mean suffi-
ciently less than 600 would be needed to support this alternative hypothesis. Accordingly,
the test statistic Tabove would need to be negative, and thus all values of T'in the rejection
region would be negative. The value we choose is

—t3,0975 = —2.306

4. T= ~ tg under Hy: o = 600.

in which case the probability that the test statistic takes a value of less than —2.306 under 4y
is exactly & = .025, the significance level (Figure 3. 8) 'We thus have the following decision
rule:

X -
5. Reject Hyif T= ik < —2.306; do not reject Hy otherwise.
s/V9

"Two types of errors can be made when performing a statistical test. A Type Il error occurs if we fail to reject H when
Hyis actually false. We denate the probability of a Type Il error as 3 and call {1 — B) the powerof the test. For a fixed
sample size, o and B for a given test are inversely related; that is, lowering one has the effect of increasing the other.
In general, the power of any statistical test can be raised by increasing the sample size. These issues are described
further in Section 3.7.
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istributi = X - 600
Distribution of T SO
1y disu-ibuu'on\

__—-under Hy: . = 600

a =025

5
n
tadl
1
(=3
S
OCergage Leaming

L
—Ig0975==2306 0 SO

FIGURE 3.8  The critical point for Example 3.3

If Hy stated that g 5 600 (a two-sided hypothesis), then cither an extremely negarive
or an extremely positive value of T'would support this alternative hypothesis, The rejection
region would, therefore, include negative and positive values of 7 Since the region would be
two-tailed, & would be split between the two tails (/2 = 0.0125 here), yielding a decision
rule of rejecting Hy if T< 18,0875 0F if T> £y ¢ 9555,

Now we simply apply the decision rule to our dara by computing the observed value of
T. In our example, since X = 520 and § = 50, our computed T'is

=f—wo_nmwm~_“
S/Vo 50/3 e

The last step is to make the decision about Hybased on the rule given in Step 5:

6. T

7. Since T = —4.8, which lies below —2.306, we reject Hy ac significance level
-025 and conclude that there is evidence that students currently applying to the .
department have QGRE scores that are, on average, /ower than 600,

In addition to performing the procedure just described, we often want to compute a
P-value, which quantifies exactly how unusual the observed results would be if Hy were true,
An equivalent way of describing the P-value s a5 follows: The P-value gives the probability of
obtaining a value of the test statistic thar is ar least as unfavorable to Hy as the observed value,
assuming that Hy is true (Figure 3.9).

—
Distribution of 7 = X-= 600
i SNV
1g distribution —__ under Hy: = 600
P = Prob(7 < —4.8 under Hp)
; r--en §
T=-48 0 - SIS
(Calculated value §
of test statistic) e

FIGURE 3.9 The P-value
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To getan idea of the approximate size of the P-value in this example, our approach is to
determine from the table of the distribution of 7" under Hy the two percentiles that bracket
the observed value of 7. In this case, the two percentiles are

—tg,0005 = —=3.355 and —1g09095 = —5.041

Since the obscrved value of T lies between these two values, we conclude that the arca Pwe
seek lies berween the two areas corresponding to these two percentiles:

.0005 < P < .005

In interpreting this inequality, we observe that the P-valuc is quite small, indicating that
we have observed a highly unusual result if Hy is true. In fact, this P-value is so small as to
lead us to reject Hy. Furthermore, the size of this P-value means that we would reject Hy even
for an e as small as .005.

For the gencral computation of a P-value, the appropriate P-value for a two-tailed test is
twice that for the corresponding one-tailed test. If dn investigator wants to draw conclusions
about a test on the basis of the P-value (e.g, in licu of specifying a a priori), the following

> Pl |

idclines are rec
6

1. If Pis small (less than .01), reject M.
2. If Pis large (greater than .1); do not reject Hy.

3. If.01 < P<.1, the significance is borderline, since we reject Ay for @ =..1 but
not for a = .01. ’

Notice that, if we actually do specify @ a priori, we reject Hywhen P< . n

B Example 3.4 We now look at one more worked example about hypothesis testing—
this time involving a comparison of two means, #1 and p,. Consider the following data
on health status change, which were discussed earlier:

L om=15X =151,5 =25
Group n 5 _1 1 (s, = 276)
Group2: u, =15,X, = 12.3,5, = 3.0

Suppose that we want o test at significance level .01 whether the truc average change
in health stacus differs between the two groups. The steps required to perform this test are

as follows: .

