Hardy-Weinberg Proportions (HWP)

Deviation from HWP may arise due to:

- typing errors
- · assortative mating
- selection

- (e.g., heterozygote advantage)
- population structure

Tests of fit to HWP

- · Chi-square Goodness-of-fit test
- Likelihood Ratio test
- Exact test

(e.g., missing heterozygotes)

- (e.g., negative assortative mating)
- (e.g., \geq 2 merged populations)

Hardy-Weinberg Proportions (HWP)

• Let p_A and p_a be the allele frequencies and $p_{\rm AA}$, $p_{\rm Aa}$, and $p_{\rm aa}$ be genotype frequencies

HWP
$$\rightarrow p_{AA} = p_A^2$$
 $p_{Aa} = 2p_A p_a$ $p_{aa} = p_a^2$

- O_i = observed # with the ith genotype $(n_{aa}, n_{Aa}, \& n_{AA})$
- E_i = expected # with the ith genotype, under H₀: HWP

$$X_{HW}^2 = \sum (O_i - E_i)^2 / E_i$$

HWP: Chi-square Goodness-of-fit test

· Example: The Pgm locus in a sample of Aedes Aegypti mosquitos

$$O_1 = n_{aa} = 26$$
, $O_2 = n_{Aa} = 9$, $O_3 = n_{AA} = 5$

$$p_a = (2 \times n_{aa} + n_{Aa}) / 2n = (2 \times 26 + 9) / 80 = 0.7625$$

$$p_A = (2 \times n_{AA} + n_{Aa}) / 2n = (2 \times 5 + 9) / 80 = 0.2375$$

 $E_1 = E_{aa} = n \times p_a^2 = 40 \times (.7625)^2$ = 23.25625 $E_2 = E_{Aa} = 2n \times p_A p_a = 80 \times (.7625)(.2375) = 14.48750$ $E_3 = E_{AA} = n \times p_A^2 = 40 \times (.2375)^2$ = 2.25625

HWP: Chi-square G-O-F test

• E_i = expected # with the ith genotype, under H₀: HWP

$$\begin{split} E_1 &= E_{aa} = n \times p_a^2 &= 40 \times (.7625)^2 &= 23.25625 \\ E_2 &= E_{Aa} = 2n \times p_A p_a = 80 \times (.7625)(.2375) &= 14.48750 \\ E_3 &= E_{AA} = n \times p_A^2 &= 40 \times (.2375)^2 &= 2.25625 \end{split}$$

$$X_{HW}^{2} = \frac{(26 - 23.25625)^{2}}{23.25625} + \frac{(9 - 14.4875)^{2}}{14.4875} + \frac{(5 - 2.25625)^{2}}{2.25625} = 5.738814$$

$$pvalue = 0.0166$$

df = (#categories - 1) - (# indep. allele freqs. estimated from the data)

1

Definition 12 (Likelihood function, independent data.) Suppose X_1, \ldots, X_n are independent random variables. Then, the likelihood function is defined as

$$L(\psi) = \begin{cases} \prod_{i=1}^{n} P(X_i = x_i), & \text{if } X_1, \dots, X_n \text{ are discrete r.v.'s} \\ \prod_{i=1}^{n} f_{X_i}(x_i), & \text{if } X_1, \dots, X_n \text{ are continuous r.v.'s.} \end{cases}$$
(3.1)

Example 30 (Coin tossing, contd.) The likelihood function for the coin tossing experiment of Example 29 can be computed as $L(\psi) = (1 - \psi)^{39} \psi^{51}$, since there are 39 factors $P(X_i = 0) = (1 - \psi)$ and 61 factors $P(X_i = 1) = \psi$. A more formal way of deriving this is

$$L(\psi) = \prod_{i=1}^{100} P(X_i = x_i) = \prod_{i=1}^{100} (1-\psi)^{1-x_i} \psi^{x_i}$$

= $(1-\psi)^{100-\sum_{i=1}^{100} x_i} \psi^{\sum_{i=1}^{100} x_i} = (1-\psi)^{39} \psi^{61},$ (3.2)

since
$$\sum_{i=1}^{100} x_i = 61$$
 is the total number of heads.

Definition 13 (Maximum likelihood estimator.) The maximum likelihood (ML) estimator is defined as

 $\widehat{\psi} = \arg \max_{\psi \in \Psi} L(\psi),$

meaning that $\hat{\psi}$ is the parameter value which maximizes L.

