
Meiosis

- Meiosis is the process of cell division that leads to the formation of gametes.
- Meiosis starts with a diploid cell, with pairs of homologous chromosomes (one maternal, one paternal), and produces four haploid cells, with only a single chromosome from each pair.
- As a result of crossovers, chromosomes passed from parent to offspring are mosaics of the two parental chromosomes.

Genetic mapping

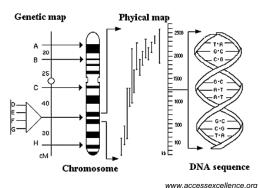
 The phenomenon of crossover during meiosis, and the resulting varying degree of recombination between loci, provide means of measuring distances along chromosomes.

Genetic markers

- Genetic markers are regions of DNA that tend to differ among individuals and are easily assayed.
- Unlike protein coding genes, markers often have no known function; they are simply convenient landmarks on chromosomes.
- Markers form the basis of genetic maps against which new genes are mapped.
- Genetic markers which have several different DNA variants, or alleles, are termed polymorphic.

Genetic and physical maps

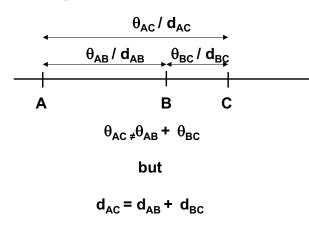
 Genetic distance: expected number of crossovers between two loci, <u>per chromatid</u>, per meiosis.


Unit: Morgan (M) or centiMorgan (cM).

- Recombination fraction: the proportion of recombinant gametes between two loci.
- Physical distance: number of nucleotide base pairs (bp).

Genetic and physical maps

- In general, genetic distance ≠ physical distance.
- A rough correspondence
 1cM ~ 1 million bp (1Mb).
- The intensity of the crossover process varies by sex, individual, chromosome, position on the chromosome, temperature.


Genetic and physical maps

Recombination fractions vs. genetic distances

- Problem: the recombination fraction is not a metric.
- Unlike genetic map distances, recombination fractions are not additive.
- A recombination event between two loci could result from any odd number of crossover events.

Recombination fractions vs. genetic distances

Map functions

- To relate the recombination fraction to the genetic distance, one can specify a stochastic model for meiosis.
- The model will yield a map function, M

θ=M(*d*).

• For short distances, $\theta \approx d$.