1. Assumptions: We have independ dom samples from two normally distrib-
uted populations. The population variances are assumed to be cqual.

2. Hypotheses: Hy: pty = up; Hy: oy 5 g
3. Usea =.01.
(Xi=X)-0

~ tyg under Hy,
1 1
Spa[— + — .
N on

4. T=
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I _ XK -X%)-0
Distribution of 7= 5, iy + U,

tag distribution —_ under Hy: 1y = o

nIR

, £
5 3
i _R-%-0 §
—1280095 = —2.763 0 fpg0905 = +2.763 S\/lny + Uin; &

FIGURE 3.10 Critical region for the health status change example

5. Reject Hyif | T'| = #5,0995 = 2.763; do not reject Hy otherwise (Figure 3.10).

X, -X,) - 0__151—

1
s’\/"l ' \/ +

7. Since T'= 2.78 exceeds ;50995 = 2.763, we reject Hy at & = .01 and conclude
tha there is evidence the true average change in health status differs between the
tWo groups.

6. T= .78.

The P-value for this test is given, by the shaded area in Figure 3.11. For the ¢ distribution
with 28 degrecs of freedom, we find that £50,995 = 2.763 and t3509995 = 3.674. Thus, P/2
is given by the incquality

1~.9995<-§—<1-—.995

50
001 < P<.01 ]
istributi - &-%-0
Distribution of T = S,\/Tm + Ty
t2g distribution—___ under Hy: py = pg s

i 7 e Bi=%y -0
T=-278 0 T=+278 SpViny + Tin,
. (Calculated value

of test statistic)

" ©Cengage Leaming

FIGURE 3.11 P-value for the health status change example

3.7 Error Rates, Power, and Sample Size

3.7 Error Rates, Power, and Sample Size

Table 3.1 summarizes the decisions thar result from hypothesis testing. If the true state of
nature is that the null hypothesis is truc and if the decision is made that the null hypothesis
is true, then a correct decision has been made. Similarly, if the true state of nature is that
the alternative hypothesis is truc and if the decision is made thac the alternative is true, then
a correct decision has been made. On the other hand, if the truc state of nature is that the
null hypothesis is true but the decision is made to choose the alternative, then a false positive
error (commonly referred to as a Tjpe I error) has been made. And if the true state of nature
supports the alternative hypothesis but the decision is made that the null hypothesis is true,
then a false negative crror (commonly referred to asa Type IT error) has been' made.

e — . True Stato of Nature
Chosen H H
Ho Correct decision False negative decision
(Type |l error)
Hy False positive decision Correct decision
(Type | error) ¥

© Cengaga Leaming

Table 3.2 summarizes the probabilities associated with the outcomes of hypothesis test-
ing just described. If the true state of nature corresponds to the null hypothesis but the alter-
native hypothesis is chosen, then a Type I error has been made, with probability denoted by
the symbol @. Hence, the probability of making a correct choice of Hy given that H is true
must be 1 — a. In turn, if the actual state of nature is that the alternative hypothesis is true
but the null hypothesis is chosen, then a Type Il error has occurred, with probability denoted
by B.In turn, 1 — B s the probability of choosing the alternative hypothesis given that it is
true, and this probability is often called the power of the test.

. Hyvoothesl Truo State of Naturo
; Chosen H Ha
Ho: 1-a 8
H . a 1-8 I
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When we design a research study, we would like to use statistical tests for which both
@ and B are small (i.c., for which there is a small chance of making cither a Type I or a
Type Il error). For a given @, we can sometimes determine the sample size required in the
study to ensure that 8 is no larger than some desired value for a particular alternative hypoth-
esis of interest, Such a design consideration generally involves the use of a sample size formula
pertinent to the research question(s). This formula usually requires the rescarcher to make
educated guesses about the values of some of the unknown parameters to be estimated in the
study (sece Cohen 1977; Muller and Peterson 1984; Kupper and Hafner 1989).

For example, the classical sample size formula used for a one-sided test of Hg: py = pp
versus Hy: 23 > pt, when a random sample of size 7 is selected from each of two normal
populations with.common variance a?, is as follows:

2AZ) -0 + 2, g)o?

nE—
AZ

For chosen values of @, 8, and o, this formula provides the minimum sample size z required
to detect a specified difference A = p; — puy berween py and p, (i.e., to reject Ho: pup —
1 = 0in favor of H: pt; — & = A > 0 with power 1 — B). Thus, in addition to picking
e and B, the rescarcher must specify the size of the population variance o and specify the
difference A to be detected. An educated guess about the value of the unknown parameter
o can sometimes be made by using information obtained from related rescarch studies.
To specify A intelligently, the rescarcher has to decide on the smallest population mean
difference (2 — 1) that is practically (as opposed to statistically) meaningful for the study.