Example 31 (ML-estimator for coin tossing.) If we take the logarithm of (3.2) we get

$$\ln L(\phi) = 39 \ln(1 - \phi) + 61 \ln \phi.$$

This function is shown in Figure 3.1. Differentiating this w.r.t. and putting the derivative to zero we get

$$0 = \frac{d \ln L'(\psi)}{d\psi}|_{\psi = \widehat{\psi}} = \frac{61}{\widehat{\psi}} - \frac{39}{1 - \widehat{\psi}} \iff \widehat{\psi} = \frac{61}{100}$$

Probability Model vs. Likelihood

X = # Heads in n = 100 tosses of a coin

$$P(\text{Heads}) = p$$

Probability Model:

$$P(x) = C p^{x}(1-p)^{100-x}$$
 $x = 0, 1, ..., 100$

Likelihood Function:

$$L(p) = C p^{x} (1-p)^{100-x}$$

The Likelihood Function for p based on 61 Heads in 100 Tosses

HWP: Likelihood Ratio Test

$$L(p_{AA}, p_{Aa}, p_{aa}) = \frac{n!}{n_{AA}! n_{Aa}! n_{aa}!} (p_{AA})^{n_{AA}} (p_{Aa})^{n_{Aa}} (p_{aa})^{n_{aa}}$$

• L₀ is the likelihood computed under H₀: HWP

$$p_{AA} = p_A^2 = ((2n_{AA} + n_{Aa})/2n)^2,.$$

• L₁ is computed under H₁ (no restrictions on genotype freqs)

$$p_{AA} = (n_{AA} / n), \dots$$

• The likelihood ratio chi-square is $S = X_{LR}^2 = -2 \ln \left(\frac{L_0}{L_1}\right) \sim \chi_1^2$

Fisher's Exact Test

Fisher showed that the exact probability of a table relating A and B is:

$$P(table) = \frac{\binom{n_{1.}}{n_{11}}}{\binom{N}{n_{.1}}} = \frac{n_{1.}! n_{2.}! n_{.1}! n_{.2}!}{N! n_{11}! n_{12}! n_{21}! n_{22}!}$$

HWP: Exact Tests

Observed Table (or arrangement):

- · Find the prob. of observing a table as extreme or more extreme than the observed table

Levene (1948) showed that Fisher's formula in the genetics setting is:

$$P(table) = \frac{n!/(n_{AA}!n_{Aa}!n_{aa}!)}{(2n)!/[(2n-n_a)!n_a!]} 2^{n_{Aa}}$$

HWP: Exact Test

• All possible arrangements of n=40 individuals, with allele frequencies fixed at the observed values.

AA	Aa	aa	Probability*	Cumulative Probability	
9	1	30	0.0000	0.0000	
8	3	29	0.0000	0.0000	
7	5	28	0.0001	0.0001	
6	7	27	0.0023	0.0024	
5	9	26	0.0205	Old Content of Con	а
0	19	21	0.0594	0.0823	
4	11	25	0.0970	0.1793	
1	17	22	0.2308	0.4101	
3	13	24	0.2488	0.6589	
2	15	23	0.3411	1.0000	

* conditional probability of the arrangement, given the fixed marginal allele frequencies for A & a (Levene, 1948).

HWP: Highly polymorphic data

- When there are lots of alleles, enumeration of all possible tables is not feasible and Randomization Tests are used instead.
- When simple randomization tests are not feasible, Markov Chain Monte Carlo (MCMC) methods are used to sample the space of possible tables. (e.g., Guo & Thompson, 1992)
 - Tables are sampled probabilistically
 - Transition probabilities between any two tables are a function of the ratio of probabilities of each.

HWP: Testing Individual Genotypes

- Overall tests of HWP do not indicate which individual genotypes may be responsible for deviation at a locus.
 - This information can help point to sources of deviation (e.g., allele dropout, preferential amplification, heterogeneous levels of allelic resolution, population stratification, selection, ...)
- Overall tests and ad-hoc tests (e.g., 1-d.f. "GOF" test) of individual genotypes may not be very powerful.
- A modified typing protocol can sometimes alleviate problems revealed by deviation from HWP.

Hardy-Weinberg Disequilibrium Coefficients (D_{ii})

$$p_{AA} = p_{A}^{2} + d_{AA}$$
$$p_{Aa} = 2p_{A}p_{a} - 2d_{Aa}$$
$$p_{aa} = p_{a}^{2} + d_{aa}$$

In the two-allele case there is only one disequilibrium coefficient (i.e., the 3 coefficients above are the same and called *d_A*)
Based on the constraints for allele and genotype frequencies,

$$\max(-p_A^2, -p_a^2) \le d_A \le p_A p_a$$

• In the general case, the disequilibrium coefficients are defined as

$$d_{ij} = p_i p_j - \frac{1}{2} p_{ij}$$
$$d_{ii} = p_{ii} - p_i^2$$

Inbreeding Coefficients (D_{ij})

•H-W Disequilibrium coefficients are sometimes parameterized in terms of an measure of inbreeding (f).

$$p_{AA} = p_{A}^{2} + p_{A}p_{a} \cdot f$$
$$p_{Aa} = 2p_{A}p_{a} \cdot (1 - f)$$
$$p_{aa} = p_{a}^{2} + p_{A}p_{a} \cdot f$$