Linkage Disequilibrium (LD) Vocabulary

- <u>Allelic phase</u>: alignment of nucleotides on a single <u>homolog</u> (one of the two homologous chromosomes)
- <u>Haplotype</u>: combination of alleles (sequence of bases) on a single homolog
 At times this will be referred to as a gamete
- <u>Diplotype</u>: the pair of haplotypes that an individual has

e.g. for genotype (Aa,Bb), the possible pairs of haplotypes (i.e., diplotypes) are (AB,ab) and (Ab, aB).

Linkage Disequilibrium (LD) vs. Linkage Analysis

- *Linkage Analysis* is a set of statistical methods to identify the chromosomal location of a gene
 - Typically involves Family-based studies
 - Family-based studies require methods for clustered data
- LD is an association among the alleles found at each of two genomic sites - Applicable to Population-based and Family-based studies
- Population-based studies involve unrelated individuals.
 <u>Allelic phase</u> is unobservable in population-based investigations.

Reasons for Linkage Disequilibrium (LD)

- Recent origin of a mutation
- Selection for certain alleles or haplotypes
- Migration and admixture
- Genetic drift

Linkage Disequilibrium (LD)

A measure of the non-random association of alleles at two loci.

An example: (European Population)

• Observed haplotype frequency (HF):

 $P_{A*0201:B*0704} = .036$

• Observed allele frequencies:

 $P_{A*0201} = 0.246$ $P_{B*0704} = 0.069$

• LD (Individual Coefficient):

 $D_{ij} = P_{A*0201:B*0704} - P_{A*0201} \cdot P_{B*0704}$ = 0.036 - <u>0.246 \cdot 0.069</u> = 0.019 Expected HF with no LD

Linkage Disequilibrium (LD)

Two primary pairwise measures based on $~~D=p_{\scriptscriptstyle AB}$ - $~p_{\scriptscriptstyle A}p_{\scriptscriptstyle B}$

1. D' is rescaled to take into account constraints on cell counts/frequencies:

 $D' = |D| / D_{max}$

$$\begin{split} D_{\text{max}} &= \min \left(p_{\text{A}} p_{\text{b}} \text{ , } p_{\text{B}} p_{\text{B}} \right) \text{ if } D > 0 \\ \min \left(p_{\text{A}} p_{\text{B}} \text{ , } p_{\text{B}} p_{\text{b}} \right) \text{ if } D < 0 \end{split}$$

- 2. $r^2 = D^2 / p_A p_B p_B p_a p_b = \chi_1^2 / N$
- The difference between D' and r^2 is in the type of normalization made to D
- r^2 is often preferred due to relationship with χ^2 statistic.

Linkage disequilibrium (LD)

Expected Allele Distributions Under Independence (No LD)

		Site 2		
		В	b	
Site 1	А	$n_{AB} \!= \! N \boldsymbol{\bullet} p_A p_B$	$n_{Ab} = N \bullet p_A p_b$	$n_{A} = N \cdot p_A$
	a	$n_{aB} = N \bullet p_a p_B$	$n_{AB} = N \bullet p_a p_b$	n_a .=N• p_a
		$n_{.B} = N \bullet p_B$	$n_{.b} = N \bullet p_b$	N = 2n

Observed Allele Distributions Under LD

		Site 2		
		В	b	
Site 1	А	$n_{AB} = N (p_A p_B + D)$	$n_{Ab} = N (p_A p_b + D)$	$n_{A} = N p_A$
	a	$n_{aB} = N (p_a p_B + D)$	$n_{AB} = N (p_a p_b + D)$	n _a .=N p _a
		$n_{.B} = N p_B$	$n_{.b} = N p_b$	N = 2n

Observed Haplotype Distributions at 2 Drosophila Loci (BamHI & XhoI)

		Site 2 (XhoI)		
		+	-	
Site 1 (BamHI)	+	5	6	11
	-	6	0	6
		11	6	17

- Haplotypes are assumed to be known
- How can we test for the significance of LD?

Exact Test for Linkage Disequilibrium (BamHI & XhoI)

	Ga	mete				
++	+ -	- +		Prob	Cum.Prob	Chi-square
11	0	0	6	0.0001	0.0001	17.00
10	1	1	5	0.0053	0.0054	9.37
5	6	6	0	0.0373	0.0427	5.06
9	2	2	4	0.0667	0.1094	4.00
6	5	5	1	0.2240	0.3334	1.41
8	3	3	3	0.2666	0.6000	0.88
7	4	4	2	0.4000	1.0000	0.02

Under Ho (No LD) the likelihood is a function of the allele frequencies

		Site 2		
		В	b	
Site 1	А	$n_{AB} \!= N \! \bullet \! p_A p_B$	$n_{Ab} = N \bullet p_A p_b$	
	a	$n_{aB}^{}\!=N_{\bullet}p_{a}^{}p_{B}^{}$	$n_{AB}^{}=N{\boldsymbol{\bullet}}p_a^{}p_b^{}$	
				N = 2n

Under H₁ (LD) the likelihood is a function of the haplotype frequencies

		Site 2		
		В	b	
Site 1	А	$n_{AB}^{}\!=N^{\bullet}p_{AB}^{}$	$n_{Ab} \!= N \! \bullet \! p_{Ab}$	
	а	$\boldsymbol{n}_{aB} \!= N \boldsymbol{\bullet} \boldsymbol{p}_{aB}$	$n_{AB} = N \bullet p_{ab}$	
				N = 2n

Observed multi-locus genotypes (Under LD)

		Site 2		
		BB	Bb	bb
Site 1	AA	n ₁₁	n ₁₂	n ₁₃
	Aa	n ₂₁	$n_{22} \!=\! n_{AaBb}$	n ₂₃
	aa	n ₃₁	n ₃₂	n ₃₃

- *Phase* can be determined for all but one category
- For $n_{22} = n_{AaBb}$ we can not distinguish between (AB; ab) and (Ab; aB)
- Recall that $D = p_{AB} p_A p_B$
- Haplotypes need to be inferred (via the E-M algorithm or an alternative) since the number N•p_{AB} of AB haplotypes (homologs with A and B alleles) is not observed.

LD & Population Stratification

- Recall that <u>population stratification</u> (or <u>population substructure</u>) is the presence of multiple subgroups between which there is minimal mating or gene transfer
- Population stratification can lead to erroneous conclusions about the presence of LD between markers/genes/SNPs ("Simpson's paradox").