For a fixed sample size, & and B are inversely related in the following sense, illustrated
in Figure 3.12. If onc tries to guard against making a Type I error by choosing a small rejec-
tion region, the nonrejection region (and hence B) will be large. Conversely, protecting
against a Type II error necessitates using a large rejection region, leading o a large value for
a. Increasing the sample size generally d the d deviation of the test statistic
(standard error) and accordingly decreases B; of course, & remains unaffected. A detailed
discussion about power and sample size determination for statistical methods taught in this
text is provided in Chapter 27.

It is common practice to conduct several statistical tests using the same daraset. If sucha
data-sce-specific series of tests is performed and each test is based on a size  rejection region,

Hy ) Hy

FIGURE 3.12 Distributions of a test statistic under the null (Ho) and

alternative (H,) hypotheses, displaying the relati p
between a and B

_ Problems

the probability of making at least one Type I error will be much larger than . This multiple-
testing problem is pervasive and bothersome. One simple—but not optimal—method for
addressing this problem is to employ the so-called Bonferroni correction. For example, if £
tests ate to be conducted and if the overall Type I error rate (i.e., the probability of making at

* least one Type I error in 4 tests) is to be no more than a, then a rule of thumb is to conduct

each individual test at a Type I error rate of a/k.

This simple adjustment ensures that the overall Type I error rate will (at least approxi-
mately) be no larger than a. In many situations, however, this correction leads to such a
small rejection region for cach individual test thar the power of each test may be too low to
derect important deviations from the null hypotheses being tested. Resolving this antago-
nism between Type I and Type I1 error rates requires a conscientious study, design and care-
fully considered error rates for planned analyses. '

Problems

1. a. Give two examples of discrete random variables.
b. Give two examples of continuous random variables.
2. Name the four levels of measurement, and give an example of a variable at each level.
3. Assume that Z is a normal random variable with mean 0 and variance 1.
a P(Z=-1)=2
b. P(Z=2)=.20
4. a. P(i=2)=.01
b. P(xhs14) =2
5. a. P(T)3=1?)=.10
b. P(|Ty| = 2.05) =?
a P(Fep=2) =05
b. P(Fs 40 =29) =2
‘What are the (a) mean, (b) median, and (c) mode of the standard normal
distribution?

An Fy, random variable can be thought of as the square of what kind of random
variable? .

&

7

8

-]

Find the (a) mean, (b) median, and (c) variance for the following set of scores:
{0,2,5,6,3,3,3,1,4, 3}

d. Find the sct of Z scores for the data.
Which of the following statements about descriptive statistics is correct?
a. Al of the data are used to compute the median, -

b. The mean should be preferred to the median as a measure of central tendency if
the data are noticeably skewed.

¢ The variance has the same units of measurement as the original observations,
d. The variance can never be 0.

e. The variance is like an average of squared deviations from the mean.

10,
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11.

12.

13.

14.

15.

16.

17.

Basic Statistics: A Review

Suppose that the weight W of male patients registered at a diet clinic has the normal

distribution with mean 190 and variance 100. .

a. For a random sample of patients of size 7 = 25, the expression (W < 180), |
in which W denotes the sample mean weight, is equivalent to saying P(Z > ?). |
[Note: Z is a standard normal random variable.] . |

b. Find an interval (g, &) such that P(a < W < 4) = .80 for the same random sam-
ple in part (a).

The limits of 2 95% confidence interval for the mean u of a normal population with
unknown variance are found by adding to and subtracting from the sample mean a
certain multiple of the estimated standard error of the sample mean. If the sample size
on which this confidence interval is based is 28, the multiple referred to in the previ-
ous sentence is the number

A random sample of 32 persons attending a certain diet clinic was found to have lost
(over a three-week period) an average of 30 pounds, with a sample standard deviation
of 11. For these data, a 99% confidence interval for the true mean weight loss by all
patients attending the clinic would have the limits (2, ?).

From two normal populations assumed to have the same variance, independent ran-
dom samples of sizes 15 and 19 were drawn. The first sample (with 7, = 15) yielded
mean and standard deviation 111.6 and 9.5, respectively, while the second sample
(7, = 19) gave mean and standard deviation 100.9 and 11.5, respectively. The esti-
mated standard error of the difference in sample means is

For the data of Problem 14, suppose that a test of Hy: ity = i, versus Hy: iy > o
yielded a computed value of the appropriate test statistic equal to 2.55.

a. What conclusions should be drawn for & = .05?

b. What conclusions should be drawn for &« = .01?

Test the null hypothesis that the true population average body weight is the same for
two independent diagnosis groups from one hospital versus the alternative hypothesis
that these two population averages are different, using the following data:

Diagnosis group 1 data: {132, 145, 124, 122, 165, 144, 151}
Diagnosis group 2 data: {141, 139, 172, 131, 150, 125}

You may assume that the populations from which the data come are each normally
distributed, with equal population variances. What conclusion should be drawn, with
a=.05?

Independent random samples are drawn from two normal populations, which are
assumed to have the same variance. One sample (of size 5) yields mean 86.4 and
standard deviation 8.0, and the other sample (of size 7) has mean 78.6 and standard
deviation 10. The limits of 2 99% confidence interval for the difference in population
means are found by adding to and subtracting from the difference in sample means a ;
certain multiple of the estimated standard error of this difference. This multiple is the 4
number




Problems

18. Ifa 99% confidence interval for s, — u, is 4.8 to 9.2, which of the following conclu-

19.

20.

21.

22,

sions can be drawn based on this interval?

Do not reject Hy: p; = pp at @ = .05 if the alternative is Hg: p; % .
Reject Hy: pu = pp at @ = .01 if the alternative is Hy: p; # u,.

- Reject Hy: iy = ppat o = .01 if the alternative is Hy: ;< ,.

- Do not reject Hy: ) = pp at @ = .01 if the alternative is Hy: p; 5 .
Do not reject Hy: pu; = py + 3 at @ = .01 if the alternative is

Hy: py # pp + 3.

Assume that we gather data, compute a 7, and reject the null hypothesis. If, in fact,
the null hypothesis is true, we have made (a) . If the null hypothesis is false,
we have made (b) - Assume instead that our data lead us to not reject the null
hypothesis. If, in fact, the null hypothesis is true, we have made (c) . If the
null hypothesis is false, we have made (d) .

oo T

Suppose that the critical region for a certain test of hypothesis is of the form

|7| = 2.5 and that the computed value of T from the data is —2.75. Which, if any,

of the following statements is correct?

a. H, should be rejected.

b. The significance level a is the probability that, under Hj, T s cither greater than
2.75 or less than —2.75.

c. The nonrejection region is given by —3.5 < T'< 3.5.

d. The nonrejection region consists of values of Tabove 3.5 or below —3.5.

e. The P-value of this test is given by the area to the right of 7'= 3.5 for the distri-
bution of T under H,.

Suppose that X; = 125.2 and X, = 125.4 are the mean systolic blood pressures

for two random samples of workers from different plants in the same industry. Sup-

pose, further, that a test of Hy: w; = p, using these samples is rejected for ar = .001.

Which of the following conclusions is most reasonable?

a. There is a meaningful difference (clinically speaking) in population means but not
a statistically significant difference.

b. The difference in population means is both statistically and meaningfully
significant.

¢. There is a statistically significant difference but not a meaningfully significant dif-
ference in population means.

d. There is neither a statistically significant nor a meaningfully significant difference
in population means.

e. The sample sizes used must have been quite small.

The choice of an alternative hypothesis (/) should depend primarily on (choose all
that apply)

the data obtained from the study.

what the investigator is interested in determining,

the critical region.

the significance level.

the power of the test.

oo Tp
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23. For each of the areas in the accompanying figure, labeled 4, 4, ¢, and 4, select an
answer from the following: @, 1 — @, 8, 1 — B.

Sampling distribution under Hy

Sampling distribution under Hy

X

© Cengage Learning

Critical value

24. Suppose that Hy: s, = i, is the null hypothesis and that .10 < P < .25. What is the
most appropriate conclusion?

25. Suppose that Hy: ; = u, is the null hypothesis and that .005 < P < .01. Which of
the following conclusions is most appropriate?

Do not reject Hy because P is small.

Reject Hj because P is small.

Do not reject Hy because P is large.

Reject Hj because P is large.

Do not reject Hy ata = .01.

oo TP
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